汽车助力转向系统的发展

合集下载

汽车电动助力转向系统设计 毕业论文

汽车电动助力转向系统设计 毕业论文

汽车电动助力转向系统设计毕业论文本章主要介绍汽车电动助力转向系统设计的背景和意义,以及论文的目的和结构安排。

汽车转向系统是车辆控制的重要组成部分,它直接影响着驾驶员的操控感受和行车安全性。

随着科技的发展,传统的液压助力转向系统逐渐被电动助力转向系统所取代。

电动助力转向系统通过电力传动装置提供操控力,相较于液压助力转向系统具有更高的效率、更好的节能性和可靠性。

本文的目的是设计一种可靠、高效的汽车电动助力转向系统。

在研究的基础上,将重点关注系统的结构设计、控制算法优化、故障诊断等方面。

通过对系统的设计和优化,可以提高汽车的操控性和安全性。

本文结构安排如下:第二章将介绍汽车电动助力转向系统的背景与发展;第三章将详细阐述系统的设计原理与结构;第四章将重点探讨控制算法的优化与实现;第五章将研究系统的故障诊断方法与技术;最后,第六章将总结全文,并提出进一步研究的展望。

通过本文的研究和实践,相信可以为汽车电动助力转向系统的设计与优化提供一定的参考和借鉴,推动汽车技术的发展与进步。

在这一部分,我们将对汽车电动助力转向系统设计相关的文献进行综述。

我们将总结已有的研究成果,以及当前存在的问题。

具体内容}本文详细介绍了汽车电动助力转向系统设计的方法和步骤,涵盖了传感器选择、电机控制、系统优化等方面。

传感器选择在汽车电动助力转向系统设计中,选择合适的传感器是至关重要的。

传感器可以检测车轮的转向角度、转向速度以及转向力等参数,为后续的电机控制提供必要的数据支持。

常见的传感器包括转向角度传感器、转向速度传感器和转向力传感器。

在选择传感器时,需考虑其精度、响应速度和可靠性等因素,并确保其能与电机控制系统良好地配合。

电机控制在汽车电动助力转向系统中,电机控制是实现转向功能的核心部分。

电机控制系统通过接收传感器提供的数据,计算并控制电机的输出力矩,从而实现汽车的转向功能。

电机控制的关键是控制算法的设计和实现。

常见的电机控制方法有PID控制、模糊控制和神经网络控制等。

汽车转向系的发展历史

汽车转向系的发展历史

汽车转向系的发展历史大家好,欢迎来到攻城狮频道。

之前我们依次和大家聊过悬架系统、制动系统在基础底盘中,还剩下转向系统。

今天我们就和大家聊一聊转向系统。

在我们开车过程中手肯定是时时刻刻扶着方向盘的,这期视频我们和以前的介绍方式一样,先来说说汽车发展史中转向系统的发展历程。

乘用车的转向系统主要是以齿轮齿条式的为主。

在乘用车的转向系统中主要经历过几个发展阶段:第一阶段,最开始的,就是纯机械助力的转向系统,这种转向系统主要限制于以前的技术水平,车辆的转向全靠驾驶员的手力,毫无驾驶体验可言。

在第二阶段来就发明了液压助力的转向系统,也就是H-PS。

由于是液压助力的,就要有驱动装置,一般搭载液压转向系统的车上都会装个机械液压泵,通过发动机带动液压泵工作。

这种工作模式不仅会增加发动机的负载,而且在车辆没启动的时候,转向时处于无助力状态,会造成某些不便性。

所以后来市场上出现了通过电子液压泵提供转向助力的装置(EH-PS),由电子泵取代了机械泵,电子液压泵虽然能够解决发动机助力的一些弊端,但是液压助力转向系统本身还存在几个比较大的问题,首先就是转向助力的响应比较慢和液压系统的噪音比较大,其次,液压助力系统总体给人的驾驶感受就是方向盘太重,而且液压转向系统的手感调校是通过调节发动机转速和一些液压阀,在一些多种驾驶模式的车上,液压转向器的可调度是受到限制的。

接着就是第三阶段,采用电子助力转向系统阶段,目前市场上,新上市的车型,几乎都采用电子助力转向系统(E-PS)。

电子助力转向系统的工作原理是:当系统中的角度传感器检测到驾驶员的转向意图的时候,把这个信号发给控制器,控制器会做出根据控制策略做出决策,来控制电机的工作。

我们刚刚说的EH-PS是通过电子泵给转向液减压来提供助力的,而E-PS直接通过电机助力,传递效率更高,而且可以通过控制策略的优化,来实现比较好的转向手感。

在电子助力转向系统中,根据电机位置和传动方式的不同,电动助力转向系统中又可以分为C-EPS、P-EPS、DP-EPS和R-EPS,前面三种是通过蜗轮蜗杆传动的,而R-EPS是通过滚珠丝杠结构传动的。

汽车EPS系统原理

汽车EPS系统原理

汽车EPS系统原理从上世纪50年代出现了汽车助力转向系统以来,经历了机械式、液压式、电控液压式等阶段,80年代人们开始研制电子控制式电动助力转向系统,简称EPS(ElectricPowerSteering)。

EPS 在机械式助力转向系统的基础上,用输入轴的扭矩信号和汽车行驶速度信号控制助力电机,使之产生相应大小和方向的助力,获得最佳的转向特性。

EPS用仅在转向时才工作的助力电机替代了在汽车运行过程中持续消耗能量的液压助力装置,简化了结构,降低了能耗,动态地适应不同的车速条件下助力的特性,操作轻便,稳定性和安全性好,同时,不存在油液泄漏和液压软管不可回收等问题。

可以说,EPS是集环保、节能、安全、舒适为一体的机电一体化设计。

电动助力转向系统EPS是当前世界最发达的转向助力系统,20世纪80年代,日本铃木公司首次开发。

因其具有独特的按需助力、随动跟踪、反映路感、节能高效、环保免维护、系统成本低等一系列优点,在中小排量汽车中即将以较大产品份额取代液压助力转向总成(HPS)。

与传统的转向系统相比较,汽车电动助力转向系统(EPS)结构简单,灵活性好,能充分满足汽车转向性能的要求,在操作的舒适性、安全性和节能、环保等方面显示出显著的优越性。

EPS的特点及工作原理(1)EPS系统的特点。

随着电子技术的发展,电子技术在汽车上的应用越来越广泛。

电动助力转向已成为汽车动力转向系统的发展方向。

由于采用动力转向可以减少驾驶员手动转向力矩,改善汽车的转向轻便性,因此在商用车、中高级轿车和轻型车上得到广泛的应用。

传统的动力转向系大多采用固定放大倍数的液压动力转向,缺点是不能实现汽车在各种车速下驾驶时的轻便性和路感。

为了克服以上缺点,研制出电子控制液压动力转向系(EHPS),使汽车在各种速度下都能得到满意的转向助力。

但EHPS系统结构更复杂、价格更昂贵,而且效率低、能耗大。

EPS是一种机电一体化的新一代汽车智能转向助力系统。

汽车电动助力转向系统的研究大学毕业论文外文文献翻译及原文

汽车电动助力转向系统的研究大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:汽车电动助力转向系统的研究文献、资料英文题目:The auto electric power steering system research 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期:2017.02.14英文原文The auto electric power steering system researchAlong with automobile electronic technology swift and violent development, the people also day by day enhance to the motor turning handling quality request. The motor turning system hanged, the hydraulic pressure boost from the traditional machinery changes (Hydraulic Power Steering, is called HPS), the electrically controlled hydraulic pressure boost changes (Electronic Hydraulic Power Steering, is called EHPS), develops the electrically operated boost steering system (Electronic Power Steering, is called EPS), finally also will transit to the line controls the steering system (Steer By Wire, will be called SBW).The machinery steering system is refers by pilot's physical strength achievement changes the energy, in which all power transmission all is mechanical, the automobile changes the movement is operates the steering wheel by the pilot, transmits through the diverter and a series of members changes the wheel to realize. The mechanical steering system by changes the control mechanism, the diverter and major part changes the gearing 3 to be composed.Usually may divide into according to the mechanical diverter form: The gear rack type, follows round the world -like, the worm bearing adjuster hoop type, the worm bearing adjuster refers sells the type. Is the gear rack type and follows using the broadest two kinds round the world -like (uses in needing time big steering force).In follows round the world -like in the diverter, the input changes the circle and the output steering arm pivot angle is proportional; In the gear rack type diverter, the input changes the turn and the output rack displacement is proportional. Follows round the world -like the diverter because is the rolling friction form, thus the transmission efficiency is very high, the ease of operation also the service life are long, moreover bearing capacity, therefore widely applies on the truck. The gear rack type diverter with follows round the world -like compares, the most major characteristic is the rigidity is big, the structure compact weight is light, also the cost is low. Because this way passes on easily by the wheel the reacting force to the steering wheel, therefore has to the pavement behavior response keen merit, but simultaneously also easy to have phenomena and so on goon and oscillation, also its load bearing efficiency relative weak, therefore mainly applies on the compact car and the pickup truck, at present the majority of low end passenger vehicle uses is the gear rack type machinery steering system.Along with the vehicles carrying capacity increase as well as the people to the vehicles handling quality request enhancement, the simple mechanical type steering system were already unable to meet the needs, the power steering system arise at the historic moment, it could rotate the steering wheel while the pilot to provide the boost, the power steering system divides into thehydraulic pressure steering system and the electrically operated steering system 2kinds.Hydraulic pressure steering system is at present uses the most widespread steering system.The hydraulic pressure steering system increased the hydraulic system in the mechanical system foundation, including hydraulic pump, V shape band pulley, drill tubing, feed installment, boost installment and control valve. It with the aid of in the motor car engine power actuation hydraulic pump, the air compressor and the generator and so on, by the fluid strength, the physical strength or the electric power increases the pilot to operate the strength which the front wheel changes, enables the pilot to be possible nimbly to operate motor turning facilely, reduced the labor intensity, enhanced the travel security.The hydraulic pressure boost steering system from invented already had about half century history to the present, might say was one kind of more perfect system, because its work reliable, the technology mature still widely is applied until now. It takes the power supply by the hydraulic pump, after oil pipe-line control valves to power hydraulic cylinder feed, through the connecting rod impetus rotation gear movement, may changes the boost through the change cylinder bore and the flowing tubing head pressure size the size, from this achieved changes the boost the function. The traditional hydraulic pressure type power steering system may divide into generally according to the liquid flow form: Ordinary flow type and atmospheric pressure type 2 kind of types, also may divide into according to the control valve form transfers the valve type and the slide-valve type.Along with hydraulic pressure power steering system on automobile daily popularization, the people to operates when the portability and the road feeling request also day by day enhance, however the hydraulic pressure power steering system has many shortcomings actually: ①Because its itself structure had decided it is unable to guarantee vehicles rotates the steering wheel when any operating mode, all has the ideal operation stability, namely is unable simultaneously to guarantee time the low speed changes the portability and the high speed time operation stability;②The automobile changes the characteristic to drive the pilot technical the influence to be serious;③The steering ratio is fixed, causes the motor turning response characteristic along with changes and so on vehicle speed, transverse acceleration to change, the pilot must aim at the motor turning characteristic peak-to-peak value and the phase change ahead of time carries on certain operation compensation, thus controls the automobile according to its wish travel. Like this increased pilot's operation burden, also causes in the motor turning travel not to have the security hidden danger; But hereafter appeared the electrically controlled hydraulic booster system, it increases the velocity generator in the traditional hydraulic pressure power steering system foundation, enables the automobile along with the vehicle speed change automatic control force size, has to a certain extent relaxed the traditional hydraulic pressure steering system existence question.At present our country produces on the commercial vehicle and the passenger vehicle uses mostly is the electrically controlled hydraulic pressure boost steering system, it is quite mature andthe application widespread steering system. Although the electrically controlled hydraulic servo alleviated the traditional hydraulic pressure from certain degree to change between the portability and the road feeling contradiction, however it did not have fundamentally to solve the HPS system existence insufficiency, along with automobile microelectronic technology development, automobile fuel oil energy conservation request as well as global initiative environmental protection, it in aspect and so on arrangement, installment, leak-proof quality, control sensitivity, energy consumption, attrition and noise insufficiencies already more and more obvious, the steering system turned towards the electrically operated boost steering system development.The electrically operated boost steering system is the present motor turning system development direction, its principle of work is: EPS system ECU after comes from the steering wheel torque sensor and the vehicle speed sensor signal carries on analysis processing, controls the electrical machinery to have the suitable boost torque, assists the pilot to complete changes the operation. In the last few years, along with the electronic technology development, reduces EPS the cost to become large scale possibly, Japan sends the car company, Mitsubishi Car company, this field car company, US's Delphi automobile system company, TRW Corporation and Germany's ZF Corporation greatly all one after another develops EPS.Mercedes2Benz Siemens Automotive Two big companies invested 65,000,000 pounds to use in developing EPS, the goal are together load a car to 2002, yearly produce 300 ten thousand sets, became the global EPS manufacturer. So far, the EPS system in the slight passenger vehicle, on the theater box type vehicle obtains the widespread application, and every year by 300 ten thousand speed development.Steering is the term applied to the collection of components, linkages, etc. which allow for a vessel (ship, boat) or vehicle (car) to follow the desired course. An exception is the case of rail transport by which rail tracks combined together with railroad switches provide the steering function.The most conventional steering arrangement is to turn the front wheels using ahand–operated steering wheel which is positioned in front of the driver, via the steering column, which may contain universal joints to allow it to deviate somewhat from a straight line. Other arrangements are sometimes found on different types of vehicles, for example, a tiller orrear–wheel steering. Tracked vehicles such as tanks usually employ differential steering — that is, the tracks are made to move at different speeds or even in opposite directions to bring about a change of course.Many modern cars use rack and pinion steering mechanisms, where the steering wheel turns the pinion gear; the pinion moves the rack, which is a sort of linear gear which meshes with the pinion, from side to side. This motion applies steering torque to the kingpins of the steered wheels via tie rods and a short lever arm called the steering arm.Older designs often use the recirculating ball mechanism, which is still found on trucks and utility vehicles. This is a variation on the older worm and sector design; the steering column turns a large screw (the "worm gear") which meshes with a sector of a gear, causing it to rotate about its axis as the worm gear is turned; an arm attached to the axis of the sector moves the pitman arm, which is connected to the steering linkage and thus steers the wheels. The recirculating ball version of this apparatus reduces the considerable friction by placing large ball bearings between the teeth of the worm and those of the screw; at either end of the apparatus the balls exit from between the two pieces into a channel internal to the box which connects them with the other end of the apparatus, thus they are "recirculated".The rack and pinion design has the advantages of a large degree of feedback and direct steering "feel"; it also does not normally have any backlash, or slack. A disadvantage is that it is not adjustable, so that when it does wear and develop lash, the only cure is replacement.The recirculating ball mechanism has the advantage of a much greater mechanical advantage, so that it was found on larger, heavier vehicles while the rack and pinion was originally limited to smaller and lighter ones; due to the almost universal adoption of power steering, however, this is no longer an important advantage, leading to the increasing use of rack and pinion on newer cars. The recirculating ball design also has a perceptible lash, or "dead spot" on center, where a minute turn of the steering wheel in either direction does not move the steering apparatus; this is easily adjustable via a screw on the end of the steering box to account for wear, but it cannot be entirely eliminated or the mechanism begins to wear very rapidly. This design is still in use in trucks and other large vehicles, where rapidity of steering and direct feel are less important than robustness, maintainability, and mechanical advantage. The much smaller degree of feedback with this design can also sometimes be an advantage; drivers of vehicles with rack and pinion steering can have their thumbs broken when a front wheel hits a bump, causing the steering wheel to kick to one side suddenly (leading to driving instructors telling students to keep their thumbs on the front of the steering wheel, rather than wrapping around the inside of the rim). This effect is even stronger with a heavy vehicle like a truck; recirculating ball steering prevents this degree of feedback, just as it prevents desirable feedback under normal circumstances.The steering linkage connecting the steering box and the wheels usually conforms to a variation of Ackermann steering geometry, to account for the fact that in a turn, the inner wheel is actually traveling a path of smaller radius than the outer wheel, so that the degree of toe suitable for driving in a straight path is not suitable for turns.As vehicles have become heavier and switched to front wheel drive, the effort to turn the steering wheel manually has increased - often to the point where major physical exertion is required. To alleviate this, auto makers have developed power steering systems. There are two types of power steering systems—hydraulic and electric/electronic. There is also ahydraulic-electric hybrid system possible.A hydraulic power steering (HPS) uses hydraulic pressure supplied by an engine-driven pump to assist the motion of turning the steering wheel. Electric power steering (EPS) is more efficient than the hydraulic power steering, since the electric power steering motor only needs to provide assist when the steering wheel is turned, whereas the hydraulic pump must run constantly. In EPS the assist level is easily tunable to the vehicle type, road speed, and even driver preference. An added benefit is the elimination of environmental hazard posed by leakage and disposal of hydraulic power steering fluid.An outgrowth of power steering is speed adjustable steering, where the steering is heavily assisted at low speed and lightly assisted at high speed. The auto makers perceive that motorists might need to make large steering inputs while manoeuvering for parking, but not while traveling at high speed. The first vehicle with this feature was the Citroën SM with its Diravi layout, although rather than altering the amount of assistance as in modern power steering systems, it altered the pressure on a centring cam which made the steering wheel try to "spring" back to the straight-ahead position. Modern speed-adjustable power steering systems reduce the pressure fed to the ram as the speed increases, giving a more direct feel. This feature is gradually becoming commonplace across all new vehicles.Four-wheel steering (or all wheel steering) is a system employed by some vehicles to increase vehicle stability while maneuvering at high speed, or to decrease turning radius at low speed.In most four-wheel steering systems, the rear wheels are steered by a computer and actuators. The rear wheels generally cannot turn as far as the Alternatively, several systems, including Delphi's Quadrasteer and the system in Honda's Prelude line, allow for the rear wheels to be steered in the opposite direction as the front wheels during low speeds. This allows the vehicle to turn in a significantly smaller radius — sometimes critical for large trucks or vehicles with trailers.Electronic power steering systemWhat it isElectrically powered steering uses an electric motor to drive either the power steering hydraulic pump or the steering linkage directly. The power steering function is therefore independent of engine speed, resulting in significant energy savings.How it works :Conventional power steering systems use an engine accessory belt to drive the pump, providing pressurized fluid that operates a piston in the power steering gear or actuator to assist the driver.In electro-hydraulic steering, one electrically powered steering concept uses a high efficiency pump driven by an electric motor. Pump speed is regulated by an electric controller to vary pump pressure and flow, providing steering efforts tailored for different driving situations. The pump can be run at low speed or shut off to provide energy savings during straight ahead driving (which is most of the time in most world markets).Direct electric steering uses an electric motor attached to the steering rack via a gear mechanism (no pump or fluid). A variety of motor types and gear drives is possible. A microprocessor controls steering dynamics and driver effort. Inputs include vehicle speed and steering, wheel torque, angular position and turning rate.Working In Detail:A "steering sensor" is located on the input shaft where it enters the gearbox housing.The steering sensor is actually two sensors in one: a "torque sensor" that converts steering torque input and its direction into voltage signals, and a "rotation sensor" that converts the rotation speed and direction into voltage signals. An "interface" circuit that shares the same housing converts the signals from the torque sensor and rotation sensor into signals the control electronics can process.Inputs from the steering sensor are digested by a microprocessor control unit that also monitors input from the vehicle's speed sensor. The sensor inputs are then compared to determine how much power assist is required according to a preprogrammed "force map" in the control unit's memory. The control unit then sends out the appropriate command to the "power unit" which then supplies the electric motor with current. The motor pushes the rack to the right or left depending on which way the voltage flows (reversing the current reverses the direction the motor spins). Increasing the current to the motor increases the amount of power assist.The system has three operating modes: a "normal" control mode in which left or right power assist is provided in response to input from the steering torque and rotation sensor's inputs; a "return" control mode which is used to assist steering return after completing a turn; and a "damper" control mode that changes with vehicle speed to improve road feel and dampen kickback.If the steering wheel is turned and held in the full-lock position and steering assist reaches a maximum, the control unit reduces current to the electric motor to prevent an overload situation that might damage the motor. The control unit is also designed to protect the motor against voltage surges from a faulty alternator or charging problem.The electronic steering control unit is capable of self-diagnosing faults by monitoring the system's inputs and outputs, and the driving current of the electric motor. If a problem occurs, the control unit turns the system off by actuating a fail-safe relay in the power unit. This eliminates all power assist, causing the system to revert back to manual steering. A dash EPS warning light is also illuminated to alert the driver. To diagnose the problem, a technician jumps the terminals on the service check connector and reads out the trouble codes.Electric power steering systems promise weight reduction, fuel savings and package flexibility, at no cost penalty.Europe's high fuel prices and smaller vehicles make a fertile testbed for electric steering, a technology that promises automakers weight savings and fuel economy gains. And in a short time, electric steering will make it to the U.S., too. "It's just just a matter of time," says Aly Badawy, director of research and development for Delphi Saginaw Steering Systems in Saginaw, Mich. "The issue was cost and that's behind us now. By 2002 here in the U.S. the cost of electric power steering will absolutely be a wash over hydraulic."Today, electric and hybrid-powered vehicles (EV), including Toyota's Prius and GM's EV-1, are the perfect domain for electric steering. But by 2010, a TRW Inc. internal study estimates that one out of every three cars produced in the world will be equipped with some form of electrically-assisted steering. The Cleveland-based supplier claims its new steering systems could improve fuel economy by up to 2 mpg, while enhancing handling. There are true bottom-line benefits as well for automakers by reducing overall costs and decreasing assembly time, since there's no need for pumps, hoses and fluids.Another claimed advantage is shortened development time. For instance, a Delphi group developed E-TUNE, a ride-and-handling software package that can be run off a laptop computer. "They can take that computer and plug it in, attach it to the controller and change all the handling parameters -- effort level, returnability, damping -- on the fly," Badawy says. "It used to take months." Delphi has one OEM customer that should start low-volume production in '99.Electric steering units are normally placed in one of three positions: column-drive, pinion-drive and rack-drive. Which system will become the norm is still unclear. Short term, OEMs will choose the steering system that is easiest to integrate into an existing platform. Obviously, greater potential comes from designing the system into an all-new platform."We have all three designs under consideration," says Dr. Herman Strecker, group vice president of steering systems division at ZF in Schwaebisch Gmuend, Germany. "It's up to the market and OEMs which version finally will be used and manufactured.""The large manufacturers have all grabbed hold of what they consider a core technology," explains James Handysides, TRW vice president, electrically assisted steering in Sterling Heights, Mich. His company offers a portfolio of electric steering systems (hybrid electric, rack-, pinion-, and column-drive). TRW originally concentrated on what it still believes is the purest engineering solution for electric steering--the rack-drive system. The system is sometimes refered to as direct drive or ball/nut drive.Still, this winter TRW hedged its bet, forming a joint venture with LucasVarity. The British supplier received $50 million in exchange for its electric column-drive steering technology and as sets. Initial production of the column and pinion drive electric steering systems is expected to begin in Birmingham, England, in 2000."What we lack is the credibility in the steering market," says Brendan Conner, managing director, TRW/LucasVarity Electric Steering Ltd. "The combination with TRW provides us with a good opportunity for us to bridge that gap." LucasVarity currently has experimental systems on 11 different vehicle types, mostly European. TRW is currently supplying its EAS systems for Ford and Chrysler EVs in North America and for GM's new Opel Astra.In 1995, according to Delphi, traditional hydraulic power steering systems were on 7596 of all vehicles sold globally. That 37-million vehicle pool consumes about 10 million gallons in hydraulic fluid that could be superfluous, if electric steering really takes off.The present invention relates to an electrically powered drive mechamsm for providing powered assistance to a vehicle steering mechanism. According to one aspect of the presentinvention, there is provided an electrically powered driven mechanism for providing powered assistance to a vehicle steering mechanism having a manually rotatable member for operating the steering mechanism, the drive mechanism including a torque sensor operable to sense torque being manually applied to the rotatable member, an electrically powered drive motor drivingly connected to the rotatable member and a controller which is arranged to control the speed and direction of rotation of the drive motor in response to signals received from the torque sensor, the torque sensor including a sensor shaft adapted for connection to the rotatable member to form an extension thereof so that torque is transmitted through said sensor shaft when the rotatable member is manually rotated and a strain gauge mounted on the sensor shaft for producing a signal indicative of the amount of torque being transmitted through said shaft.Preferably the sensor shaft is non-rotatably mounted at one axial end in a first coupling member and is non-rotatably mounted at its opposite axial end in a second coupling member, the first and second coupling members being inter-engaged to permit limited rotation therebetween so that torque under a predetermined limit is transmitted by the sensor shaft only and so that torque above said predetermined limit is transmitted through the first and second coupling members.The first and second coupling members are preferably arranged to act as a bridge for drivingly connecting first and second portions of the rotating member to one another.Preferably the sensor shaft is of generally rectangular cross-section throughout the majority of its length.Preferably the strain gauge includes one or more SAW resonators secured to the sensor shaft.Preferably the motor is drivingly connected to the rotatable member via a clutch.Preferably the motor includes a gear box and is concentrically arranged relative to the rotatable member.Various aspects of the present invention will hereafter be described, with reference to the accompanying drawings, in which :Figure 1 is a diagrammatic view of a vehicle steering mechanism including an electrically powered drive mechanism according to the present invention,Figure 2 is a flow diagram illustrating interaction between various components of the drive mechanism shown in Figure 1 ,Figure 3 is an axial section through the drive mechanism shown in Figure 1, Figure 4 is a sectional view taken along lines IV-IV in Figure 3,Figure 5 is a more detailed exploded view of the input drives coupling shown in Figure 3, andFigure 6 is a more detailed exploded view of the clutch showing in Figure 3. Referring initially to Figure 1 , there is shown a vehicle steering mechanism 10 drivingly connected to a pair of steerable road wheels The steering mechanism 10 shown includes a rack and pinion assembly 14 connected to the road wheels 12 via joints 15. The pinion(not shown) of assembly 14 is rotatably driven by a manually rotatable member in the form of a steering column 18 which is manually rotated by a steering wheel 19.The steering column 18 includes an electric powered drive mechanism 30 which includes an electric drive motor (not shown in Figure 1) for driving the pinion in response to torque loadings in the steering column 18 in order to provide power assistance for the operative when rotating the steering wheel 19.As schematically illustrated in Figure 2, the electric powered drive mechanism includes a torque sensor20 whichmeasures the torque applied by the steering column 18 when driving the pinion and supplies a signal to a controller 40. The controller 40 is connected to a drive motor 50 and controls the electric current supplied to the motor 50 to control the amount of torque generated by the motor 50 and the direction of its rotation.The motor 50 is drivingly connected to the steering column 18 preferably via a gear box 60, preferably an epicyclic gear box, and a clutch 70. The clutch 70 is preferably permanently engaged during normal operation and is operative under certain conditions to isolate drive from the motor 50 to enable the pinion to be driven manually through the drive mechanism 30. This is a safety feature to enable the mechanism to function in the event of the motor 50 attempting to drive the steering column too fast and/or in the wrong direction or in the case where the motor and/or gear box have seized.The torque sensor 20 is preferably an assembly including a short sensor shaft on which is mounted a strain gauge capable of accurately measuring strain in the sensor shaft brought about by the application of torque within a predetermined range.Preferably the predetermined range of torque which is measured is 0-lONm; more preferably is about l-5Nm.Preferably the range of measured torque corresponds to about 0-1000 microstrain and the construction of the sensor shaft is chosen such that a torque of 5Nm will result in a twist of less than 2°in the shaft, more preferably less than 1 ° .Preferably the strain gauge is a SAW resonator, a suitable SAW resonator being described in WO91/13832. Preferably a configuration similar to that shown in Figure 3 of WO91/13832 is utilised wherein twoSAW resonators are arranged at 45° to the shaft axis and at 90°to one another.Preferably the resonators operate with a resonance frequency of between 200-400 MHz and are arranged to produce a signal to the controller 40 of 1 MHz ±500 KHz depending upon the direction of rotation of the sensor shaft. Thus, when the sensor shaft is not being twisted due to the absence of torque, it produces a 1 MHz signal.When the sensor shaft is twisted in one direction it produces a signal between 1.0 to 1.5 MHz. When the sensor shaft is twisted in the opposite direction it produces a signal between 1.0 to 0.5 MHz. Thus the same sensor is able to produce a signal indicative of the degree of torque and also the direction of rotation of the sensor shaft.Preferably the amount of torque generated by the motor in response to a measured torque of between 0-10Nm is 0-40Nm and for a measured torque of between l-5Nm is 0-25Nm.Preferably a feed back circuit is provided whereby the electric current being used by the motor is measured and compared by the controller 40 to ensure that the motor is running in the correct direction and providing the desired amount of power assistance. Preferably the controller acts to reduce the measured torque to zero and so controls the motor to increase its torque output to reduce the measured torque.A vehicle speed sensor (not shown) is preferably provided which sends a signal indicative of vehicle speed to the controller. The controller uses this signal to modify the degree of power assistance provided in response to the measured torque.Thus at low vehicle speeds maximum power assistance will be provided and a high vehicle speeds minimum power assistance will be provided.The controller is preferably a logic sequencer having a field。

2024年汽车转向系统市场前景分析

2024年汽车转向系统市场前景分析

汽车转向系统市场前景分析1. 引言汽车转向系统是汽车的重要组成部分,对于汽车的操控和安全性起着至关重要的作用。

随着汽车技术的发展和消费者对汽车安全性的关注增加,汽车转向系统市场呈现出持续增长的趋势。

本文将对汽车转向系统市场的前景进行深入分析。

2. 市场概况汽车转向系统市场是汽车零部件市场的重要组成部分之一,涉及到液压助力转向系统、电动助力转向系统和电子助力转向系统等多个细分市场。

根据市场研究机构的数据,汽车转向系统市场在过去几年中呈现出稳步增长的态势。

预计在未来几年内,汽车转向系统市场将继续保持增长,主要受益于以下几个因素:2.1 技术创新随着科技的不断进步,汽车转向系统的技术也在不断创新。

液压助力转向系统逐渐被电动助力转向系统取代,电子助力转向系统也在不断发展。

这些新技术的应用,提高了汽车转向系统的性能和安全性,进一步推动了市场的增长。

2.2 政策支持许多国家和地区鼓励汽车制造商使用先进的转向系统,以促进汽车行业的发展和提升汽车的安全性能。

政策支持为汽车转向系统市场提供了良好的机遇,吸引了更多的制造商进入市场。

3. 市场细分及竞争态势3.1 液压助力转向系统市场液压助力转向系统市场是汽车转向系统市场的传统细分市场,占据了市场的主导地位。

该市场在一些发展中国家仍具有较大的潜力,但在发达国家市场增速逐渐放缓。

3.2 电动助力转向系统市场电动助力转向系统市场是汽车转向系统市场的新兴细分市场,随着电动汽车的兴起,该市场有着很高的增长潜力。

电动助力转向系统具有更高的能效和可靠性,逐渐被越来越多的汽车制造商采用。

3.3 电子助力转向系统市场电子助力转向系统市场是汽车转向系统市场的最新细分市场,具有较高的技术含量和附加值。

该市场在高端汽车市场得到广泛应用,但由于成本较高,目前市场份额较小。

4. 市场机会与挑战4.1 市场机会•电动助力转向系统在新能源汽车市场快速增长的背景下,有着广阔的市场机会。

随着电动汽车销量的增加,对电动助力转向系统的需求也将持续增长。

2024年汽车EPS(电动助力转向系统)市场发展现状

2024年汽车EPS(电动助力转向系统)市场发展现状

汽车EPS(电动助力转向系统)市场发展现状简介汽车EPS(电动助力转向系统)是一种通过电动辅助装置帮助驾驶员转动方向盘的系统。

近年来,汽车EPS市场呈现出快速发展的趋势。

本文将对汽车EPS市场发展现状进行分析。

市场规模和增长趋势近年来,汽车EPS市场规模不断扩大,主要受益于以下几个因素:1.技术进步和创新:随着科技的进步,汽车EPS系统的性能和可靠性不断提高,使得更多的汽车制造商开始采用EPS系统,从而推动了市场的增长。

2.能源效率和环保要求:汽车EPS系统相比传统的液压助力转向系统具有更高的能源效率和环保性能,因此受到环保要求的推动,市场需求逐渐增加。

3.消费者需求变化:消费者对驾驶舒适性和操控性的要求不断提高,汽车EPS系统能够提供更为平稳和精准的操控感受,因此深受消费者的青睐。

据市场调研数据显示,汽车EPS市场在过去几年中保持着平均每年10%以上的增长率,预计未来几年市场增长趋势将保持稳定。

市场竞争态势汽车EPS市场竞争激烈,主要的竞争者包括市场领导者和新兴的本土制造商。

市场领导者通过其先进的技术和广泛的市场渠道保持竞争优势,而新兴本土制造商通过低成本和本土化优势进一步加剧了市场的竞争。

此外,市场中还涌现出许多创业公司,它们专注于开发特定类型的汽车EPS系统,如高端豪华车型、新能源汽车等,以满足不同细分市场的需求。

市场竞争的主要关注点包括产品性能、价格、售后服务和品牌认知度。

在这些方面,市场领导者通常具有一定的优势,但随着新兴本土制造商和创业公司的崛起,市场竞争格局可能会发生变化。

市场前景和发展趋势未来,汽车EPS市场有以下几个发展趋势:1.智能化和自动化:随着智能驾驶技术的发展,汽车EPS系统有望实现更高级的自动化功能,如自适应转向、自动泊车等。

这将进一步提升驾驶安全性和操控体验,同时也为汽车EPS市场带来更大的增长潜力。

2.新能源汽车的快速增长:随着新能源汽车市场的快速增长,汽车EPS系统在新能源汽车中的应用也将逐渐增加。

商用车电控转向系统的发展现状与趋势

商用车电控转向系统的发展现状与趋势目录一、内容综述 (2)1.1 背景介绍 (3)1.2 研究意义 (4)二、商用车电控转向系统发展现状 (6)2.1 国内外技术对比 (7)2.2 关键技术发展 (8)2.2.1 传感器技术 (10)2.2.2 控制算法 (11)2.2.3 电源系统 (12)2.3 市场应用情况 (13)2.4 存在的问题与挑战 (14)三、商用车电控转向系统发展趋势 (16)3.1 技术创新方向 (17)3.1.1 高性能传感器技术 (18)3.1.2 智能化控制算法 (20)3.1.3 绿色能源与环保技术 (21)3.2 市场需求变化 (22)3.3 政策法规影响 (24)四、未来展望 (25)4.1 技术突破的重点领域 (26)4.2 市场竞争的焦点 (27)4.3 行业发展的潜在机遇与威胁 (28)五、结论 (29)5.1 研究成果总结 (30)5.2 对产业的建议与展望 (32)一、内容综述商用车电控转向系统作为现代商用车关键技术之一,其发展现状与趋势直接影响着整个商用车行业的进步。

随着科技的不断革新,电控转向系统在商用车领域的应用逐渐普及,其性能与智能化程度不断提高,为提升车辆的操控性、安全性及节能减排提供了有力支持。

技术成熟度的提升:随着相关技术的不断研发与实践,商用车电控转向系统的技术成熟度日益提高,系统稳定性、可靠性得到显著增强。

智能化和电动化趋势:随着自动驾驶技术的兴起,商用车电控转向系统正朝着智能化、电动化方向发展,具备更加精准的转向控制、自适应调节等功能。

市场需求增长:随着物流、运输等行业的发展,商用车市场需求持续增长,对高性能、智能化的电控转向系统需求亦随之增长。

更高的集成度:随着技术的进步,商用车电控转向系统将更多地集成其他功能,如自动驾驶辅助、车辆稳定控制等,实现更高程度的系统集成。

智能化和自动化:智能化将成为未来商用车电控转向系统的重要发展方向,通过先进的算法和传感器技术,实现自动调整、预测转向等功能。

汽车先进的电动助力转向(EPS)系统

一 一
Au d i A3 , G o l f V , O p e l C o r s a ) 。 由于 该系统缓 冲减振 、 主动 回正 和 子 部分 ( 助力单元 ) 。 转 向特 性 曲线的 匹配调整都 通过软件来实 现, 所 以在转 向调节方面具 有 上 部转 向柱 的机 械 部 很高的灵活性
①上部转 向柱 总成 上 部 转 向柱 用 4 个 螺 栓 固定 在一 个支
1 . 引言 架上 , 该 支 架 与组 合 汽车 电动助力转向系统 ( 也 称为E P S ) , 首次使用是在 宝马E 8 5 的车 仪 表 的支 撑管 焊接 在 型上 。 该 系统在 转 向力和 转 向感觉 方面具 有典 型的B MW 特性 E P S 是 起。 支 撑 管 的 支 架 种传 动 比很小 的运 动 型转 向系统 , 该 系统可以 通 过行驶 动态 控制 按 用4 个螺栓 固定在车身 钮 在标 准模 式 与运 动模 式之 间进行 切换 、 根 据车速 进行 工作 并且具 有 上 。上部 转 向柱 的 组 装 工作 可分 为上 部 转 主动 回位功 能。 E P S 系统 适 用 于 因车 重较 低 而 需 要较 小 转 向力 的 车辆 上 ( 例 如 向柱的 机械 部 分 和电
子 方 式 调 节 取 决 于 车 速的 转 向助力。 控 制 单 元 根 据 不 同 的
输 入 参 数 确 定 所 需
・ 助力单 元: 助力单元 由E P S 控制单元 、 带蜗杆 传动 机构的E P S 电机 和内部E P S 传感 器组成 。 ・ 转 向角传感器 : 转向角传感 器是上部转 向柱机械部 分的零件 。 ②下部 转 向柱总成 下部 转 向轴分 为两件 , 将较 高 的转 向力从 上部 转 向柱传递 到转 向 器上 。 因为在右侧 驾驶 型车 辆上下 部转 向轴 比较靠近 排 气歧 管, 所以 塑 料 套管采用耐高 温塑料制成 。 ③齿轮齿条式 转向器总成 这是一个 纯机 械式转 向器。 在这个转 向器内集成了一个新型 缓冲压 块。 此 外还在 传统 压块的 基础上 , 集 成了一个缓 冲器及 标准 弹簧 。 转向 器总成包括 : 齿 条, 转向横拉杆。 3 . 先 进E P S 的性能 特点 3 . 1 E P S 的性能优势

汽车转向系统发展趋势

汽车转向系统发展趋势一、本文概述随着汽车工业的飞速发展和科技的不断进步,汽车转向系统作为车辆操控性能的重要组成部分,其发展趋势日益受到业界的关注。

本文旨在探讨汽车转向系统的发展历程,分析当前市场上的主流技术,以及预测未来的发展趋势。

我们将从转向系统的基本原理、传统转向系统的不足、新型转向系统的出现以及未来可能的技术革新等方面进行深入探讨。

通过本文的阐述,希望能够为汽车工程师、设计师以及行业内的研究人员提供有益的参考,共同推动汽车转向系统技术的持续发展。

二、传统转向系统及其局限性传统汽车转向系统主要依赖于机械连接来实现驾驶员对车轮的操控。

这种系统通常由方向盘、转向柱、转向器、转向拉杆和转向节等组成,通过一系列的齿轮和连杆机构将驾驶员的转向动作传递到车轮,实现车辆的转向。

这种转向方式在技术上相对成熟,生产成本也相对较低,因此在过去的汽车制造中得到了广泛应用。

然而,传统转向系统也存在一些局限性。

其转向比固定,无法根据车速、路况等因素进行自适应调整,导致驾驶体验不够灵活。

传统转向系统对驾驶员的转向操作反馈有限,驾驶员很难从转向操作中直接感知到车轮与地面的接触情况,这在一定程度上影响了驾驶的安全性。

随着汽车科技的快速发展,尤其是在自动驾驶和电动汽车领域的突破,传统转向系统已经无法满足这些新兴技术的需求。

例如,自动驾驶汽车需要更精确的转向控制以实现更高级的驾驶辅助功能,而电动汽车则需要更高效的转向系统以减轻车辆的能源负担。

因此,传统转向系统的局限性已经越来越明显,亟待进行技术升级和创新。

三、电动助力转向系统(EPS)的兴起与发展随着科技的进步和环保理念的深入人心,电动助力转向系统(EPS)逐渐成为汽车转向系统的发展趋势。

EPS系统以电动机为主要动力源,通过电子控制系统实现对转向系统的助力,具有节能环保、性能稳定、安全可靠等优点。

EPS系统的兴起,主要得益于电动技术和电子控制技术的快速发展。

相比于传统的液压助力转向系统(HPS),EPS系统无需油泵、油管等液压元件,结构更简单,维护更方便。

汽车电动助力转向系统关键技术分析

汽车电动助力转向系统关键技术分析摘要:现阶段,汽车的电动助力转向系统技术,已经属于一种较为常见且成熟的应用技术,将其应用于汽车制造中,在很大程度上提升了汽车制造的质量,使得汽车制造能够更好地迎合未来汽车发展的需要。

将这一技术应用于汽车制造中,能够降低汽车在低速行驶时转弯上的阻力,从而使得整个转向操作更加轻便与灵活,同时,在汽车的高速行驶时,能够进一步加重转向重力,使得汽车的转向更加具有稳定性。

通过这种设置,能够在很大程度上避免由于转向操作失控问题而导致的汽车驾驶事故。

本文主要分析了汽车电动助力转向系统中的相关关键技术,以供参考。

关键词:汽车电动助力转向系统;控制单元;冗余设计在现代电子信息技术的高速发展推动下,当前我国汽车工业水平提升明显,现代化技术应用于现代汽车工业的生产制造中,在很大程度上提高了汽车性能,同时,也缓解了汽车转弯操作转向的问题。

电动助力转向系统在很大程度上规避了传统汽车电控系统与液压动力转向系统上存在的不足,能够进一步提升整个转向操作的安全性,突破传统转向的限制。

也因此,这种转向系统技术在汽车制造业中有着十分广泛的应用,所占据的市场比例逐渐提升,更有取代传统转向系统的趋势。

一、汽车电动助力转向系统的关键部件(一)传感器传感器是汽车电动助力系统中的关键部件之一,主要分为扭矩传感器与车速传感器两种。

其中,扭矩传感器主要负责对汽车驾驶员在传入轴上的作用力方向以及作用力的大小进行分析,其工作的主要目的在于更好地通过对驾驶员力的结构的分析,实现对汽车转向力的相应调整。

车速传感器顾名思义,是对汽车行驶速度的测量,通过对汽车行驶速度的测量,以自动化辨别转向系统应更加灵活或更加稳重。

这两种传感系统均为信号控制系统,相对而言,其工作原理较为复杂,且对精度有着极高的要求。

(二)电动机电动机的主要作用,在于为汽车电动助力转向系统提供动力,它能够将电子元件输出的控制指令转换为实际的操作提供辅助距扭,能够将控制指令转换为实际的动力元素,从而确保汽车的转向系统能够有效应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车助力转向系统的发展
概述
汽车转向系统是用于改变或保持汽车行使方向的专门机构。

其作用是使汽车在行使过程中能按照驾驶员的操纵要求而适时地改变其行使方向,并在受到路面传来的偶然冲击及偏离行使方向时,能与行使系统配合共同保持汽车继续稳定行使。

因此,转向系统的性能直接影响着汽车的操纵稳定性和安全性,而助力转向系统可使转向灵敏、操纵轻便。

对转向系统的要求,主要概括为转向的灵敏性和操纵的轻便性。

高的转向灵敏性,要求转向器具有小的传动比,以小的转向盘转角迅速转向;好的操纵性,则要求转向器具有大的转动比,这样才能以较小的转向盘操纵力获得大的转向力矩。

可见,上述两个要求是矛盾的。

因此,在实际设计中,一般规定当转向轮达到最大设计转角时,转向盘总数不宜超过5圈,而转向盘操纵力最大不超过250N。

为满足上述要求,除采取尽量减轻自重,选择最佳轴荷分配;提高转向系统转动效率;减小主削后倾角;选择最佳转向器速比曲线等措施外,通常都采用助力转向方式。

尤其对中、重型车,由于轴荷重,助力转向几乎是唯一的选择。

近年来,随着对小轿车舒适性要求的提高,助力转向的应用也比较普遍。

助力转向系统应满足如下要求:能有效减小操纵力,特别是停车转向操纵力,行车转向操纵力应不大于250N;转向灵敏性好,助力转向的灵敏度是指在转向器操纵下,转向助力器产生助力作用的快慢程度。

助力作用快,转向就灵敏;具有直线行使的稳定性,转向结束时转向盘应自动回正,驾驶员应有优良好的路感;具有随动作用,转向车轮的偏转角和驾驶员转动转向盘的转角保持一定的关系,并能使转向车轮保持在任意偏转角位置上;工作可靠,当助力转向失效或发生故障时应能保证通过人力进行转向操纵。

助力转向系统是指在驾驶员的控制下,借助于汽车发动机通过液压泵产生的液体压力或电动机驱动力来实现车轮转向助力转向是一种以驾驶员操纵转向盘为输入信号,以转向车轮的角位移为输入信号的伺服机构。

动力部分跟踪手动操纵,产生与转向阻力相平衡的辅助力,使车辆进行转向运动。

与此同时,把部分输出力反馈给驾驶员,使其获得适当的手感,构成所谓的助力转向双动伺服机构。

最早出现了传统液压式助力转向系统,随着电子控制技术的飞快发展,出现了电子控制式液压助力转向系统和电动助力转向系统。

传统液压式助力转向系统
2.1 传统液压式助力转向系统的结构
传统液压式助力转向系统一般按液流的形式可分为常流式和常压式两种类型。

常压式是指在汽车行使中,无论转向盘是否转动,整个液压系统总是一直保持高压;其优点在于有蓄能器积蓄液压能,可以使用流量较小的转向液压泵,而且还可以在液压泵运转的情况下保持一定的转向加力能力,使汽车有可能续使一段距离。

常流式是指汽车在行使中,不转动转向盘时,流量控制阀在中间位置,油路保持常通,其优点是结构简单,液压泵寿命长,泄漏较少,消耗功率也较少。

传统液压式助力转向系统主要由机械转向器、转向动力缸和转向控制阀和转向液压泵等部分组成。

转向液压泵是液压动力转向系统的动力源,他的作用是将发动机产生的机械能转变为驱动转向动力缸工作的液压能,再由转向动力缸驱动转向车轮。

除液压泵本体外,通常还包括限制液压泵输出油压的安全阀和调节输出油量的溢流阀等;转向动力缸是将转向液压泵提供的液压能转变为驱动转向车轮偏转的转向助力执行元件。

转向控制阀是在驾驶员的操纵下,控制转向动力缸输出动力大小、方向和增力快慢的控制阀。

转向控制阀通常还包括一个止回阀(也叫强制转向阀),它的作用是当动力转向系统中液压部分出现故障时,止回阀能保证驾驶员通过转向盘也可以直接操纵机械转向器工作,使汽车能继续控制方向,但此时所需要的转向力比正常时要大很多。

机械转向器、转向动力缸和转向控制阀组装在一起,这三合一的部件称为整体式转向助力器。

只将转向控制阀同机械转向器组合成一个部件,而转向动力缸是独立的部件,称为半整体式转向助力器。

将转向控制阀和转向动力缸组合成一个部件,而机械转向器是一个独立的部件,这种结构形式成为转向助力器。

2.2 传统液压式助力转向系统的工作原理
传统液压式助力转向系统的工作原理是动力缸内装有活塞,通过活塞杆与横拉杆连接。

驾驶员通过转向盘和转向器,一方面带动转向传动机构,另一方面控制转向助力器中的控制阀,使油泵供来的高压油流入动力缸中的活塞的左室或右室。

在油压的作用下,活塞通过活塞杆带动横拉杆向右或向左拉动,于是,液压产生的动力便协助转向机构带动转向传动杆件,使转向轮向左或向右偏转,以实现液压助力转向。

2.3 传统液压式助力转向系统的特点
传统液压式助力转向系统使转向操纵灵敏、轻便,从而使在设计汽车时对转向器结构的选择灵活性增大,能吸收路面对前轮产生的冲击。

但它具有固定的放大倍率,其缺点是:如果所设计的固定放大倍率的助力转向系统是为了减小汽车在停车或低速行使状态下转动转向盘的力,则当汽车以高速行使时,这一固定放大倍率的动力转向系统会使转动转向盘的力显得太小,不利于对高速行使的汽车进行方向控制;反之,如果所设计的固定放大倍率的转向系统是为了增加汽车在高速行使时的转向力,则当汽车停使或低速行使时,转动转向盘就会显得非常吃力。

这是由传统液压式助力转向系统的结构所决定的。

由于助力转向在轿车上的日益普及,对其性能上的要求已不在是单纯的为减轻操纵强度,而是要求其在调头时保证转向轻便性的同时,又能保证高速行使时的操纵稳定性。

随着电子控制技术在汽车助力转向系统中的应用,产生了电子控制式液压助力转向系统,使助力转向能够达到上述要求。

相关文档
最新文档