连续纤维增强热塑性复合材料预浸

连续纤维增强热塑性复合材料预浸
连续纤维增强热塑性复合材料预浸

专利

中文

英语

查找前案

讨论此申请

查看 PDF

下载 PDF

本发明涉及连续纤维增强热塑性复合材料预浸带的制备方法及设备,该方法包括以下步骤:(a)将连续纤维从纱架(10)上引出并展开,再依次经过张力调节装置(20)、静电消除装置(30)后,送至预加热烘箱(40)预热,然后经张力调节装 ...https://www.360docs.net/doc/7318737507.html,/patents/CN101856872A?cl=zh&utm_source=gb-gplus-share专利 CN101856872A - 连续纤维增强热塑性复合材料预浸带的制备

方法及设备高级专利搜索

公开

CN101856872 A

发布

申请

类型

专利

申请

CN 200910048973

公开

2010年10月13日

申请

日期

2009年4月8日优先

权日

2009年4月8日

公开号200910048973.1, CN 101856872 A, CN 101856872A, CN 200910048973, CN-A-101856872, CN101856872 A, CN101856872A, CN200910048973, CN200910048973.1

发明

孙波, 解廷秀

申请

上海杰事杰新材料股份有限公司

导出

引文

BiBTeX, EndNote, RefMan

被以下专利引用 (2),分类 (10),法律事件 (2)

外部链接: 中国国家知识产权局, 欧洲专利数据库 (Espacenet)

连续纤维增强热塑性复合材料预浸带的制备方法及设备

CN 101856872 A

摘要

本发明涉及连续纤维增强热塑性复合材料预浸带的制备方法及设备,该方法包括以下步骤:(a)将连续纤维从纱架(10)上引出并展开,再依次经过张力调节装置

(20)、静电消除装置(30)后,送至预加热烘箱(40)预热,然后经张力调节装置(50);

(b)将预热后的连续纤维带导入交错可开合双挤出模头组(60)进行预浸渍;(c)将预浸渍后的连续纤维带导入浸渍压延辊组(70)进行浸渍,然后经冷却辊压装置(80)冷却,最后导入牵引卷绕装置(90)卷绕成型,即得到产品。与现有技术相比,本发明显著提高了纤维的分散性、可浸润性及可操作性,得到纤维分散均匀和浸渍完全的连续纤维增强热塑性复合材料预浸带。

权利要求(10)

连续纤维增强热塑性复合材料预浸带的制备方法,该方法包括以下步骤:将连续纤维从纱架(10)上的连续纤维卷(11)中引出并展开,再依次经过张力调节装置(20)、静电消除装置(30)、预加热装置(40)、张力调节装置(50)后得到预热的连续纤维带,导入交错可开合双挤出模头组(60)进行预浸渍,将预浸渍后的连续纤维带导入浸渍压延辊组(70)进行浸渍,然后经冷却辊压装置(80)冷却定型,最后导入牵引卷绕装置(90)卷绕成型,即得到连续纤维增强热塑性复合材料预浸带;其特征在于,所述预热的连续纤维带导入交错可开合双挤出模头组(60),该交错可开合双挤出模头组(60)包括挤出模头(61)、挤出模头(62)和轨道运动装置(621),连续纤维带与挤出模头(61)接触并产生与纤维带平面相垂直的渗透压力,

使熔融的热塑性树脂对连续纤维带的一侧进行预浸渍,连续纤维带的另一侧与挤出模头(62)接触并产生同样的渗透压力,使熔融的热塑性树脂对连续纤维带的另一侧进行再浸渍。

2.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的连续纤维卷(11)中的纤维包括无机纤维,有机纤维或金属纤维;所述的热塑性树脂选自聚烯烃类树脂、热塑性聚酯类树脂、聚酰胺类树脂、聚碳酸酯树脂或其他通用树脂中的一种或几种。

3.根据权利要求2所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的无机纤维包括玻璃纤维或碳纤维,有机纤维包括芳香族聚酰胺纤维或超高分子量聚乙烯纤维,金属纤维包括不锈钢纤维;所述的聚烯烃类树脂包括PP或PE,热塑性聚酯类树脂包括PET、PTT或PBT,聚酰胺类树脂包括尼龙6、尼龙66、尼龙12、尼龙1212或尼龙 612,其他通用树脂包括PVC、PS或HIPS。

4.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的纱架(10)上设置能水平转动的锭子支架(12),该锭子支架带有阻尼装置,通过张力调节控制连续纤维均勻展开。

5.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的张力调节装置(20)由排丝口(21)和张力辊(22)组成,排丝口(21)使从纱架 (10)上引出展开的连续纤维带均勻平行排布,张力辊(22)调节连续纤维带的张力。

6.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的预加热装置(40)采用红外加热方式或电加热方式加热。

7.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的浸渍压延辊组(70)由辊(71)、辊(72)和辊(73)组成,浸渍压延辊组(70)采用热电偶控制加热,导热油加热或红外热辐射加热。

8.根据权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法,其特征在于,所述的冷却辊压装置(80)由上辊(81)、下辊(82)和刀片组成,上辊(81)和下辊(82) 采用通冷凝水的方式冷却,调节上辊(81)和下辊(82)的间距来控制预浸带的厚度,刀片对预浸带进行裁边,修正预浸带的宽幅。

9. 一种实施如权利要求1所述的连续纤维增强热塑性复合材料预浸带的制备方法的设备,该设备包括纱架(10)、张力调节装置(20)、静电消除装置(30)、预加热装置(40)、张力调节装置(50)、浸渍压延辊组(70)、冷却辊压装置(80)和卷绕装置(90),其特征在于,还包括交错可开合双挤出模头组(60),该交错可开合双挤出模头组(60)由挤出模头(61)、挤出模头(62)和轨道运动装置(621)组成,所述的挤出模头(61)和挤出模头(62)间平行。

10.根据权利要求9所述的连续纤维增强热塑性复合材料预浸带的制备方法的设备,其特征在于,所述的挤出模头(61)与其配套的挤出机组成一体并相对生产

线位置固定,所述的挤出模头(62)与其配套的挤出机组成一体并设置在轨道运动装置(621)上,随轨道运动装置(621)沿着与生产线平行的轨道移动,所述的挤出模头(61)和挤出模头(62)间的间隔由限位装置固定。

说明

连续纤维增强热塑性复合材料预浸带的制备方法及设备

技术领域

[0001] 本发明涉及一种预浸带的制备方法及设备,尤其是涉及连续纤维增强热塑性复合材料预浸带的制备方法及设备。

背景技术

[0002] 连续纤维增强热塑性复合材料具有优异的机械性能、较强的可加工性及稳定的化学性,如高的拉伸强度和弯曲强度/模量、出色的高低温冲击性能、可设计性强、成型效率高和耐酸碱等,另外还具有可回收的特点,近年来在环保节能等政策理念的推动下,其开发与应用得到了巨大发展,相应的制造技术也不断改进与提高。

[0003] 现今主要发展了溶液浸渍、熔融浸渍、粉末浸渍、悬浮浸渍及混编制备等技术路线,其中熔融浸渍由于便于连续化生产、适应能力强等特点,受到青睐,并且由此延伸出不同浸渍的方法。但现有设备依然存在浸渍单元的结构设计复杂、生产线投资大等不足。

[0004] 基于连续纤维增强热塑性复合材料的制造工艺来说,纤维丝束的分散性与可浸润性,以及纤维与树脂基体间的界面结合性最为关键。目前通过熔融树脂浸渍连续纤维制造预浸带,都采用设计复杂的熔融浸渍单元,如美国专利US5037284,使用浸渍辊与刮刀形成的初级浸渍,此法由于纤维丝束与辊表面形成的张力方向与树脂渗透方向相反,不利于熔融态树脂进入丝束内部。后期进入成型辊后,通过外部红外加热使树脂处于熔融态,但与纤维接触部分不能保证是熔融态,而温度过高容易造成树脂粘辊等不足,并且仅能制造窄幅预浸带。美国专利US5529652介绍浸渍模头方法,是把熔融树脂通过螺杆挤出机挤到浸渍模头中,再利用特殊设计的内部浸渍单元实现纤维完全浸润,浸渍后的连续纤维要通过适当的出口来控制树脂含量,这样能大幅提高树脂对纤维的浸渍性。但由于纤维的浸润发生在浸渍模头的内部,对纤维的浸渍情况难以控制,且对浸渍模头的清理和纤维的排布和穿纱困难,不适于制造宽幅预浸带。美国专利US3908042中使用旋转浸渍辊经过熔融态树脂池将其粘附在表面,再与纤维接触,由于辊表面与纤维的张力使得树脂能够透过纤维丝束,此法较好的解决了前面提到浸渍及穿丝难等问题,但存在熔融树脂池易氧化和树脂含量不易控制等问题。另外中国专利CN88102218A及公开号为CN101152767A的两个专利现同样存在美国专利US5529652中提到的问题,由于使用封闭的腔体,使得穿丝及模头清理困难。

发明内容

[0005] 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种成本低、纤维分散均勻、浸润完全、空隙率低的连续纤维增强热塑性复合材料预浸带的制备方法及设备。

[0006] 本发明的目的可以通过以下技术方案来实现:

[0007] 连续纤维增强热塑性复合材料预浸带的制备方法,该方法包括以下步骤:

[0008] 将连续纤维从纱架(10)上的连续纤维卷(11)中引出并展开,再依次经过张力调节装置(20)、静电消除装置(30)、预加热装置(40)、张力调节装置(50)后得到预热的连续纤维带,导入交错可开合双挤出模头组(60)进行预浸渍,将预浸渍后的连续纤维带导入浸渍压延辊组(70)进行浸渍,然后经冷却辊压装置(80)冷却定型,最后导入牵引卷绕装置 (90)卷绕成型,即得到连续纤维增强热塑性复合材料预浸带;其特征在于,所述预热的连续纤维带导入交错可开合双挤出模头组(60),该交错可开合双挤出模头组(60)包括挤出模头(61)、挤出模头(62)和轨道运动装置(621),连续纤维带与挤出模头(61)接触并产生与纤维带平面相垂直的渗透压力,使熔融的热塑性树脂对连续纤维带的一侧进行预浸渍,连续纤维带的另一侧与挤出模头(62)接触并产生同样的渗透压力,使熔融的热塑性树脂对连续纤维带的另一侧进行再浸渍。

[0009] 所述的连续纤维卷11中的纤维包括无机纤维,有机纤维或金属纤维;所述的热塑性树脂选自聚烯烃类树脂、热塑性聚酯类树脂、聚酰胺类树脂、聚碳酸酯树脂或其他通用树脂中的一种或几种。

[0010] 所述的无机纤维包括玻璃纤维或碳纤维,有机纤维包括芳香族聚酰胺纤维或超高分子量聚乙烯纤维,金属纤维包括不锈钢纤维;所述的聚烯烃类树脂包括PP或PE,热塑性聚酯类树脂包括PET、PTT或PBT,聚酰胺类树脂包括尼龙6、尼龙66、尼龙12、尼龙1212或尼龙612,其他通用树脂包括PVC、PS或HIPS。

[0011] 所述的纱架10上设置能水平转动的锭子支架12,该锭子支架带有阻尼装置,通过张力调节控制连续纤维均勻展开。

[0012] 所述的张力调节装置20由排丝口 21和张力辊22组成,排丝口 21使从纱架10上引出展开的连续纤维带均勻平行排布,张力辊22调节连续纤维带的张力。

[0013] 所述的预加热装置40采用红外加热方式或电加热方式加热。

[0014] 所述的浸渍压延辊组70由辊71、辊72和辊73组成,浸渍压延辊组70采用热电偶控制加热,导热油加热或红外热辐射加热。

[0015] 所述的冷却辊压装置80由上辊81、下辊82和刀片组成,上辊81和下辊82采用通冷凝水的方式冷却,调节上辊81和下辊82的间距来控制预浸带的厚度,刀片对预浸带进行裁边,修正预浸带的宽幅。

[0016] 一种实施连续纤维增强热塑性复合材料预浸带的制备方法的设备,该设备

包括纱架10、张力调节装置20、静电消除装置30、预加热装置40、张力调节装置50、浸渍压延辊组 70、冷却辊压装置80和卷绕装置90,其特征在于,还包括交错可开合双挤出模头组60,该交错可开合双挤出模头组60由挤出模头61、挤出模头62和轨道运动装置621组成,所述的挤出模头61和挤出模头62间平行,优选平行并使连续纤维带在两个模头之间形成S形或反 S形。

[0017] 所述的挤出模头61与其配套的挤出机组成一体并相对生产线位置固定,所述的挤出模头62与其配套的挤出机组成一体并设置在轨道运动装置621上,随轨道运动装置 621沿着与生产线平行的轨道移动(轨道运动装置安装在轨道上),所述的轨道运动装置 621可由液压或电力驱动,所述的挤出模头61和挤出模头62间的间隔由限位装置固定。

[0018] 与现有技术相比,本发明了提供一种简单的制造宽幅连续纤维增强热塑性复合材料预浸带的方法及实施该方法的设备。设计的双挤出模头浸渍纤维有以下优点:1.当高温的熔融态树脂被挤出到纤维带与挤出模头表面间隙,两者产生的张力迫使树脂更快向纤维布的另一侧扩散,减少了对纤维的损害;2.纤维带和模头所形成的紧密半封闭状态减少树脂的热降解和熔融树脂的温度流失;3.两模头与纤维带形成的“S”狭缝不但能提供均勻的温度分布,还能减少与空气的接触;

4.可开合设计为解决纤维布的穿丝以及生产过程出现的断丝现象提供了便捷的操作方式。因此纤维的分散性、可浸润性及可操作性显著提高,能够得到纤维分散均勻和浸渍完全的连续纤维增强热塑性复合材料预浸带,预浸带中树脂的含量较易控制,并实现低成本及可连续化生产。

附图说明

[0019] 图1为连续纤维增强热塑性复合材料预浸带的制备工艺图;

[0020] 图中1为连续纤维束,2为连续纤维带,3为浸渍后的连续纤维带,10为纱架,11为连续纤维卷,12为锭子支架,20为张力调节装置,21为排丝口,22为张力辊,30为静电消除装置,40为预加热装置,50为张力调节装置,60为交错可开合双挤出模头组、61为挤出模头、62为挤出模头、621为轨道运动装置,70为浸渍压延辊组、71为辊、72为辊、73为辊,80 为冷却辊压装置、81为上辊、82为下辊,90为卷绕装置;

[0021] 图2为交错可开合双挤出模头组示意图;

[0022] 图中61为挤出模头,62为挤出模头,63为与61配套的挤出机,64为与62配套的挤出机,621为轨道运动装置,622为轨道。

具体实施方式

[0023] 下面结合附图和具体实施例对本发明进行详细说明。

[0024] 实施例1

[0025] 如图1?2所示,一种实施连续纤维增强热塑性复合材料预浸带的制备方法的设备,该设备包括纱架10、张力调节装置20、静电消除装置30、预加热装置40、张力调节装置 50、浸渍压延辊组70、冷却辊压装置80和卷绕装置90,还包括交错可开合双挤出模头组60,该交错可开合双挤出模头组60由挤出模头61、挤出模头62和轨道运动装置621组成,所述的挤出模头61和挤出模头62间平行并与纤维带形成S形狭缝。

[0026] 纱架10主要用来放置连续纤维卷11。它的主要目的是将连续纤维束1从纤维卷 11上平行展开。纱架10上设有水平转动的锭子支架12,用于放置连续纤维卷11。为了控制连续纤维束1从连续纤维卷上展开时的稳定性和张紧力的均勻性,每个水平转动的锭子支架设有阻尼装置用来保证纤维的平行排列和张力的均勻性。

[0027] 为了进一步保证从纱架10引出的连续纤维束1的均勻平行排列,且不产生扭曲或变形,设计了张力调节装置20,由排丝口 21和张力辊22组成。排丝口使从纺纱架引出、展开的连续纤维束1均勻平行排布,保证厚度的均勻性和不变形。调节张力辊22的交错角度可调节纤维的张力。

[0028] 在经纱架10引出和张力装置20展开的过程中,连续纤维带2由于无法避免的摩擦会产生静电,从而造成起毛,影响产品的质量和生产的连续性。因此在平行排布的连续纤维带进入烘箱进行预热前设置静电消除装置30用来消除纤维表面的静电。

[0029] 为了实现平行排列的连续纤维带的完全浸润,必须保证纤维带在与熔融树脂接触时的温度处于树脂的熔融温度和表面处理剂破坏温度之间,从而保证纤维在与熔融树脂接触时不会造成树脂基体在纤维的表面结晶而结膜影响纤维的浸润。用于纤维预热的加热方式包括电加热方式或红外加热方式,为提高加热的效率,本发明中采用红外加热方式,经预热装置40预热到一定温度的平行排列的连续纤维带经张力调节装置50的调整,达到平行和得到预定张力的目的。

[0030] 经张力调节装置50调整后的平行排列的连续纤维带导入交错可开合双挤出模头组60,与其中的一个挤出模头61接触并产生一定的渗透压力,熔融的高温树脂对连续纤维带进行预浸渍,接着连续纤维带的另一侧与另一挤出模头62接触并也产生一定的渗透压力,熔融的高温树脂对连续纤维带的另一侧进行预浸渍。熔融树脂的供料方式采用单螺杆挤出机或双螺杆挤出机。采用双挤出机分别对双挤出模头61、62供料,其中模头61与其配套的挤出机组成一体并相对生产线位置固定,而模头62与其配套的挤出机组成一体则设置在轨道运动装置621上,随轨道运动装置621沿着与生产线平行的轨道移动,两模头间平行并与纤维带形成S 形狭缝,且生产时的间隔有固定的限位装置。通过控制模头62的位置,可以进行穿丝及清理操作,大大提高可操作性。

[0031] 经过交错可开合式双挤出模头预浸渍的连续纤维带进入浸渍压延辊组70,它由辊 71、辊72和辊73组成,辊表面必须光滑洁净,减少树脂的粘附。三根辊为预浸渍的连续纤维带提供足够张力,实现熔融树脂对纤维的完全浸渍。为保证纤维的完全浸渍,树脂必须处于熔融状态,因此三根辊的表面温度需能使树脂处于

熔融流动状态,对于结晶聚合物,三根辊的表面温度应高于聚合物的结晶熔融温度。辊的加热方式包括热电偶电加热、导热油加热或红外热辐射加热。

[0032] 为保证经过基体树脂完全浸渍的连续纤维带保持平整和光洁的表面,设置了冷却辊压装置80。它由上辊81和下辊82组成,两根辊均采用通冷凝水的方式冷却,以保证结晶树脂的结晶或保证非晶聚合物的冷却至玻璃化转变温度以下,实现熔融树脂的冷却凝固。另外,通过调节上下两根辊的间距来控制最终预浸带的厚度。同时冷却辊压设备80中还设有刀片对预浸带进行裁边,修正预浸带的宽幅,对切下的边角料能过其它途径进行回收再利用。

[0033] 通过冷却辊压装置80后,预浸带再经过风冷或水冷,使整个预浸带的温度降到室温即可通过卷绕装置90卷绕成筒状,便于包装、运输及贮藏。

[0034] 为了更好地描述本发明所提及的连续纤维增强热塑性复合材料预浸带制造方法,现以连续玻璃纤维增强聚丙烯(PP)预浸带为实施例,进一步阐述本发明的特点和过程:

[0035] 连续玻璃纤维卷(PPG公司45882400tex)安装在纱架10上的锭子12中,小心的将纤维束牵引通过安装在纱架上的导丝孔,经导丝孔引出的纤维束通过张力调节装置20中的排丝口 21,使纤维带平行均勻排布,避免纤维带间的相互交叉与磨损。然后平行排布的连续纤维带穿过张力辊22,给纤维带施加一定的张力保证纤维的初步分散。经静电消除装置 30消除产生的静电。

[0036] 连续纤维带的预热装置40采用红外烘箱,连续纤维带预热到温度230°C,经预热的连续纤维带经张力调节装置50导到挤出模头61,待穿丝完成后再将挤出模头62滑行进入预定位置,两模头共作用产生一定的渗透压力,熔融的聚丙烯树脂对连续纤维带进行预浸渍,本实施例采用的聚丙烯为燕山石化的7726,所采用的挤出机为单螺杆挤出机。挤出模头的温度设置在230°C,保证熔融的聚丙烯树脂具有较低的黏度。

[0037] 通过交错可开合式双挤出模头组60预浸渍的连续纤维带导入浸渍压延辊组70,所包含的辊71、辊72和辊73的温度都设定在210°C,保证了聚丙烯树脂具有较低的黏度和流动性,实现熔融树脂对纤维的完全浸润。 [0038] 经过浸渍压延辊组70完全浸渍后的连续纤维带导入冷却辊压装置80冷却定型,上辊81和下辊82均通有冷凝水,两辊的间隙调节到0. 3mm。连续纤维带经冷却定型辊定型冷却后得到厚度为0. 3mm,表面光滑浸渍完全的连续玻璃纤维增强热塑性聚丙烯预浸带。最后,经风冷却至25°C,再卷绕成卷后进行包装,就可得到连续纤维增强热塑性聚丙烯预浸带产品。

被以下专利引用

引用专利申请日期公开日申请人专利名

CN102225624B 2011年5

月27日

2013年7

月17日

常州市华星新材

料科技有限公司

连续纤维基布与热塑性树

脂复合板材成型工艺

CN102328443B 2011年92013年7台州市家得宝日连续纤维增强热塑性复合

月30日月24日用品有限公司材料预浸带的制造方法及

设备

(完整word版)纤维增强复合材料

纤维增强复合材料由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料,容易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度和模量要低得多,但可经受较大的应变,往往具有粘弹性和弹塑性,是韧性材料。 纤维增强复合材料,由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同,品种很多,如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar 纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。(1新型纺织材料及应用宗亚宁主编中国纺织出版社) 纤维增强复合材料的性能体现在以下方面: 比强度高比刚度大,成型工艺好,材料性能可以设计,抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多,会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料,虽然某些性能很好,但价格昂贵、纤维增强复合材料与传统的金属材料相比,具有较高的强度和模量,较低的密度、纤维增强复合材料还具有独特的高阻尼性能,因而能较好地吸收振动能量,同时减少对相邻结构件的影响。 从本世纪40年代起,复合材料的发展已经历了整整半个世纪。随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭与办公用品等等各部门。复合材料在建筑上可作为结构材料、装饰材料、功能材料以及用来制造各种卫生洁具和水箱等。 纤维增强复合材料由增强材料和基体材料构成,每部分都有各自的作用,影响复合材料的性能。 作为增强材料的纤维是组成复合材料的主要成分。在纤维增强复合材料中占有相当的体积分数,同时是结构复合材料承受载荷的主要部分。增强纤维的类型、数量和取向对纤维增强复合材料的性能十分重要,它主要影响以下的方面:(1)密度;

天然纤维非织造物增强复合材料概述

2007年第29卷第1期中国麻业科学PLANTFIBERSCIENCESINCHINA45文章编号:1673—7636(2007)01—0045—04 天然纤维非织造物增强复合材料概述 兰红艳,靳向煜 (东华大学非织造材料与工程系,上海.200051) 摘要:本文阐述了天然纤维复合材料的现状及发展趋势,说明了麻纤维在复合材料应用领域有着广阔的发展前景。 关键词:天然纤维;非织造;增强;复合材料 中图分类号:TSl02.2+2文献标志码:B 1天然纤维增强复合材料简介 材料是国民经济和社会发展的基础和先导,与能源、信息并列为现代高科技的三大支柱。随着世界经济的快速发展和人类生活水平的提高,以及健康意识和消费意识的增强与成熟,人们对材料及其产品的需求日益增长,且越来越认识到环境问题的重要性,环境材料已成为国际高科技新材料研究中的一个新领域。各国在研究具有净化环境、防止污染、替代有害物质、减少废弃物、资源再利用等方面做了大量工作,并取得了重大进展¨1。目前,各个行业都致力于传统材料向环境材料的过渡或转型,绿色工程已经以其不可阻挡之势迅猛发展起来。在环境材料中,天然纤维以其资源丰富、可再生且能自然降解的优势占据了重要地位,并且扮演越来越重要的角色。 复合材料是适应现代科学技术发展而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料,通过各种工艺组合而成。复合材料的各个组成材料在性能上起协同作用,得到单一材料无法比拟的综合性能。它具有刚度大、强度高、质量轻等特点,可根据使用条件进行设计与制造,以满足各种特殊用途,从而极大地提高了工程结构的性能陋】。天然纤维复合材料由天然纤维和基体组成。纤维作为增强体分散在基体中,起最主要的承载作用。目前已经把麻、竹纤维大量用作木材、玻璃纤维的替代品来增强聚合物基体,与合成纤维相比,天然纤维具有价廉质轻、比强度和比模量高等优良特性,最为关键的是天然纤维属可再生资源,可自然降解,不会对环境构成负担。以天然纤维为增强体的复合材料同样具有优良的性能,随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭办公用品等各个部f-jb】。 在众多的天然纤维中麻类纤维的强度最好,而且麻类植物易种植,收获期短,产量高。尤其在石油资源日益短缺、木材资源日益受到保护的21世纪,麻类纤维的优良特性正好满足人们追求自然、绿色、环保的要求。麻纤维与玻璃纤维、碳纤维相比具有以下特点:①单纤维粗细不均匀,支数和纤维根数在长度方向上不确定;②纤维有很多支叉;③纤维是亲水性的,自然状态下吸收大量水分。用天然植物纤维作为复合材料的增强体,首先需要解决的是亲水性强的纤维与亲油性强的基体之间的匹配问题;其次是天然纤维如何在基体中均匀分散的问题。近几年来,把天然纤维作为复合材料增强体使用的研究主要集中在以下几个方面;①纤维的表面处理机理和处理工艺的研究;②与天然纤维匹配的基体树脂的研究;③天然纤维增强体的制备方法和工艺研究;④天然纤维复合材料成型工艺的研究。其中,麻纤维的表面改性和增强体的制备是其中较为基础的两个环节H】。 麻纤维非织造布结构中,纤维束缠结,而且彼此之间存在较大的摩擦力.通过针刺工艺可以 收稿日期:2006—09—20 作者简介:兰红艳(1977一).女。在读硕士研究生。

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

天然纤维增强复合材料吸声性能研究

天然纤维增强复合材料吸声性能研究 A coustical Studies of N atural Fiber Reinforced Com posites 罗业,李岩 (同济大学航空航天与力学学院,上海200092) LU O Ye,LI Yan (School of Aerospace Eng ineer ing and Applied M echanics, T ongji U niv ersity,Shang hai200092,China) 摘要:采用热压成型法制备天然纤维增强复合材料层合板和蜂窝夹芯结构,利用双传声器阻抗管进行吸声性能测试,并与合成纤维增强复合材料层合板和蜂窝夹芯结构进行对比。结果表明:与合成纤维增强复合材料层合板相比,天然纤维增强复合材料层合板虽然具有更优异的吸声性能,但是仍不能满足吸声材料的要求,需通过材料设计进一步提高这种材料的吸声性能。而天然纤维增强蜂窝夹芯结构具有优异的吸声性能,吸声系数峰值高达014,可以被用作吸声材料。 关键词:天然纤维;吸声系数;表面阻抗;阻抗匹配 中图分类号:T B332文献标识码:A文章编号:1001-4381(2010)04-0051-04 Abstract:T he natur al fiber reinforced co mposite lam inates and ho neycomb sandw ich str uctures w ere prepared by hot press.Acoustic properties w er e tested w ith the aid of tw o-micropho ne impedance tube and co mpared w ith synthetic fiber reinforced co mposite counterparts.T he results show ed that natural fiber reinforced composites laminates had better acoustic pr operties than their synthetic counterparts, but still failed to reach the requir em ents as acoustic mater ials.Proper materials desig n is needed to further improve the aco ustic pro perties of natur al fiber r einfor ced composite laminates.While,natural fiber based honeycomb sandw ich str uctures had go od acoustical pro perties,w ith its peak sound absorp-tion coefficient appr oaching0.4,and thus co uld be used as acoustic materials. Key words:natur al fiber;sound absor ption coefficient;surface impedance;impedance matching 噪声污染已成为当代世界性的问题,同水污染和大气污染一起被列为全球三大污染[1]。随着工业、农业、交通运输业的发展,噪声污染日趋严重,已经成为越来越严重的社会问题。而噪声对人们的休息、学习和工作的影响以及对身心健康的危害,日益为人们所认识和关注。为此,各行各业在住宅、学校、工厂、交通工具以及城市环境等方面都建立起噪声的限制标准,而噪声控制技术也随之得到了飞速的发展。 噪声的控制分为三种途径[2]:在声源处降低噪声幅值;在声波传播途径中阻隔、吸收声能;在声音接收点采取保护措施,减少噪声影响。而实际应用中,最有效的噪声控制就是通过吸声材料来达到降噪的效果。 天然纤维由于比强度高、比模量高、价格低廉、可回收、可降解、可再生、绿色环保等特性而作为增强体在复合材料中得到广泛应用[3]。其织物、非织造布作为吸声材料也备受科学家和研究者的青睐[4-8],M ul-l er和Krobjlow ski通过Alpha-cabin和双传声器阻抗管研究了棉制绒头织物的吸声性能,发现了其优良的吸声性能[4];Parikh等[5]发现天然纤维针织毡能够有效降低汽车内噪音;张辉等[8]选用大麻、涤纶和棉纱线织造了不同规格的织物,分析了织物紧度、组织和化学试剂对大麻织物吸声系数的影响。而对于天然纤维增强复合材料的吸声性能却报道较少。 本工作着眼于绿色环保吸声材料的研制,以天然纤维增强复合材料层合板和蜂窝夹芯结构为对象,研究了其吸声性能,并和传统的合成纤维增强复合材料层合板和蜂窝夹芯结构进行比较,分析了其在吸声降噪领域的应用前景。 1实验 1.1实验材料 选用江西井竹麻业有限公司生产的平纹编织苎麻布,浙江宏成纺织整理有限公司生产的平纹编织黄麻布,常州天马集团公司生产的平纹编织玻璃纤维布以及上海怡昌碳纤维材料有限公司生产的平纹编织炭纤

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

热塑性复合材料在飞机上的应用

热塑性复合材料在飞机上的应用 张磊杨卫平张丽 (中航工业一飞院,西安) The applications of Thermoplastic matrix Composite on aircraft 摘要:阐述了热固性复合材料的缺点,分析了热塑性复合材料的优势,并介绍了其在国内、外军用飞机和民用飞机上的应用情况,指出了国内外的差距,最后对国内纤维增强热塑性复合材料的发展提出了建议。 Abstract: In this study we analyzed the disadvantage of thermosetting matrix composites, the advantage of thermoplastic matrix composites and introduced the applications of thermoplastic matrix composites on aircraft. In addition we pointed out the gap and summarized the research orientation of thermoplastic matrix composites. 关键词:热塑性、热固性、聚醚醚酮、聚苯硫醚、抗冲击性 Keywords: Thermoplastic、Thermosetting、PEEK、PPS、impact resistance 复合材料按树脂类型可分为热固性复合材料和热塑性复合材料。目前国内外飞机上,大量使用的复合材料为热固性复合材料,包括机翼、机身等主要承力构件。但是热固性复合材料通常采用热压罐生产工艺,成型时间长,而且在材料运输、存储、工艺准备、实施等方面要求都比较严格,因此生产成本比较高。另外热固性复合材料对冲击比较敏感,设计和使用时要重点考虑冲击对结构性能的影响。而热塑性复合材料在这些方面都有一定优势,所以近年来其逐步受到重视[1]。 1 热塑性复合材料的优点 与热固性复合材料相比,热塑性复合材料主要有以下优点[2~5]: (1)韧性、损伤容限性能、抗冲击,抗裂纹扩展等性能较好。由于热塑性树脂分子链的运动能力比热固性树脂强得多,因此热塑性树脂的韧性普遍要高很多,有利于改善复合材料的抗冲击损伤能力。以碳纤维/聚醚醚酮(PEEK)树脂复合材料为例,其压缩后冲击强度(CAI)值高达342 MPa,与第一代环氧复合材料170 MPa,增韧环氧复合材料250 MPa的平均水平相比,优势明显; (2)成型周期短,生产效率高,节约成本。热固性复合材料主要的成型方法是预浸料/热压罐工艺,热压罐固化消耗大量的能源和时间,增加制造成本,而热塑性复合材料的成型过程仅仅发生加热变软和冷却变硬的物理变化,只需升温、加压成型、冷却即可完成制备过程,可采用热压成型工艺,故成型周期短、生产效率高、成本低。另外,热塑性复合材料在材料运输、存储、工艺准备、实施等比热固性复合材料要求低,因此生产成本更低。两种材料生产制造对比见下表1; 表1 热固性和热塑性复合材料对比 属性热固性复合材料热塑性复合材料 材料运输材料低温运输,并需要温度监控材料普通运输 材料存储1、低温存储,-18℃以下存储; 2、材料力学性能寿命,一般12个月; 3、工艺性能寿命,一般240小时; 1、室温存储,一般库房即可; 2、材料力学性能寿命无要求; 3、工艺实施无特殊要求;

热塑性复合材料成型工艺解析

热塑性复合材料成型工艺解析 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP(Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳体,电器材料,车辆配件等。 2、挤出成型工艺 挤出成型是热塑性复合材料制品生产中应用较广的工艺之一。其主要特点是生产过程连续,生产效率高,设备简单,技术容易掌握等。挤出成型工艺主要用于生产管、棒、板及异型断面型等产品。增强塑料管玻纤增强门窗异型断面型材,在我国有很大市场。挤出成型复合材料制品的工艺流程如下:3、缠绕成型工艺 热塑性复合材料的缠绕成型工艺原理和缠绕机设备与热固性玻璃的一样,不同的是热塑性复合材料缠绕制品的增强材料不是玻纤粗纱,而是经过浸胶(热塑性树脂)的预浸纱。因此,需要在缠绕机上增加预浸纱预热装置和加热加压辊。缠绕成型时,先将预浸纱加热到软化点,再与芯模的接触点加

碳纤维热塑性复合材料预浸料及制品可研报告

江苏泛达复合材料有限公司 年产2000吨碳纤维热塑性复合材料预浸料及制品项目 可行性研究报告 二○一一年八月

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2可行性研究报告编制依据 (1) 1.3可行性研究报告的研究范围 (2) 1.4推荐方案与结论 (2) 第二章项目提出的背景与必要性 (12) 2.1企业概况 (12) 2.2项目提出的背景 (12) 第三章市场分析及预测 (19) 3.1原材料生产情况 (19) 3.2产品原材料价格走势 (20) 3.3市场需求影响因素分析 (21) 3.4供需平衡分析 (22) 3.5供给分析 (22) 3.6产品价格分析 (23) 3.7进出口状况 (24) 3.8销售渠道分析 (25) 3.9用户分析 (30) 第四章生产规模和产品方案 (32) 4.1生产规模 (32) 4.2产品方案 (32) 第五章项目选址与建设条件 (35) 5.1建设地址 (35) 5.2建设条件 (35) 5.3厂址评述 (42) 第六章工程技术方案 (43) 6.1设计原则 (43)

6.2项目组成 (43) 6.3工艺技术及设备方案 (43) 6.4总图运输 (49) 6.5建筑工程 (53) 6.6给排水 (56) 6.7供电 (57) 6.8供热、通风与制冷 (60) 6.9通信 (61) 第七章原辅材料及燃料动力供应 (62) 7.1原辅材料供应 (62) 7.2燃料及动力供应 (62) 第八章环境保护 (64) 8.1编制依据与范围 (64) 8.2环境污染及环保措施 (65) 8.3环保机构设置 (66) 8.4绿化 (67) 8.5环境影响评价 (68) 第九章节能方案 (69) 9.1编制依据及设计规范 (69) 9.2项目能源消耗指标分析 (72) 9.3项目能源供应状况 (73) 9.4项目节能措施 (73) 9.5能耗指标及节能效果分析 (77) 9.6能源计量及仪表配备 (79) 9.8节能管理 (83) 9.9节能结论 (85) 第十章消防 (86) 10.1编制依据 (86) 10.2工程概述 (86) 10.3生产工艺特点及安全措施 (87) 10.4消防措施 (88)

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

热塑性复合材料的特点.

纤维增强热塑性材料FRTP简述 张月 20090546 材料科学与工程学院090201 摘要: 热塑性复合材料是以玻璃纤维,碳纤维,芳烃纤维及其他材料增强各种热塑性树脂的总称,国外称其为FRTP。先进的纤维增强热塑性复合材料纤维增强热塑性树脂复合材料,具韧性耐蚀性和抗疲劳性高,成型工艺简单周期短,材料利用率高(无废料),预浸料存放环境与时间无限制等优异性能而得到快速发展。近20年来,随着刚性、耐热性及耐介质性能好的芳香族热塑性树脂基体的出现,以及具有高强度、高模量、耐高温、耐腐蚀等优异性能碳纤维、芳伦纤维、碳氟纤维(PTFE)等高性能纤维的发展,使先进热塑性复合材料克服了一般FRTP使用温度低,模量小,强度差等缺点,使其在航空航天等高科技领域获得越来越多的应用。 关键字:浸渍、成型工艺 Fiber Reinforced Thermoplastic Material FRTP Briefly ZhangYue 20090546 Material science and engineering college 090201 Abstract: Thermoplastic composite material is glass fiber, carbon fiber, aromatic fiber and other materials increase the floorboard of all sorts of thermoplastic resin, foreign called the FRTP. Advanced fiber reinforced thermoplastic composite fiber reinforced thermoplastic resin composites, with toughness corrosion resistance and fatigue resistance is high, the molding process simple cycle short, material utilization high (no waste), prepreg deposit environment and time unlimited superior performance and got rapid development. Over the past 20 years, with rigidity, heat resistance and

天然植物纤维增强环氧树脂复合材料研究进展_陈健

第44卷第5期 2010年9月生 物 质 化 学 工 程B iomass Che m ical Eng i n eering V o.l 44N o .5 Sep .2010 天然植物纤维增强环氧树脂复合材料研究进展 收稿日期:2010-06-22 基金项目:国家863计划资助(2007AA 100704);国家林业局948创新重大项目(2006-4-C03);国家林业局948引进项目 (200-4-77)。 作者简介:陈健(1980-),男,江苏江都人,助理研究员,主要从事天然资源化学利用及环氧树脂高分子材料研究 *通讯作者:孔振武,研究员,博士,博士生导师,主要从事天然资源化学利用及聚合物高分子材料研究;E -m ai:l kongzhenw u @yahoo .co https://www.360docs.net/doc/7318737507.html, 。 陈健1,孔振武1,2*,吴国民1,2,储富祥1,2 (1.中国林业科学研究院林产化学工业研究所;生物质化学利用国家工程实验室;国家林业局林产化学工程重点 开放性实验室,江苏南京210042;2.中国林业科学研究院林业新技术研究所,北京100091) 摘 要:从天然植物纤维及其改性方法、基体环氧树脂及特性和复合材料的成型方法等方面综述了近年来国内外利用天然植物纤维增强环氧树脂复合材料的研究进展。 关键词:天然植物纤维;环氧树脂;复合材料 中图分类号:TQ351 文献标识码:A 文章编号:1673-5854(2010)05-0053-07 Researc h Progress on NaturalVegetable F ibres Rei nforced Epoxy Resi n Co mposites C H EN Jian 1,KONG Zhen -wu 1,2,WU Guo -m in 1,2,C HU Fu-x iang 1,2 (1.Institute of Che m ical Industry of Forest P roduc ts ,CAF;N ationa l Eng i neer i ng Lab .for B i om ass Chem ical U tilizati on ;K ey and O pen Lab .on Fo rest Che m ical Eng i nee ri ng ,SFA,N an ji ng 210042,Ch i na ; 2.Instit ute o f N e w T echno logy of F orestry ,CAF,Be iji ng 100091,Ch i na) Abstrac t :It w as rev i ewed on t he progress i n natural vege tab l e fibres re i nforced epoxy resi n com posites a t ho m e and abro ad i n recent years ,wh i ch i nc l udi ng natural vege tab l e fibres and the mod ifi cation m ethods ,epoxy resin ma tr i xes and the character istics ,and t he processi ng m ethods o f co m po sites . K ey word s :natura l vege tab l e fi bre ;epoxy resi n ;co m posites 由于化石资源的日趋短缺,人们在不断寻找新能源、新材料以替代煤炭和石油化工产品,以缓解或解决能源与资源危机。玻璃纤维和碳纤维复合材料在给人类生活带来方便的同时,又给人类带来了资源短缺、回收利用及环境影响等新的问题。利用生物质可再生资源开发环境友好绿色复合材料成为当前世界各国关注和研究的热点之一。天然植物纤维增强环氧树脂复合材料是利用天然可再生植物纤维与环氧树脂基体复合而成的一种新型复合材料。传统环氧树脂复合材料通常以无机粉体、碳纤维和玻璃纤维等为增强体,而天然植物纤维增强环氧树脂复合材料以天然植物纤维为增强体,这为环氧树脂复合材料的应用开辟了新的途径[1-2]。天然植物纤维具有来源丰富、价格低廉、可再生、可降解等优点[3],但存在性能不均一、易吸湿以及与基体树脂相容性差等缺点,在环氧树脂复合材料中的应用受到制约。通过物理、化学方法对天然植物纤维表面改性,可降低植物纤维的表面自由能,增强纤维与基体树脂的界面相容性,从而提高复合材料的综合性能[4]。以天然植物纤维增强环氧树脂复合材料替代木材或玻 璃纤维材料是目前天然植物纤维综合利用的主要途径之一[5]。随着全降解基体高分子材料的不断研 究开发,用天然植物纤维与全降解基体复合制成生物降解复合材料,如以纤维素、淀粉衍生物等天然多聚糖为原料制备可生物降解树脂,再与天然纤维复合制备性能优良的全降解复合材料,可应用于各种环保材料。以天然植物纤维增强的高分子基复合材料将是21世纪环保时代的/绿色产品0,开发轻质、低

相关文档
最新文档