公开课说课稿一次函数图象
北师大版八年级数学上册:4.3《一次函数的图象》说课稿

北师大版八年级数学上册:4.3《一次函数的图象》说课稿一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节课主要介绍了一次函数的图象特点,以及如何通过图象来分析一次函数的性质。
教材通过生动的实例,引导学生探究一次函数图象的规律,培养学生的观察能力、思考能力和实践能力。
二. 学情分析八年级的学生已经掌握了函数的基本概念,一次函数的解析式也有一定的了解。
但在实际操作中,对一次函数图象的认识和分析还相对薄弱。
因此,在教学过程中,要注重引导学生通过观察、实践来理解一次函数图象的特点,提高学生对一次函数图象的分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数图象的性质,能够通过图象来分析一次函数的特点。
2.过程与方法目标:通过观察、实践,培养学生的观察能力、思考能力和实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:一次函数图象的性质及其应用。
2.教学难点:如何引导学生通过观察、实践来理解一次函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的图片,引导学生关注一次函数图象在现实生活中的应用,激发学生的学习兴趣。
2.探究一次函数图象的性质:让学生观察、分析实例,引导学生发现一次函数图象的规律,总结一次函数图象的特点。
3.小组讨论:让学生分小组讨论一次函数图象在实际问题中的应用,培养学生解决问题的能力。
4.巩固提高:通过练习题,让学生运用所学知识分析一次函数图象,提高学生的实践能力。
5.总结:对本节课的内容进行总结,强调一次函数图象的性质及其在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出一次函数图象的性质。
优质公开课《一次函数的图像(1)》说课稿

一次函数的图像说课稿朱昌二中陈春梅《一次函数的图像》说课稿朱昌二中陈春梅大家好!我说的课是北师大版数学教材八年级上册第四章《函数》的第三节《一次函数的图像》的第1课时。
我将从教学任务、方法、手段、过程、预期和板书这六大板块的设计进行挑重点的阐述。
一、教学任务设计先看学情——在七年级下册的《变量之间的关系》里,学生对用图像表示变量之间的关系已积累了丰富的经验;在本章第一节《函数》里,学生又明确了作函数图像的一般步骤。
所以,学生作一次函数的图像并不困难。
然而,学生在这章刚刚接触函数,一次函数又是学生学习的第一种函数,所以,学生对如何研究函数,如何研究函数的性质,如何把函数的解析式和图像有机地结合起来,都会感到陌生和困难。
再看内容——所有老师在讲函数时,都会花大量的时间和精力。
一是因为函数重要,重要到它是初中数学、高中数学、大学数学,乃至整个庞大数学体系的一个重要核心;二是因为函数难,它抽象难懂、错综复杂。
所以,一次函数作为学生接触的第一类基本函数,需要浓墨重彩,这就不难理解《教参》规定这节课用2课时完成的原因了。
第一节应先从简单的、特殊的一次函数(即正比例函数)着手。
基于以上分析,我对教学任务设计如下——首先是教学目标。
我们重点看一下第二维和第三维目标,它们是专门针对数学学科设定的。
其中,数学思考方面——在利用正比例函数图像探究性质的过程中,发展合情推理能力;在利用解析式反思正比例函数性质的过程中,发展演绎推理能力。
问题解决方面——经历一系列探究过程,领会“从特殊到一般”、“数形结合”和“分类讨论”等思想方法;通过类比k>0类型的正比例函数,合作探究k<0类型的正比例函数的图像和性质,培养类比学习的能力。
一次函数的图像和正比例函数的性质,自然就是本节课的教学重点;探究正比例函数的性质,则是难点。
我将通过层层递进的梯度设计、几何画板的直观演示、让学生亲历探究过程、给学生充分思考和交流的时间,使学生在知识发生和思维发展的过程中水到渠成地解决这一难点。
一次函数的图像2说课稿

《5.4一次函数的图像2》说课稿一、教材分析本节课的地位及作用它是在明确了一次函数图像是一条直线后,进一步结合图像研究一次函数的性质,是对前面知识的深化与拓展,既为后续学习反比例函数、二次函数的图像做好必要的知识准备,提供研究方向和方法,再有结合近几年中考命题,一次函数往往是考察的重点和热点知识。
因此本节课有着十分重要的作用。
教学目标基于《新课标》的要求,教材分析与学情分析,我制定了本节课的教学目标、教学重点、教学难点如下:知识技能目标:1、使学生能熟练地画出正比例函数、一次函数的图像。
2、并能熟练掌握一次函数图像的性质。
过程方法目标:经历用两点法画出一次函数图像和性质的探究过程,培养学生的探究精神、团队合作意识。
以及培养学生“数”“形”结合和类比的数学思想情感态度目标:在实践探究中,培养学生勇于创新和大胆猜想的良好品质。
教学重点:掌握正比例函数、一次函数的图像性质。
教学难点:根据图像探究出一次函数图像的性质。
二、学情分析八年级的学生具有强烈的求知欲望,且掌握一定的数学基础知识和基本技能,学习本节之前经历了用“列表、描点、连线”画出一次函数的图像,对图像的形状和分布已有了解,为本节课的学习提供了知识与方法上的准备。
但这个学段的学生具有较强的自尊心,因此教师在教学中应关注学生的心理特征。
三、教法选择与学法指导为了达到最佳的教学效果。
基于本节课的特点,我主要采用了以下的教学方法:直观演示法和探究归纳法。
利用几何画板课件进行直观形象的演示,激发学生的学习兴趣,增大课堂密度。
通过小组合作交流,培养学生的观察分析能力、归纳总结能力。
这节课在学法指导和培养学生能力方面主要采取:分析归纳法、自主探究法、总结反思法。
下面我具体来谈谈教学过程设计。
四、说教学过程根据《新课标》的要求,结合学生的具体学情,体现“以学生为主体”的教育理念,教学流程由:一、回顾思考,引入新知二、动手操作,探究新知三、学以致用,巩固新知四、思路拓展,发散新知五、课堂小结,总结新知(一)回顾思考,引入新知《新课标》指出:教师是课堂的组织者和引导者。
一次函数说课课件(共19张PPT)

小结: 这节课的收获:
怎样的函数是一次函数?
一般地,形如y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数。
当b=0时,y=kx+b就变成了 y=kx(k≠0),所以说正比例函数是一种特 殊的一次函数。
作业
• 完成课本90页练习1、2、3
再 见!
函数关系式 函数 自 变量 变 量
常数
y =-300x+3000 y x 3000 , -300
S=-95t+570 S t 570 , -95
y=8x+9
y x 9,8
y=12x+50 y x 50 , 12
一次函数的概念:
一般地,若两个变量 x、y之间的关系可以表示成: y=kx+b(k,b是常数,k≠0)的形式,则称 y是x的 一次函数。(x为自变量,y为因变量。)
(3)汽车油箱中原有油50升,如果行驶中每小时 用油5升,求油箱中的油量y(单位:升)随行驶 时间x(单位:时)变化的函数关系式.并写出
自变量x的取值范围,y是x的一次函数吗?
解:汽车每小时用油5升,x个小时用油5x升, 因而 y=50-5x (即y=-5x+50) ∵y≥0 ∴0≤x≤10 即自变量x的取值范围是0≤x≤10 (y是x的一次函数,但不是x的正比例函数。)
三、教学重点、难点
• 教学重点:掌握一次函数的概念,学会 如何判断一次函数.
• 教学难点:能结合实际问题中的数量关 系求出一次函数的解析式,即学会做一 次函数有关的应用题.
四、教学过程
• 回顾旧知识 • 创设情境,引入问题 • 新知识讲解 • 反馈练习 • 课堂小结
一﹑
正比例函数的定义:
一次函数图像与性质》说课稿

一次函数图像与性质》说课稿尊敬的评委、老师,我是来自XXX的moumoumou。
今天我将为大家讲解人教版八年级上册第一章中的《一次函数的图像与性质》。
我将从教材、教法、学法和教学流程四个方面,阐述我对这节课的理解和设计安排。
一、教材分析一次函数是学生在中学阶段接触到的最简单、最基本的函数。
本节内容安排在正比例函数图像与性质以及一次函数的概念之后,是一次函数的第二课时,它与正比例函数的图像和性质有着紧密联系,是本章的重点内容。
主要研究一次函数的图像与性质,它既是正比例函数的图像和性质的拓展,又是继续研究“用函数观点看方程(组)和不等式”的基础。
探究一次函数图像与性质的方法也为今后研究其他的函数奠定了基础。
根据以上教材分析,我将这节课的教学目标定为以下几点:1.知道一次函数的图像是一条直线;2.能选取两个适当的点画出一次函数的图像;3.能结合图像理解一次函数的性质。
同时,我将培养学生的以下能力:1.通过画函数的图像,培养学生的动手能力;2.通过结合函数图像揭示性质的教学,培养学生观察、比较、抽象和概括的能力;3.培养学生用“数形结合”的思想与方法解决数学问题;4.通过具体的一次函数图像抽象得到一般形式的一次函数图像特征,进而得到函数的性质,让学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法。
根据上述目标,结合本班学生的具体情况,我将本节课的教学重点定为通过画函数图像探究得出一次函数的图像与性质。
难点则是如何引导学生用数形结合法探究得出一次函数的图像特征与性质以及一次函数与正比例函数的图像之间的关系。
二、教法分析为了突出教学重点,也为了培养学生的能力,我将采用“自主探究式”的教学方法,利用学生描点作图经历体验,发现问题,分析问题并进一步归纳总结。
为了突破难点,我将采取“启发式教学”,利用多媒体现代教学手段,把抽象的知识直观地展现在学生面前,逐步将学生的感性认识引领到理性的思考。
这样的设计充分体现了以学生为主体,老师为主导的教学理念。
全国初中数学优质课一等奖《一次函数的图像》说课课件

03
确定对应图象
02
确定自变量取值范围
01
熟练两点法
5
回顾与思考
知识的梳理和小结
课堂实录
回顾思考——知识的梳理和小结
一次函数的图 象是什么图形? 一
问题 清单
观察所画一 次函数的图 象,你发现 六 了什么.
怎样画一次 二
函数的图象.
三
一次函数的解析式与 它的图象有何关系.
五 你在学习过程中
四
有哪些新的体验.
你在学习过程中感受
到了哪些数学方法?
回顾课堂——知识的梳理和小结
回眸课堂
自主 探究
合作 学习
课堂 展示
集体 议学
THANKS 请专家和老师同仁们多多指导
3
深入探究
优化一次函数图象的画法
体
会
数
学
的
பைடு நூலகம்
简
洁
课堂实录
美
从描点法到两点法,自然的生成加深学生的印象.
深入探究——优化一次函数图象的画法
描点法 二点法
特殊的一次函数 与坐标轴的交点
4
巩固提高
实际问题中一次函数的图象
课堂实录
层层深入,进一步体会数形结合的思想.
巩固提高——实际问题中一次函数的图象
会
数
形
结
合
重
要
数
课堂实录
学
思
想
从初步感知到达成共识,体现数学问题思考的价值.
小组活动——探索一次函数的图象及其画法
1自主探究 2小组合作 3课堂展示 4同学提问
小组活动——探索一次函数的图象及其画法
代表性、依次排 列表 列、省略号.
一次函数的图像和性质说课ppt

斜率决定了函数的增减性。斜率为正表示函数为增函数,斜率为负表示函数为 减函数。
一次函数的增减性
单调性
一次函数的单调性由其斜率决定。在区间(-∞, +∞)上,当k>0时,函数为增函数; 当k<0时,函数为减函数。
增减性的判断方法
通过求导数或利用区间内任取两点连线的斜率来判断。在定义域内任取两点x1, x2 (x1<x2),如果y1<y2,则函数在此区间内为增函数;如果y1>y2,则函数在此 区间内为减函数。
03 一次函数的性质
一次函数的定义域和值域
定义域
对于一次函数y=kx+b(k≠0), 其定义域为全体实数R,即x可以取 任意实数值。
值域
由于一次函数的图像是一条直线, 其值域也为全体实数R,即y可以取 任意实数值。
一次函数的斜率
斜率
一次函数的斜率是函数图像在平面坐标系中的倾斜度,由参数k决定。当k>0 时,函数图像为增函数;当k<0时,函数图像为减函数。
课程目标
理解一次函数的概念 和图像。
能够应用一次函数解 决实际问题。
掌握一次函数的性质, 如斜率和截距。
02 一次函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数关系的一种图形 表示,通过坐标系中的点 来表示函数中自变量和因 变量的对应关系。
坐标系
用于表示平面内点的位置, 通常由x轴和y轴组成,每 个轴上的单位长度表示一 定的数值。
教师自我反思
教师需要自我反思,思考课程中存在的问题和不足,以及如何改进。
调整教学方法和内容
根据学生的表现和反馈,调整教学方法和内容,以提高教学效果。
《一次函数的图像》说课稿.doc

《一次函数的图像》说课稿以下是初中数学优秀说课稿《一次函数的图像》,欢迎参考借鉴!今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。
一.教材分析1.教材的地位和作用本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3一次函数图像(1)说课稿
一.教材分析
本节课的内容是一次函数的图像。
学本节课之前,学生已学习了变量与函数、平面直角坐标系、以及一次函数的概念等有关的知识。
本节是继续学习反比例函数、二次函数图像和性质的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
二.学生分析
八年级的学生对身边的事物充满了好奇,对一些自认为可行却有可能碰壁的问题充满了探求的欲望。
他们非常乐意动手操作,有很强的好胜心和表现欲,同时学生也具备了一定的归纳、总结、表达的能力,基本上能在教师的引导下就某一个主题展开讨论。
三.教学目标
1.知识目标:
(1)了解一次函数图像的意义。
(2)会画一次函数的图像。
(3)会求一次函数的图像与坐标轴的交点。
(4)理解一次函数的解析式与图象之间的对应关系。
2.能力目标:经历一次函数图像画法的探索过程,体会“数”“形”结合的数学思想在问题解决中的作用,并能运用图像及数形结合的思想解决相关函数问题。
3.情感目标:(1)在动手操作过程中,培养学生的合作意识和大胆猜想、乐于探索的学习意志。
(2)体验“数”与“形”的转化过程,让学生感受函数图像的美妙,激发学生学数学的兴趣。
四.教学重、难点:
重点:1、能熟练地作出一次函数的图象。
2、理解一次函数的表达式与图象之间的对应关系。
难点:是理解一次函数的表达式与图象之间的对应关系,即坐标满足一次函数表达式的点在图像上,图像上的点的坐标满足一次函数表达式。
五、教法与学法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。
基于本节课的特点:应着重采用数形结合的教学方法,以及由特殊到一般的方法、类比法,还有多媒体课件应用于课堂教学,增强知识的直观性。
在教学中要特别重视学法的指导。
初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。
培养学生的画图能力,主要是培养学生的看图、识图能力。
培养思维能力,主要是学会根据概念的直观表象,归纳得出概念的性质,由特殊到一般,由简单到复杂,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力。
六.教学用具:多媒体、直尺、三角板
七.教学设计:
1、由提问复习,引入新课函数的图象的画法与性质.
2、引出函数图像的概念:把一个函数的自变量x与对应的函数y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组的图形叫做这个函数的图像。
3、活动一:作出一次函数 y=2x+1的图象。
(1)、列表:
(2)、描点:以表中各组对应值作为点的坐标,在直角坐标系中描出这组点。
(3)、连线:把这些点一次连接起来。
4、题问:观察所作的图像,发现了什么?
这是引导学生从感性上认识一次函数的图像:是一条直线。
但这不能马上定论:一次函数的图象是一条直线,而应予以证明。
这也是本节课的难点所在,我借助以下两个问题突破了这个难点。
从图象的完备性和纯粹性两个角度给予证明:坐标满足一次函数表达式的点都在直线上;图象上的点的坐标都满足函数表达式。
例1 在直角坐标系中画出下列函数的图象,并求出它们与坐标轴交点的坐标:
y=-3x+2。
问题1:y=-3x+2.函数图象是什么图形?
问题2:在平面直角坐标系中确定一条直线需要几个点?
问题3:你会找哪两个点?和同桌讨论,取那些点画图时比较方便?
5、点评学生的回答,并讲解:两点确定一条直线,因此,作一次函数的图像时,只要找出两个点,过这两个点就可以作一条直线。
6、课堂小结:
通过对本节课的学习,引导学生总结本节课所学的知识:
(1)、做一次函数图像的一般步骤:列表、描点、连线。
(2)、一次函数的图像是一条直线。