医用高分子
医用高分子

(3)形成活性药物表面
聚氨酯-肝素复合物具有良好的生物相容性和血
液相容性。 在聚苯乙烯、聚乙烯、聚丙烯、聚碳酸酯、硅
橡胶表面进行肝素化处理,均获得良好的相容性。
第二十二页,编辑于星期日:二十二点 九分。
(4)形成伪内膜表面
人们发现,大部分高分子材料的表面容易沉渍 血纤蛋白而凝血。
如果有意将某些高分子的表面制成纤维林立状 态,当血液流过这种粗糙的表面时,迅速形成稳定 的凝固血栓膜,但不扩展成血栓。
➢ 此后,一大批人工器官在50年代试用于临床。 ▪人工尿道(1950年)
▪人工血管(1951年)
▪人工食道(1951年) ▪人工心脏瓣膜(1952年)
▪人工心肺(1953年) ▪人工关节(1954年)
▪人工肝(1958年)
第四页,编辑于星期日:二十二点 九分。
➢ 进入60年代,医用高分子材料开始进入一个崭新的 发展时期。
此外,还要防止在医用高分子材料生产、加工 工程中引入对人体有害的物质。应严格控制原料的
纯度。加工助剂必须符合医用标准。生产环境应当具 有适宜的洁净级别,符合国家有关标准。
第十九页,编辑于星期日:二十二点 九分。
8.3 医用高分子材料概论
一、血液相容性高分子材料
判断高分子材料的血液相容性,主要研究抗凝 血能力和不损伤血液成分功能的问题。
6、能经受必要的清洁消毒措施而不产生变性
高分子材料在植入体内之前,都要经过严格的 灭菌消毒。
目前灭菌处理一般有三种方法: 蒸汽灭菌、化学灭菌、γ射线灭菌。
国内大多采用前两种方法。因此在选择材料时 ,要考虑能否耐受得了。
第十八页,编辑于星期日:二十二点 九分。
7、易于加工成需要的复杂形状
人工脏器往往具有很复杂的形状,因此,用于人 工脏器的高分子材料应具有优良的成型性能。否则, 即使各项性能都满足医用高分子的要求,却无法加工 成所需的形状,则仍然是无法应用的。
医用高分子材料

医用高分子材料医用高分子材料在现代医学和医疗领域中起着至关重要的作用。
这些材料具有出色的生物相容性、可加工性和可控释放性能,被广泛用于医疗器械、药物传递系统和组织工程等领域。
本文将介绍医用高分子材料的应用、特点和近期研究进展。
一、医用高分子材料的应用1. 医疗器械医用高分子材料在医疗器械中扮演着重要的角色。
例如,聚乙烯醇(PVA)被广泛用于制作医用手套、输液软管和注射器等。
其柔软性和耐腐蚀性使其成为理想的选择。
此外,聚氨酯(PU)也被用于制作心脏起搏器和人工血管。
其优异的机械性能和生物相容性使其成为这些医疗器械的理想材料。
2. 药物传递系统医用高分子材料在药物传递系统中起着重要的作用。
例如,聚乳酸-羟基乙酸共聚物(PLGA)被广泛用于制造微球、纳米粒子和针剂等。
这些材料具有良好的生物降解性和可控释放性能,可以通过改变材料的组成和制备方法来调控药物的释放速率和持续时间。
3. 组织工程医用高分子材料在组织工程领域中具有巨大潜力。
例如,聚己内酯(PCL)和胶原蛋白被广泛用于制造支架和人工皮肤。
这些材料能够提供细胞附着和生长的支持,并具有良好的生物相容性和生物降解性,有助于再生损伤组织。
二、医用高分子材料的特点1. 生物相容性医用高分子材料具有良好的生物相容性,能够与人体组织兼容,并且不会引发明显的免疫反应。
这一特点使得它们适用于体内应用,可以减少术后并发症的发生。
2. 可加工性医用高分子材料可以通过不同的加工方法制备成不同形状和尺寸的产品。
例如,熔融挤出、溶液旋转薄膜法和三维打印等方法可以制备出具有复杂结构和良好性能的材料。
3. 可控释放性能医用高分子材料可以通过改变材料的组成和结构来调控药物的释放速率和持续时间。
这使得药物能够在目标区域长时间释放,提高疗效并减少副作用。
三、医用高分子材料的研究进展1. 新型材料的合成与应用近年来,研究人员致力于开发新型医用高分子材料,以满足不同临床需求。
例如,阴离子聚合物、生物可降解聚合物和纳米复合材料等新型材料被广泛应用于医疗器械和药物传递系统,为临床诊疗提供了更多选择。
医用高分子材料

医用高分子材料首先,医用高分子材料具有良好的生物相容性。
这意味着它们与人体组织和生物体具有良好的相容性,不会引起排斥反应或过敏反应。
这使得它们可以用于制造各种植入式医疗器械,如人工关节、心脏起搏器和血管支架等。
常用的医用高分子材料包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯和聚乳酸等。
其次,医用高分子材料具有良好的耐用性和可塑性。
它们可以根据需要进行设计和加工,制成各种形状和结构的医疗器械和用品。
同时,它们具有较高的耐用性,能够承受人体内外的各种环境和应力,保持稳定的性能和形状。
这使得医用高分子材料在医疗器械和用品的制造中具有广泛的应用前景。
医用高分子材料在医疗行业中的应用非常广泛。
它们被用于制造各种医疗器械,如手术器械、诊断设备、植入式医疗器械和医疗用品等。
比如,聚乳酸材料被用于制造可降解的缝线和骨修复材料;聚碳酸酯材料被用于制造人工眼角膜和牙科修复材料;聚乙烯材料被用于制造输液管和输液袋等。
这些医疗器械和用品在临床上发挥着重要的作用,帮助医生诊断疾病、进行手术治疗和康复护理。
随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也在不断拓展和创新。
未来,医用高分子材料有望在生物医学工程、组织工程和再生医学等领域发挥更大的作用。
同时,人们也在不断研发新型的医用高分子材料,以满足不同医疗器械和用品的需求。
总之,医用高分子材料在医疗行业中具有重要的地位和应用前景。
它们具有良好的生物相容性、耐用性和可塑性,适用于各种医疗器械和用品的制造。
随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也将不断拓展和创新,为人类健康事业做出更大的贡献。
医用高分子材料及制品

医用高分子材料及制品
医用高分子材料是指用于医疗器械、医疗设备以及医药包装等医疗领域的材料。
医用高分子材料具有优异的生物相容性、生物降解性、耐磨损性、耐腐蚀性和耐高温性能,因此在医疗领域得到了广泛的应用。
首先,医用高分子材料在医疗器械方面具有重要作用。
例如,医用高分子材料
可以用于制造手术器械、注射器、输液管等医疗器械,这些器械需要具有良好的生物相容性和耐腐蚀性,以确保在医疗过程中不会对患者造成伤害。
其次,医用高分子材料在医疗设备方面也发挥着重要作用。
例如,医用高分子
材料可以用于制造医用影像设备的外壳、医用检测设备的传感器等部件,这些设备需要具有良好的耐磨损性和耐高温性能,以确保设备的稳定运行和长期使用。
此外,医用高分子材料在医药包装方面也有着重要的应用。
医用高分子材料可
以用于制造药品包装瓶、输液袋、药品袋等包装材料,这些包装材料需要具有良好的生物相容性和生物降解性,以确保药品的安全使用和环境友好。
总的来说,医用高分子材料及制品在医疗领域具有重要的地位和作用,它们为
医疗器械、医疗设备以及医药包装等提供了优异的材料选择,为人类的健康事业做出了重要的贡献。
随着医疗技术的不断发展和进步,相信医用高分子材料及制品将会有更广阔的应用前景,为医疗领域带来更多的创新和发展。
医用高分子材料

医用高分子材料的种类
1 生物可降解材料
2 人工器官材料
3 生物材料表面改性
这类材料在人体内可以自然 降解,减少对人体的刺激, 并且不需要二次手术取出。
这类材料可以用于制造人工 心脏瓣膜、人工血管等,帮 助患有心脏病和其他器官疾 病的患者。
通过改变材料表面的特性, 可以提高材料的生物相容性, 减少对人体的排异反应。
医用高分子材料的特点
生物相容性
医用高分子材料具有良好的生物 相容性,与人体组织相容性高, 不会引起排异反应。
可调控性
医用高分子材料具有可调控性, 可以根据具体需求进行调整,用 于不同的医学应用。
可塑性
医用高分子材料具有良好的可塑 性,易于加工成各种形状,适用 于复杂的医学器械制造。
创新研究
科学家们正在不断进行医用高分子材料的创新研究,开发出更先进的材料。
临床应用
医用高分子材料已经在临床上得到广泛应用,并取得了显著的效果。
合作交流
不同国家的科学家们正在进行医用高分子材料的合作交流,推动其发展。
未来医用高分子材料的发展趋势
生物仿生技术
未来医用高分子材料将更加注重 生物仿生技术,模拟自然生物系 统,实现更好的医疗效果。
医用高分子材料的应用
1
人工关节
医用高分子材料可以用于制造人工关节,帮助患有关节炎等疾病的患者恢复正常 生活。
2
可吸收缝合线
医用高分子材料制成的可吸收缝合线可以用于手术缝合,减少了术后的痛苦和并 发症。
3
人工眼角膜
医用高分子材料可以用于制造人工眼角膜,帮助视力受损的患者恢复视力。
医用高分子材料的发展现状
纳米技术应用
纳米技术将被广泛应用于医用高 分子材料,提高其性能并为医学 研究提供更多可能。
医用高分子材料

1、医用高分子材料简介医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。
目前材料有聚氯乙烯天然橡胶聚乙烯聚酰胺聚丙烯聚苯乙烯硅橡胶聚酯聚四氟乙烯聚甲基丙烯酸甲酯2、医用高分子材料的基本要求医用高分子材料多用于人体,直接关系到人的生命和健康。
•①必须无毒或副作用极少。
•②物理、化学和机械性能需满足医用所需设计和功能的要求。
•③必须与医疗用品中其他材料有足够的适应性,材料与人体各种组织的适应性。
•④不同的应用领域,要求材料分别具有一定的特殊功能。
3、医疗高分子制品种类•人造脏器•医疗器械•药物剂型1)人造脏器①内脏:有代用血管、人工心脏、人工心脏瓣膜、心脏修复、人工食道、人工胆管、人工尿道、人工腹膜、疝补强材料、人工骨和人工关节、人工血浆、人工腱、人工皮肤、整容材料及心脏起搏器等。
②体外器官和装置:有人工心肺机、人工肺、人工肾、人工肝、人工脾、麻痹肢刺激器、电子假肢、假齿、假眼、假发、假耳、假手、假足等。
2)医疗器械•①一般医疗及看护用具,如眼带、洗肠器、注射针、听诊器、直肠镜、点眼器、腹带和连结管等;•②麻醉及手术室用具,如吸引器、缝线、咽头镜、血管注射用具等;•③检查及检查室用具,如采血管、采血瓶、心电图用的电极、试验管、培养皿等。
3)药物剂型•①药物的助剂(辅料):高分子材料本身是惰性的,不参与药的作用,只起增稠、表面活性、崩解、粘合、赋形、润滑和包装等作用,或在人体内起“药库”作用,使药物缓慢放出而延长药物作用时间。
•②聚合物药物:将低分子药物,以惰性水溶性聚合物作分子载体,把具有药性的低分子化合物,通过共价键或离子键与载体的侧基连接,制成聚合物药物。
4、医用高分子的发展趋势•①研究开发满足生物相容性和血液相容性材料,以聚烯烃、聚硅氧烷、氟碳聚合物和聚氨酯为重点;•②开发控制药物释放、人工脏器、医疗器械和控制生育所用材料。
•③发展小型化、便携带、内埋化等类型的人工器官装置。
医用高分子材料
医用高分子材料
医用高分子材料是一种应用于医疗领域的材料,具有优良的生物相容性、可降解性、可调控性和生物活性等特点。
它被广泛应用于医疗器械、组织工程、药物传递系统等领域。
首先,医用高分子材料具有优良的生物相容性。
由于其化学结构和生物组织相似,医用高分子材料与生物体相互作用时会引起较小的免疫反应和炎症反应。
这种生物相容性使得医用高分子材料可以与人体组织良好地结合,不产生异物感。
其次,医用高分子材料具有可降解性。
医用高分子材料可以在人体内逐渐分解代谢,不会残留在体内,不会对人体造成长期的不良影响。
这种可降解性使得医用高分子材料特别适用于一次性使用的医疗器械和植入物。
此外,医用高分子材料具有可调控性。
医用高分子材料的物理和化学性质可以通过调整其分子结构和组成,来实现对其性能的控制。
例如,通过调整其分子量和结晶度,可以控制医用高分子材料的力学强度和降解速率。
这种可调控性使得医用高分子材料能够满足不同临床需求。
最后,医用高分子材料具有生物活性。
医用高分子材料可以与生物体相互作用,并对其产生一定的生物效应。
例如,一些医用高分子材料具有良好的细胞黏附性和生物酶附着能力,可以促进细胞的生长和组织修复。
这种生物活性为医疗器械的研发和组织工程的实现提供了有效的手段。
总之,医用高分子材料具有优良的生物相容性、可降解性、可调控性和生物活性,广泛应用于医疗领域。
随着技术的不断进步,医用高分子材料还将为医疗器械、组织工程、药物传递系统等领域的发展带来更多的机会和挑战。
医用高分子材料最基本特征
医用高分子材料最基本特征
医用高分子材料的最基本特征包括:
1. 生物相容性:医用高分子材料应具有良好的生物相容性,即对人体组织无毒、无刺激、无排斥反应,能与人体组织良好地相容。
2. 可加工性:医用高分子材料应具有良好的可加工性,能够通过各种加工方法获得所需的形状和尺寸,如注射成型、挤出成型、热成型等。
3. 机械性能:医用高分子材料应具有适当的机械强度和韧性,能够承受生物环境中的力学应力,以保护和支持人体组织。
4. 生物降解性:某些医用高分子材料应具有生物降解性,即能够在生物体内逐渐降解为无毒、可吸收的物质,最终被人体代谢排出。
5. 抗菌性:医用高分子材料应具备一定的抗菌性能,能够抑制细菌和病原微生物的生长,降低感染风险。
6. 耐化学性:医用高分子材料应具有良好的耐化学性,能够耐受常见的消毒剂和药物的腐蚀作用,保持其物理和化学性质稳定。
7. 透明度:一些医用高分子材料应具备良好的透明度,以便于医生观察和检查病变部位。
8. 生物功能性:医用高分子材料还可以通过添加特定的功能团或物质,赋予其特定的生物功能,如生物活性、生物信号传导能力等。
综上所述,医用高分子材料的最基本特征是生物相容性、可加工性、机械性能、生物降解性、抗菌性、耐化学性、透明度和生物功能性。
生物医用高分子材料的合成与应用
生物医用高分子材料的合成与应用近年来,随着生物医学技术的快速发展,生物医用高分子材料已经成为最具发展潜力的材料之一。
生物医用高分子材料是指具有良好生物相容性和生物可降解性的高分子化合物,它们可以广泛应用于生物医学领域,如医用生态材料、生物医学成像、药物传递和生物传感器等。
本文将介绍几种常见的生物医用高分子材料的合成与应用。
一、聚乳酸(PLA)聚乳酸是一种崭新的生物医用高分子材料,具有可降解性和良好的生物相容性。
它可以被分解为CO2和H2O,不会对环境造成污染,具有广泛的应用前景。
PLA可以制备成各种形状的材料,如纤维、薄膜、泡沫等,可以广泛应用于医疗器械、生物支架、药物传递等。
二、聚己内酯(PCL)聚己内酯是一种生物降解型的高分子材料,具有良好的生物相容性和可加工性。
它可以被多种酶类和水解作用降解为健康无害的产物,是理想的生物医用高分子材料。
PCL可以制备成各种形状的材料,如支架、膜、微球等,可以广泛应用于组织工程、骨修复、神经修复和皮肤再生等领域。
三、聚乳酸-聚己内酯共聚物(PLGA)聚乳酸-聚己内酯共聚物是一种创新型的生物医用高分子材料,它是由聚乳酸和聚己内酯两种单体共聚而成的高分子化合物。
PLGA具有优于单体的降解性能和生物相容性,还可以通过改变单体的比例来调节其降解速率和物理性质。
PLGA可以制备成各种形状的材料,如支架、微粒、微胶囊等,可以广泛应用于药物控释和组织工程等领域。
四、聚(甲基丙烯酸甲酯)(PMMA)聚(甲基丙烯酸甲酯)是一种非可降解型的高分子材料,具有良好的生物相容性和可加工性。
它可以制备成各种形状的材料,如支架、薄膜、微球等,可以广泛应用于组织修复、药物传递和生物成像等领域。
五、羟基磷灰石(HAP)羟基磷灰石是一种无机骨修复材料,具有良好的生物相容性和生物可降解性。
它可以为体内的骨细胞提供生长所需的矿物质和微量元素,具有促进骨组织再生的作用。
HAP可以制备成支架、微球、薄膜等形状,可以广泛应用于口腔、骨科等领域。
医用高分子-人工心脏
左图:马修和他的妻子吉尔以及儿子在一起。 右图:是这个心脏的工作原理,在经过6个 小时的手术后,患者心脏的主腔室和四个阀 门将被移除,取而代之的是全人工心脏。图 中蓝色和红色管子的一端将连接到帆布包中 由电池提供动力的真空泵上。蓝色管子的另 一端则连接着静脉血管,已经消耗了氧和营 养物质的血液通过蓝色管子进入人工心脏的 右心房,然后通过空气压力将血液压至肺部。 与此同时,真空泵再利用右侧管道加压将从 肺部获得充分氧气的血液泵入人造心脏的左 心房,然后再通过动脉系统供应全身。
小型而具有高射血效能;
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信 息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都 希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功 倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的 详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用 分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
七.不可以有效地避免细菌的感染
八.跨瓣压差大,尤其是小口径猪瓣,在同一尺寸中有效开口面积小
九.材料的疲劳与磨损,早期损坏率高,10年中出现瓣膜损坏者约占 70%~80%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 医用高分子材料
2.1.3 高分子材料的致癌性 虽然目前尚无足够的证据说明高分子材料的植 入会引起人体内的癌症。但是,许多试验动物研究 表明,当高分子材料植入鼠体内时,只要植入的材 料是固体材料而且面积大于1cm2,无论材料的种类 (高分子、金属或陶瓷)、形状(膜、片状或板 状)以及材料本身是否具有化学致癌性,均有可能 导致癌症的发生。这种现象称为固体致癌性或异物 致癌性。
17
第九章 医用高分子材料
(5)长期植入体内不会减小机械强度 许多人工脏器一旦植入体内,将长期存留,有 些甚至伴随人们的一生。因此,要求植入体内的高 分子材料在极其复杂的人体环境中,不会很快失去 原有的机械强度。
18
第九章 医用高分子材料
高分子材料在狗体内的机械稳定性
材料名称 尼龙-6 涤纶树脂 聚丙烯酸酯 植入天数 761 机械强度损失 /% 74.6
14
第九章 医用高分子材料
(2)对人体组织不会引起炎症或异物反应 有些高分子材料本身对人体组织并无不良影响, 但在合成、加工过程中不可避免地会残留一些单体, 或使用一些添加剂。当材料植入人体以后,这些单 体和添加剂会慢慢从内部迁移到表面,从而对周围 组织发生作用,引起炎症或组织畸变,严重的可引 起全身性反应。
5
第九章 医用高分子材料
(4)长期植入体内的材料 用这类材料制造的人工脏器或医疗器具,一经 植入人体内,将伴随人的终生,不再取出。 用这类材料制备的人工脏器包括:脑积水症髓 液引流管、人造血管、人工瓣膜、人工气管、人工 尿道、人工骨骼、人工关节、手术缝合线、组织粘 合剂等。
6
第九章 医用高分子材料
20
第九章 医用高分子材料
2. 高分子材料的生物相容性
2.1 高分子材料的组织相容性 2.1.1 高分子材料植入对组织反应的影响 高分子材料植入人体后,对组织反应的影响因 素包括材料本身的结构和性质材料中可渗出的化学 组织反应。
21
第九章 医用高分子材料
(1)材料中渗出的化学成分对生物反应的影响 材料中逐渐渗出的各种化学成分(如添加剂、 杂质、单体、低聚物以及降解产物等)会导致不同 类型的组织反应,例如炎症反应。 (2)高分子材料的生物降解对生物反应的影响 高分子材料生物降解对人体组织反应的影响取 决于降解速度、产物的毒性、降解的持续期限等因 素。
8
第九章 医用高分子材料
3)天然生物组织与器官 ① 取自患者自体的组织,例如采用自身隐静 脉作为冠状动脉搭桥术的血管替代物; ② 取自其他人的同种异体组织,例如利用他 人角膜治疗患者的角膜疾病; ③ 来自其他动物的异种同类组织,例如采用 猪的心脏瓣膜代替人的心脏瓣膜,治疗心脏病等。
9
第九章 医用高分子材料
11
第九章 医用高分子材料
(3)按生物医学用途分类 1)硬组织相容性高分子材料 2)软组织相容性高分子材料 3)血液相容性高分子材料 4)高分子药物和药物控释高分子材料
12
第九章 医用高分子材料
(4)按与肌体组织接触的关系分类 1) 长期植入材料 如人工血管、人工关节、人工晶状体等。 2) 短期植入(接触)材料 如透析器、心肺机管路和器件等。 3) 体内体外连通使用的材料 如心脏起搏器的导线、各种插管等。 4) 与体表接触材料及一次性医疗用品材料
34
第九章 医用高分子材料
5) 血小板的粘附与材料表面的光滑程度有关 由于凝血效应与血液的流动状态有关,血液流 经的表面上有任何障碍都会改变其流动状态,因此 材料表面的平整度将严重影响材料的抗血栓性。据 研究知,材料表面若有3μm以上凹凸不变的区域, 就会在该区域形成血栓。由此可见,将材料表面尽 可能处理得光滑,以减少血小板、细胞成分在表面 上的粘附和聚集,是减少血栓形成可能性的有效措 施之一。但增加了生成肿瘤的危险。
形 状 材 料 玻 璃 赛璐珞 涤纶树脂 尼 龙 聚四氟乙烯 聚苯乙烯 薄片 33.3 23 18 42 20 28 大孔薄片 18 19 8 7 5 10 海绵状 0 0 0 1 0 0 纤维状 0 0 0 0 0 1 粉末状 0 0 0 0 0 0
聚氨酯
聚氯乙稀 硅橡胶
* 试验周期为两年
33
24 41
15
第九章 医用高分子材料
(3)不会致癌 当医用高分子材料植入人体后,高分子材料本 身的性质,如化学组成、交联度、相对分子质量及 其分布、分子链构象、聚集态结构、高分子材料中 所含的杂质、残留单体、添加剂都可能与致癌因素 有关。
16
第九章 医用高分子材料
(4)具有良好的血液相容性 当高分子材料用于人工脏器植入人体后,必然 要长时间与体内的血液接触。因此,医用高分子对 血液的相容性是所有性能中最重要的。
1073
780 670
80.7
11.4 1.0
聚四氟乙烯
677
5.3
19
第九章 医用高分子材料
(6)能经受必要的清洁消毒措施而不产生变性 高分子材料在植入体内之前,都要经过严格的 灭菌消毒。目前灭菌处理一般有三种方法:蒸汽灭 菌、化学灭菌、γ射线灭菌。 (7)易于加工成需要的复杂形状 人工脏器往往具有很复杂的形状,因此,用于 人工脏器的高分子材料应具有优良的成型性能。
第九章 医用高分子材料
公元前3500年,埃及人就用棉花纤维、马鬃缝 合伤口。墨西哥印地安人用木片修补受伤的颅骨。 公元前500年的中国和埃及墓葬中发现假牙、 假鼻、假耳。 1936年发明了有机玻璃后,很快就用于制作假 牙和补牙,至今仍在使用。 1943年,赛璐珞薄膜开始用于血液透析。
1
第九章 医用高分子材料
(5)药用高分子 这类高分子包括大分子化药物和药物高分子。 前者是指将传统的小分子药物大分子化,如聚青霉 素;后者则指本身就有药理功能的高分子,如阴离 子聚合物型的干扰素诱发剂。
7
第九章 医用高分子材料
(1)按材料的来源分类 1)天然医用高分子材料 如胶原、明胶、丝蛋白、角质蛋白、纤维素、 多糖、甲壳素及其衍生物等。 2)人工合成医用高分子材料 如聚氨酯、硅橡胶、聚酯等。
30
第九章 医用高分子材料
材料表面张力与血小板粘附量的关系
材 料
尼龙-66 聚四氟乙烯 聚二甲基硅氧 烷 聚氨酯 临界表面张力 /Pa 11.6 2.9 2.2 2.0 血小板粘附量 /% ①* 56 30 7.3 1.8 ②* 37 5.4 4.5 0.2
* ① 人血浸渍3分钟; ② 狗血循环1分钟。
27
第九章 医用高分子材料
2.2 高分子材料的血液相容性 2.2.1 高分子材料的凝血作用 (1)血栓的形成 通常,当人体的表皮受到损伤时,流出的血液 会自动凝固,称为血栓。实际上,血液在受到下列 因素影响时,都可能发生血栓:① 血管壁特性与 状态发生变化;② 血液的性质发生变化;③ 血液 的流动状态发生变化。
3
第九章 医用高分子材料
1.2 医用高分子的分类 日本医用高分子专家樱井靖久将医用高分子分 成如下的五大类: (1)与生物体组织不直接接触的材料 这类材料用于制造虽在医疗卫生部门使用,但 不直接与生物体组织接触的医疗器械和用品。如药 剂容器、血浆袋、输血输液用具、注射器、化验室 用品、手术室用品等。
1949年,美国首先发表了医用高分子的展望性 论文。在文章中,第一次介绍了利用PMMA作为人的 头盖骨、关节和股骨,利用聚酰胺纤维作为手术缝 合线的临床应用情况。 50年代,有机硅聚合物被用于医学领域,使人 工器官的应用范围大大扩大,包括器官替代和整容 等许多方面。
2
第九章 医用高分子材料
从70年代始,高分子科学家和医学家积极开展 合作研究,使医用高分子材料快速发展起来。 至80年代以来,发达国家的医用高分子材料产 业化速度加快,基本形成了一个崭新的生物材料产 业。
33
第九章 医用高分子材料
4) 血小板的粘附与材料表面的电荷性质有关 人体中正常血管的内壁是带负电荷的,而血小 板、血球等的表面也是带负电荷的,由于同性相斥 的原因,血液在血管中不会凝固。因此,对带适当 负电荷的材料表面,血小板难于粘附,有利于材料 的抗血栓性。但也有实验事实表明,血小板中的凝 血因子在负电荷表面容易活化。因此,若电荷密度 太大,容易损伤血小板,反而造成血栓。
22
第九章 医用高分子材料
(3)材料物理形态等因素对组织反应的影响 高分子材料的物理形态如大小、形状、孔度、 表面平滑度等因素也会影响组织反应。另外,试验 动物的种属差异、材料植入生物体的位臵等生物学 因素以及植入技术等人为因素也是不容忽视的。
23
第九章 医用高分子材料
不同形状的材料对产生肿瘤的影响* (%)
13
第九章 医用高分子材料
1.3 对医用高分子材料的基本要求 (1)化学隋性,不会因与体液接触而发生反应 人体环境对高分子材料主要有以下一些影响: 1)体液引起聚合物的降解、交联和相变化; 2)体内的自由基引起材料的氧化降解反应; 3)生物酶引起的聚合物分解反应; 4)在体液作用下材料中添加剂的溶出; 5)血液、体液中的类脂质、类固醇及脂肪等物 质渗入高分子材料,使材料增塑,强度下降。
11
0 16
1
2 0
1
0 0
0
0 0
24
第九章 医用高分子材料
2.1.2 高分子材料在体内的表面钙化 观察发现,高分子材料在植入人体内后,再经 过一段时间的试用后,会出现钙化合物在材料表面 沉积的现象,即钙化现象。 影响高分子材料表面钙化的因素很多,包括生 物因素(如物种、年龄、激素水平、血清磷酸盐水 平、脂质、蛋白质吸附、局部血流动力学、凝血等) 和材料因素(亲水性、疏水性、表面缺陷)等。一 般而言,材料植入时,被植个体越年青,材料表面 越可能发生钙化。
28
第九章 医用高分子材料
血液与异物表面接触 凝血致活酶活化 血浆蛋白吸附 红血球粘附
血小板粘附 血小板放出凝血因子 血小板血栓 纤维蛋白朊沉积 血栓形成 溶血