全等三角形的判定复习与总结(教案)

合集下载

全等三角的性质和判定教案

全等三角的性质和判定教案

全等三角形的性质与判定教案教学目标:1. 知识与技能:学生能够理解并掌握全等三角形的定义及基本性质。

学生能够识别并应用全等三角形的判定方法,包括SSS、SAS、ASA、AAS等。

2. 过程与方法:通过观察、操作、讨论等教学活动,培养学生的空间想象能力和逻辑推理能力。

引导学生通过合作学习,共同探讨和解决问题,提升团队协作能力。

3. 情感态度与价值观:激发学生对数学的兴趣和好奇心,培养严谨的数学思维。

培养学生勇于探索、敢于质疑的科学精神。

教学重点:全等三角形的定义和基本性质。

全等三角形的判定方法(SSS、SAS、ASA、AAS)。

教学难点:正确理解和应用全等三角形的判定方法。

在实际问题中准确识别和应用全等三角形的性质。

教学准备:多媒体课件、教学用具(如直尺、圆规、三角形纸片)、学生练习册。

教学过程:一、导入新课1. 生活实例引入:展示生活中常见的全等现象,如书本封面、地砖等,引导学生观察并思考。

2. 提问:这些图形有什么共同点?引出全等三角形的概念。

二、讲授新课1. 全等三角形的定义:两个能够完全重合的三角形称为全等三角形。

2. 全等三角形的性质:对应边相等。

对应角相等。

对应边上的高、中线、角平分线、垂直平分线等对应相等。

3. 全等三角形的判定方法:SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边及它们之间的夹角对应相等的两个三角形全等。

ASA(角边角):两角及它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。

4. 例题讲解:通过例题演示如何应用全等三角形的判定方法。

三、巩固练习1. 基础练习:学生独立完成一些简单的判定题,检验对全等三角形判定方法的理解。

2. 小组合作:分组讨论一些稍复杂的实际问题,引导学生利用全等三角形的性质解决问题。

四、课堂小结1. 回顾知识点:总结全等三角形的定义、性质和判定方法。

2. 强调难点:强调在判定全等三角形时需要注意的细节和易错点。

三角形全等的判定“边角边”判定定理教案

三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。

2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学内容1. 三角形全等的概念。

2. “边角边”(SAS)判定定理。

三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。

2. 教学难点:SAS判定定理在实际问题中的应用。

四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。

2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。

3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。

五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。

2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。

3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。

4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。

让学生进行一些练习题,巩固所学知识。

5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。

6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。

提出一些拓展问题,激发学生的学习兴趣。

7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。

2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。

3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。

七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。

全等三角形的判定教学用(总复习)

全等三角形的判定教学用(总复习)
3
6选3
边边边 (SSS)
两边一角
两角一边
角角角
两边和它的夹角(SAS)
两边和它一边的对角
两角和夹边(ASA)
两角和一角的对边(AAS)
×
×
*
三角形全等的4个种判定公理:
SSS(边边边)
SAS(边角边)
ASA(角边角)
AAS(角角边)
有三边对应相等的两个三角形全等.
有两边和它们的夹角对应相等的两个三角形全等.
15
A
B
O
D
C
*
11. 如图,M是AB的中点 ,∠1 = 2 ,MC=MD.试说明ΔACM ≌ ΔBDM
A
B
M
C
D
(
)
1
2
证明: ∵ M是AB的中点 (已知) ∴ MA=MB(中点定义) 在ΔACM 和ΔBDM中, MA=MB(已证) ∠1 = ∠2 (已知) MC=MD(已知) ∴ΔACM ≌ ΔBDM (SAS)
角的平分线上的点到角的两边的距离相等.
用法:∵ QD⊥OA,QE⊥OB, 点Q在∠AOB的平分线上 ∴ QD=QE
二.角的平分线: 1.角平分线的性质:
2.角平分线的判定:
定理 线段垂直平分线上的点到这条线段两个端点距离相等.
老师提示:这个结论是经常用来证明两条线段相等的根据之一.
A
C
B
P
M
N
如图, ∵AC=BC,MN⊥AB,P是MN上任意一点(已知), ∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).
\\
(一个角、一条边对应相等)
=
=


可见:要使两个三角形全等, 应至少有 组元素对应相等。

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案

初中数学教案:三角形全等的判定教案一、教学目标:1. 让学生理解三角形全等的概念,掌握三角形全等的判定条件。

2. 培养学生运用全等三角形的性质解决实际问题的能力。

3. 培养学生的观察能力、动手能力和逻辑思维能力。

二、教学内容:1. 三角形全等的定义:如果两个三角形的所有对应边和对应角都相等,这两个三角形叫做全等三角形。

2. 三角形全等的判定条件:SSS(边-边-边)、SAS(边-角-边)、ASA (角-边-角)、AAS(角-角-边)。

三、教学重点与难点:1. 教学重点:三角形全等的判定条件及其应用。

2. 教学难点:三角形全等判定条件的理解和运用。

四、教学方法:1. 采用直观演示法,让学生通过观察和动手操作,加深对三角形全等概念的理解。

2. 采用案例分析法,让学生通过分析实际案例,掌握三角形全等的判定条件。

3. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。

五、教学步骤:1. 导入新课:通过复习已学的几何知识,引导学生进入三角形全等的新课学习。

2. 讲解三角形全等的定义和判定条件:详细讲解三角形全等的概念,以及SSS、SAS、ASA、AAS四种判定条件。

3. 案例分析:给出几个实际案例,让学生运用判定条件判断三角形是否全等。

4. 动手操作:让学生自行取材,进行三角形全等的实际操作,加深对全等三角形性质的理解。

5. 课堂练习:布置一些有关三角形全等的练习题,巩固所学知识。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用三角形全等的知识解决实际问题。

7. 作业布置:布置一些有关三角形全等的家庭作业,巩固所学知识。

8. 课后反思:对课堂教学进行反思,总结教学过程中的优点和不足,为下一步教学做好准备。

六、教学评价:1. 通过课堂提问、练习和作业,评价学生对三角形全等概念和判定条件的掌握程度。

2. 观察学生在动手操作和小组合作学习中的表现,评价其观察能力、动手能力和团队协作能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和思维能力进行评价。

第十二章全等三角形章末复(教案)

第十二章全等三角形章末复(教案)
6.章末总结与拓展
-对全等三角形的知识点进行梳理
-引导学生探讨全等三角形在其他学科领域的应用
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的判定与性质的探讨,使学生能够运用逻辑思维进行推理,形成严谨的证明过程。
2.提升学生的空间想象力:通过全等三角形的作图与分析,培养学生的空间想象力,提高对几何图形的理解与识别能力。
2.全等三角形的性质
-对应角相等
-对应边相等
3.应用全等三角形解决实际问题的方法
-识别图形中的全等三角形
-利用全等三角形的性质进行计算
4.全等三角形的作图
-已知两边一角作全等三角形
-已知两角一边作全等三角形
5.综合习题
-设计具有代表性的习题,巩固全等三角形的判定与性质
-结合生活实际,设计应用题,培养学生的实际应用能力
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指在大小和形状上完全相同的两个三角形。它是解决几何问题的重要工具,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
-例:给出一个三角形ABC,其中AB=AC,点D是BC上的一个点,且BD=DC。要求证明三角形ABD全等于三角形ACD。
-突破方法:引导学生观察图形,识别出已知信息,然后选择合适的判定方法(SSS或SAS)进行证明。
-难点二:全等三角形的作图。学生在根据给定条件作全等三角形时,可能会对如何准确画出全等图形感到困难。
6.培养学生的几何审美观念:通过对全等三角形的学习,使学生感受几何图形的和谐美,提高对几何美的鉴赏能力。

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计教学目标:1.知识目标:学生能够理解全等三角形的概念,并掌握全等三角形的判定方法。

2.能力目标:培养学生的逻辑推理能力和问题解决能力。

3.情感目标:培养学生对数学的兴趣,增强他们对数学的自信心。

教学重点和难点:1.重点:全等三角形的判定方法。

2.难点:学生掌握并运用判定方法进行实际问题的解决。

教学准备:1.教学材料:教科书、练习册、白板、彩色笔。

2.教学方法:讲授、互动、实践。

教学过程:Step 1 导入新知(10分钟)1.引入问题:请同学们回顾一下,什么是全等三角形?全等三角形有哪些性质?2.引导学生回答,并给出全等三角形的定义。

3.引入课题:本节课我们将复习全等三角形的判定方法,以及如何应用这些方法解决实际问题。

Step 2 示范教学(15分钟)1.教师给出两个全等三角形的形状,并解释这两个三角形相等的原因。

2.教师讲解全等三角形的判定方法,包括SSS判定法、SAS判定法、ASA判定法以及证明两组三角形全等的方法。

3.教师通过几个例题演示如何运用这些方法判定两个三角形是否全等。

Step 3 学生练习(20分钟)1.学生进行练习册上相关习题的解答,并在解答过程中运用全等三角形的判定方法。

2.部分学生上台讲解解题思路,并互相交流讨论。

Step 4 拓展运用(20分钟)1.学生分组合作,自选一个实际问题,并应用全等三角形的判定方法解决问题。

2.每个小组派一名代表上台展示解题过程和结果,其他小组进行评价和讨论。

Step 5 总结归纳(10分钟)1.教师与学生共同总结全等三角形的判定法,并强调每种判定法的使用条件和步骤。

2.教师提问学生,全等三角形的判定是一种证明方法,那么如何进行三角形全等的证明呢?Step 6 课堂作业(5分钟)1.布置课堂作业:完成练习册上的相关习题,同时要求学生用全等三角形的判定法证明一组三角形全等。

2.提醒学生写明解题思路和步骤。

教学反思:本节课通过引入问题、示范教学、学生练习、拓展运用以及总结归纳的多种教学手段,旨在帮助学生复习并掌握全等三角形的判定方法。

全等三角形的判定复习与总结

全等三角形的判定复习与总结

全等三角形的判定复习与总结教学目标:1.复习和巩固全等三角形的判定方法;2.总结全等三角形判定的规律和技巧;3.小组合作,培养学生的合作能力和思维能力。

教学准备:1.教学素材:全等三角形判定题目,活动卡片;2.教学工具:黑板、彩色粉笔、计算器。

教学过程:一、引入课题(5分钟)1.引入话题:今天我们要来复习和总结全等三角形的判定方法。

2.引发思考:请回顾一下,全等三角形的判定条件是什么?二、复习全等三角形的判定法(15分钟)1.复习SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

2.复习SAS判定法:如果两个三角形的一边和两个角度分别相等(这个边是两个角的夹边),则这两个三角形全等。

3.复习ASA判定法:如果两个三角形的两个角度和一边分别相等(这个边是两个角的边),则这两个三角形全等。

4.复习AAS判定法:如果两个三角形的两个角度和一边分别相等(这个边不是两个角的边),则这两个三角形全等。

三、总结全等三角形判定的规律和技巧(15分钟)1.全等三角形判定的基本规律:要判断两个三角形是否全等,只需对应两边相等且夹角相等即可。

2.技巧一:当给出两个三角形的三个边的长度时,先比较三边的长度是否相等,再比较夹角是否相等。

3.技巧二:当给出两个三角形的两边和夹角时,先比较两边的长度是否相等,再比较夹角是否相等。

四、小组合作活动(30分钟)1.分成若干小组,每组3-4个学生,每组发放一组活动卡片。

2.活动内容:每组成员轮流拿一张卡片,上面写有一组给定的边长和角度。

学生根据卡片上的数据,判断这两个三角形是否全等,并给出理由。

其他组员通过提问和讨论来验证判断的正确性。

3.活动要求:每个学生都要积极参与,提出问题和表达自己的观点;每个小组要有一个组长,负责组织小组讨论和总结。

五、展示与总结(20分钟)1.每个小组派出一位学生上台展示他们分析判断的过程,并给出判断的结果和理由。

2.全班一起讨论和比较不同小组的判断结果和理由,总结全等三角形判定的规律和技巧。

12-2《三角形全等的判定》(共4课时)教案

12-2《三角形全等的判定》(共4课时)教案

12-2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1 如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC,画一个三角形△A′B′C′,使AB=A′B′∠B=∠B′,BC=B′C′.教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法. 操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗? (2)上面的探究说明什么规律? 总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”)[师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长; (2)画线段A ′B ′,使A ′B ′=AB ;(3)分别以A ′,B ′为顶点,A ′B ′为一边作∠DA ′B ′,∠EB ′A ′,使∠DA ′B ′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A ′D 与B ′E 交于一点,记为C ′. 即可得到△A ′B ′C ′.将△A ′B ′C ′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”)这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”)例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE. [师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充. 三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”.2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS);方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS).工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?二、探究新知多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC 上,它们全等吗?画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?按照下面的步骤作一作:(1)作∠MC′N=90°;(2)在射线C′M上截取线段B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′N于点A′;(4)连接A′B′.△A′B′C′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.多媒体出示教材例5如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中, ⎩⎨⎧AB =BA ,AC =BD ,∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD. 想一想:你能够用几种方法判定两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS ,ASA ,AAS ,SSS ,还有直角三角形特殊的判定全等的方法——“HL ”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评. 四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边. 2.直角三角形全等的所有判定方法: 定义,SSS ,SAS ,ASA ,AAS ,HL .思考:两个直角三角形只要知道几个条件就可以判定其全等? 3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
B
全等三角形的判定
全等三角形复习
[知识要点] 一、全等三角形 1.判定和性质 一般三角形
直角三角形
判定 边角边(SAS )、角边角(ASA ) 角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL ) 性质
对应边相等,对应角相等
对应中线相等,对应高相等,对应角平分线相等
注:① 判定两个三角形全等必须有一组边对应相等; ② 全等三角形面积相等. 2.证题的思路:



⎪⎪
⎪⎪⎩
⎪⎪⎪⎪

⎪⎪⎨⎧⎩⎨⎧⎪

⎩⎪
⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()
找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 二、例题讲解
例1.(SSS )如图,已知AB=AD ,CB=CD,那么∠B=∠D 吗?为什么? 分析:要证明∠B=∠D ,可设法使它们分别在两个三角形中,再证它们所 在的两个三角形全等,本题中已有两组边分别对应相等,因此只要连接
AC 边即可构造全等三角形。

解:相等。

理由:连接AC ,在△ABC 和△ADC 中,⎪⎩⎪
⎨⎧===AC AC CD CB AD
AB
∴△ABC ≌△ADC (SSS ),∴∠B=∠D (全等三角形的对应角相等)
点评:证明两个角相等或两条线段相等,往往利用全等三角形的性质求解。

有时根据问题的需要添加适当的辅助线构造全等三角形。

例2.(SSS )如图,△ABC 是一个风筝架,AB=AC,AD 是连接A 与BC 中点D 的支架,证明:AD ⊥BC.分析:要证AD ⊥BC ,根据垂直定义,需证∠ADB=∠ADC,而∠ADB=∠ADC 可由△ABD ≌△ACD 求得。

证明: D 是BC 的中点,∴BD=CD
C
D
A
A D
B E
C F
A E F B
D C
C
B
E
D
A
B D C
在△ABD 与△ACD 中,⎪⎩

⎨⎧===AD AD CD BD AC AB
∴△ABD ≌△ACD(SSS),∴∠ADB=∠ADC (全等三角形的对应角相等) ∠ADB+∠ADC=︒180(平角的定义)
∴∠ADB=∠ADC=︒90,∴AD ⊥BC (垂直的定义)
例3.(SAS )如图,AB=AC,AD=AE,求证:∠B=∠C. 分析:利用SAS 证明两个三角形全等,∠A 是公共角。

证明:在△ABE 与△ACD 中,⎪⎩

⎨⎧=∠=∠=AD AE A
A AC AB
∴△ABE ≌△ACD(SAS),∴∠B=∠C (全等三角形的对应角相等)
例4.(SAS )如图,已知E,F 是线段AB 上的两点,且AE=BF,AD=BC,∠A=∠B,求证:DF=CE. 分析:先证明AF=BE ,再用SAS 证明两个三角形全等。

证明: AE=BF(已知)
∴AE+EF=BF+FE,即AF=BE
在△DAF 与△CBE 中,⎪⎩

⎨⎧=∠=∠=BE AF B A BC
AD
∴△DAF ≌△CBE(SAS),∴DF=CE (全等三角形的对应角相等)
点评:本题直接给出了一边一角对应相等,因此根据SAS 再证出另一边(即AF=BE )相等即可,进而推出对应边相等。

例5.( ASA )如图,已知点E,C 在线段BF 上,BE=CF,AB ∥DE,∠ACB=∠F,求证:AB=DE. 分析:要证AB=DE ,结合BE=CF ,即BC=EF ,∠ACB=∠F 逆推,即要找到证△ABC ≌△DEF 的条件。

证明: AB ∥DE,∴∠B=∠DEF. 又 BE=CF ,∴BE+EC=CF+EC,即BC=EF.
在△ABC 与△DEF 中,⎪⎩⎪
⎨⎧∠=∠=∠=∠F ACB EF BC DEF
B
∴△ABC ≌△DEF(ASA),∴AB=DE.
例6.(AAS )如图,已知B,C,E 三点在同一条直线上,AC ∥DE,AC=CE,∠ACD=∠B,求证:△ABC ≌△CDE.
分析:在△ABC 与△CDE 中,条件只有AC=CE,还需要再找另外两个条件,
A
C
B D
E
A
B D C
B C E
由AC∥DE,可知∠B=∠D,于是△ABC≌△CDE的条件就有了。

证明: AC∥DE,∴∠ACB=∠E,且∠ACD=∠D.
又 ∠ACD=∠B,∴∠B=∠D.
在△ABC与△CDE中,





=

=


=

CE
AC
E
ACB
D
B
,
∴△ABC≌△CDE(AAS).
解题规律:通过两直线平行,得角相等时一种常见的证角相等的方法,也是本题的解题关键。

例7.(HL)如图,在Rt△ABC中,∠A=︒
90,点D为斜边BC上一点,且BD=BA,过点D作BC
得垂线,交AC于点E,求证:AE=ED.
分析:要证AE=ED,可考虑通过证相应的三角形全等来解决,但图中没有现成的三角形,因
此要考虑添加辅助线构造出两线段所在的三角形,结合已知条件,运用“三点定形法”知,
连接BE即可。

证明:连接BE.
ED⊥BC于D,∴∠EDB=︒
90.
在Rt△ABE与Rt△DBE中,



=
=
BE
BE
BD
BA
∴Rt△ABE≌Rt△DBE(HL),∴AE=ED.
解题规律:连接BE构造两个直角三角形是本题的解题关键。

特别提醒:连公共边是常作得辅助线之一。

1.如图,已知AC=DB,要使△ABC≌△DCB,利用SSS只需增加的一个条件是__ __。

2.如图,已知△ABC和△DBE,B为AD的中点,BE=BC,请增加的一个条件____________使△ABC≌△DCB。

3.如图,点F、C在线段BE上,且AB=DF,AC=DE,若要使△ABC≌△DEF,则还需补充一个条件___________。

4.如图:将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A= 度;
三、课堂同步练习
1.如图,AB=AD,CB=CD,△ABC与△ADC全等吗?为什么?
2
1
F
E
(第13题)
D
C
B
A
B F
C E
A
D
A B
O
D C
C B A D
C D
B E
A
如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .
2.如图,C 是AB 的中点,AD=CE,CD=BE,求证△ACD ≌△CBE.
4.如图,AC ⊥CB,DB ⊥CB,AB=DC,求证∠ABD=∠ACD.
6.如图,AC 和BD 相交于点O ,OA=OC,OB=OD.求证DC ∥AB.
7.如图,点B,E,C,F 在一条直线上,FB=CE,AB ∥ED,AC ∥FD.求证AB=DE,AC=DF.
8.如图,∠1=∠2,∠ABC=∠DCB 。

求证:AB=DC 。

A
B
C
D
12
9. 已知B E E D =∠=∠,12,求证:∆∆A B E C D E ≅
6.已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?
8、9 10、已知CD ∥AB ,DF ∥EB ,DF =EB ,问AF =CE 吗?说明理由。

11、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。

已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

15、点C 是AB 的中点,CD ∥BE ,且CD =BE ,问∠D =∠E 吗?说明理由。

A
C
B
D
E
F
A
D
C E
F B
A
C M E
F
B
D
A
D
E
B
C
优秀教案 欢迎下载
D A E
C B 1
2。

相关文档
最新文档