《坐标方法的简单应用》教学课件3
七年级数学下册人教版7.2坐标方法的简单应用优秀教学案例

(一)知识与技能
1.让学生掌握平面直角坐标系的基本概念,理解横坐标、纵坐标的意义,并能熟练地在坐标系中确定点的位置。
2.培养学生运用坐标方法解决实际问题的能力,如:求解线段长度、判断点与线段的位置关系等。
3.引导学生掌握坐标平移、对称等变换规律,提高学生对几何图形变换的识别和操作能力。
4.通过对坐标方法的应用,使学生能够解决一些简单的实际问题,如:平面图形的面积计算、路径规划等。
(三)小组合作
小组合作是提高学生合作能力和沟通能力的重要途径。在本章节的教学中,我将根据学生的学习特点和兴趣,将学生分成若干小组,每组4-6人。针对不同难度的问题,安排小组内或小组间的合作探究。在小组合作过程中,我会关注每个学生的参与程度,引导他们相互讨论、交流,共同解决问题。此外,我还将组织小组间的竞赛活动,提高学生的团队协作能力和竞争意识。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握坐标方法的简单应用,我将采用生动、具体的情景创设策略。首先,我会设计与学生生活密切相关的坐标问题,如校园平面图、电影院座位分布等,让学生在实际情境中感受坐标的存在和应用。其次,利用多媒体展示坐标系的动态变换,如平移、旋转等,使学生在视觉上直观地理解坐标变换的规律。此外,我还将设计一些坐标游戏,如“寻宝游戏”,让学生在游戏中体验坐标定位的乐趣,激发学生的学习兴趣。
在讲解过程中,我会注重与学生的互动,通过提问、举例等方式,帮助学生理解和掌握坐标方法。
(三)学生小组讨论
在学生小组讨论环节,我会根据学生的实际情况,设计不同难度的问题,引导学生进行合作探究。
1.简单问题:如“在坐标系中表示一个点”、“求解线段长度”等,让学生独立思后,小组内交流讨论。
2.难度较高的问题:如“坐标变换的规律及应用”、“实际生活中的坐标问题”等,要求小组成员共同探讨,分工合作解决问题。
人教版七年级数学下册《7.2 坐标方法的简单应用 第二课时》课件ppt

4 如图,若图①中点P 的坐标为( 8 , 2) ,则它在图②中的
3
对应点P1的坐标为( D )
A.(3,2)
C.
11 (1, )
3
B. ( 8 ,1)
3
D.
(11 ,1) 3
5 如图,线段AB 经过平移得到线段A′B ′,其中点A,B 的对应 点分别为点A′,B′,这四个点都在格点上.若线段AB上有一 个点P (a,b),则点P 在A′B ′上的对应点P ′的坐标为( A ) A.(a-2,b+3)
对一个图形进行平移,这个图形上所有点的坐标都要发 生相应的变化;反过来,从图形上的点的坐标的某种变化, 我们也可以看出对这个图形进行了怎样的平移.
思考 (1)如果将这个问题中的“横坐标都减去6”“纵坐标
都减去5”相应地变为“横坐标都加3”“纵坐标都 加2”,分别能得出什么结论?画出得到的图形.
(2)如果将三角形ABC 三个顶点的横坐标都减去6,同
长度,再向上平移3个单位长度后与点B (-3,2)重合,
则点A 的坐标是( D )
A.(2,5)
B.(-8,5)
C.(-8,-1)
D.(2,-1)
2 如图为某动物园的示意图.(图中小正方形的边长代表 1个单位长度)
(1)以虎山为原点,水平向右为x 轴正方向、铅直向上 为y 轴正方向在图中建立平面直角坐标系,并写出
在平面直角坐标系中,一个点沿x 轴方向 平移a(a>0)个单位长度后的坐标是什么?
左右点的平移
y
4
如图,将点A (-2, -3)向
3
右平移5个单位长度,得到点A1,
2
平移前后的坐标 有什么关系?
1
在图上标出这个点,并写出它的 坐标. 把点A向左平移2个单位呢?
人教版七下数学7-2坐标方法的简单应用课时2

后的线段 A′B
4
3
2
1
-6 -5 -4 -3 -2 -1 O
-1
-2
-3
-4
-5
-6
B′
B
A′
A
1 2 3 4 5 6 x
1. 作出线段两个端点平移
后的对应点.
2. 连接两个对应点,所得
线段即为所求.
各点坐标有什么变化?
纵坐标都增加2.
y
6
5
4
G,H,它们的坐标分别是什么?如果直接平移正方
形 ABCD,使点 A 移到点 E,它和我们前面得到的正
方形位置相同吗?
y
可求出点 E,F,G,H 的坐
标分别是(5, − 3),(5, − 4),
(6,−4),(7,−3).
A
B
6
5
D4
C3
2
1
-6 -5 -4 -3 -2 -1 O
-1
如果直接平移正方形 ABCD,
∴ 点 A6 的坐标为(9,12).
y
x
点的坐标规律探索题的求解步骤
1. 根据题意适当地写出一些点的坐标;
2. 观察这些点的横、纵坐标与其序号之间的关系,
找到规律;
3. 根据规律,写出所求点的坐标.
A′
C′
B′
随堂练习
1.(2020•绵阳中考)平面直角坐标系中,将点 A(−1,
2) 先向左平移 2 个单位,再向上平移 1 个单位后得到
的点 1 的坐标为 (−3,3) .
将点A (−1,2)先向左平移
2个单位,横坐标−2,
再向上平移1个单
位纵坐标+1,
苏科版数学八年级上册《5.2 平面直角坐标系》教学设计

苏科版数学八年级上册《5.2 平面直角坐标系》教学设计一. 教材分析《苏科版数学八年级上册》第五章第二节“平面直角坐标系”是学生在学习了坐标概念、坐标系的初步知识后,进一步深化对坐标系的理解和应用。
本节内容主要包括平面直角坐标系的定义、坐标轴、坐标点的特征等,旨在帮助学生掌握平面直角坐标系的基本知识,能够熟练地在坐标系中进行点的表示和坐标运算。
二. 学情分析学生在学习本节内容前,已经初步掌握了坐标的概念,对坐标系有了一定的认识。
但是,对于平面直角坐标系的定义、坐标轴的特点、坐标点的表示方法等,还需要进一步的学习和理解。
同时,学生需要通过实例感受和理解坐标系在实际问题中的应用。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴的特点,能够熟练地在坐标系中表示点的位置,进行简单的坐标运算。
2.过程与方法:通过实例分析,培养学生在实际问题中运用坐标系解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力。
四. 教学重难点1.重点:平面直角坐标系的定义,坐标轴的特点,坐标点的表示方法。
2.难点:坐标系在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、小组合作法等,结合多媒体教学,引导学生通过观察、思考、实践,理解并掌握平面直角坐标系的知识。
六. 教学准备1.多媒体教学设备。
2.平面直角坐标系的模型或图片。
3.相关案例资料。
七. 教学过程导入(5分钟)教师通过展示生活中的实例,如地图、飞机导航等,引导学生思考坐标系的作用,引出平面直角坐标系的概念。
呈现(10分钟)教师利用多媒体展示平面直角坐标系的模型或图片,同时讲解坐标轴的特点,坐标点的表示方法。
在此过程中,引导学生观察、思考,理解并掌握平面直角坐标系的基本知识。
操练(10分钟)教师给出一些简单的实例,让学生在坐标系中表示点的位置,进行坐标运算。
如给出点的坐标,让学生在坐标系中找到对应的位置;或者给出实际问题,让学生用坐标系解决。
人教版数学七年级下册7.2《坐标方法的简单应用》教学设计

人教版数学七年级下册7.2《坐标方法的简单应用》教学设计一. 教材分析人教版数学七年级下册7.2《坐标方法的简单应用》这一节主要介绍了坐标方法在实际问题中的应用。
通过本节课的学习,学生能够理解坐标方法在解决几何问题、物理问题等方面的应用,提高解决问题的能力。
教材通过丰富的例题和练习题,引导学生掌握坐标方法的基本步骤,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级上册已经学习了坐标系的相关知识,对坐标系有一定的了解。
但部分学生对坐标方法的运用还不够熟练,对实际问题与坐标方法之间的联系还缺乏认识。
因此,在教学过程中,教师需要关注学生的学习差异,针对不同层次的学生进行教学,引导学生将所学知识运用到实际问题中。
三. 教学目标1.理解坐标方法在实际问题中的应用。
2.掌握坐标方法的基本步骤。
3.提高学生解决问题的能力。
四. 教学重难点1.坐标方法在实际问题中的运用。
2.坐标方法的基本步骤。
五. 教学方法1.情境教学法:通过设置实际问题,引导学生运用坐标方法解决问题。
2.案例分析法:分析典型例题,让学生掌握坐标方法的应用。
3.讨论法:引导学生分组讨论,培养学生的团队协作能力。
4.练习法:布置适量练习题,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示例题和练习题。
2.练习题:准备相关练习题,巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,如物体在平面直角坐标系中的运动问题,引出坐标方法在实际问题中的应用。
激发学生兴趣,引导学生思考。
2.呈现(10分钟)展示教材中的例题,引导学生分析问题,探讨坐标方法的基本步骤。
通过讲解和示范,让学生掌握坐标方法在实际问题中的运用。
3.操练(10分钟)布置练习题,让学生独立完成。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)针对练习题进行讲评,分析学生的解题思路,巩固所学知识。
5.拓展(5分钟)引导学生思考坐标方法在其他学科中的应用,如物理学、化学等。
2022年初中数学同步 7年级下册 第13课 坐标方法的简单应用(教师版含解析)

第13课坐标方法的简单应用目标导航课程标准1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.知识精讲知识点01 用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.注意:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.知识点02 用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).注意:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.注意:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.能力拓展考法01 用坐标表示地理位置【典例1】小明写信给他的朋友介绍学校的有关情况:校门正北方100米处是教学楼,从校门向东50米,再向北50米是科教楼,从校门向西100米,再向北150米是宿舍楼……请画出适当的平面直角坐标系表示校门、教学楼、科技楼、宿舍楼的位置,并写出这四个点的坐标.【分析】选取校门所在的位置为原点,并以正东,正北方向为x轴、y轴的正方向,可以容易地写出三个建筑物的坐标.否则就较复杂.【答案与解析】解:(1)平面直角坐标系及学校的建筑物位置如图所示,比例尺为1:10000.(2)校门的坐标为(0,0);教学楼的坐标为(0,100);科技楼的坐标是(50,50);宿舍楼的坐标为(-100,150).【点睛】选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.【即学即练】一个探险家在日记上记录了宝藏的位置,从海岛的一块大圆石O出发,向东1000m,向北1000m,向西500m,再向南750m,到达点P,即为宝藏的位置.(1)画出坐标系确定宝藏的位置;(2)确定点P的坐标.【答案】解:根据数据的特点,选择250作为单位长度,以大圆石O为原点,建立平面直角坐标系.(1)如图,中心带有箭头的线是行动路线,点P的位置如图所示.(2)点P的坐标是(500,250)【典例2】如图是一所学校的平面示意图,已知国旗杆的坐标为(-1,1),写出其他几个建筑物位置的坐标.若国旗杆的坐标为(3,1),则其他几个建筑物位置的坐标是否发生改变?若改变,请写出坐标,若不改变,请说明理由.【答案与解析】解:当国旗杆的坐标是(-1,1)时,校门的坐标是(-4,1),实验楼的坐标是(2,-2),教学楼的坐标是(2,1),图书馆的坐标是(1,4);若国旗杆的坐标是(3,1),则校门的坐标是(0,1),实验楼的坐标是(6,-2),教学楼的坐标是(6,1),图书馆的坐标是(5,4).【点睛】根据已知点确定平面直角坐标系,进一步求得要求点的坐标.【即学即练】如图,是象棋棋盘的一部分.若位于点(1,﹣2)上,位于点(3,﹣2)上,则位于点上.【答案】(﹣2,1).解:∵位于点(1,﹣2)上,位于点(3,﹣2)上,∴位于点(﹣2,1)上.考法02用坐标表示平移【典例3】如如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【分析】(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.【答案与解析】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.【点睛】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.【即学即练】已知三角形ABC三个顶点的坐标为A(-2,3),B(-4,-1),C(2,0).三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3).将三角形ABC作同样的平移得到三角形A1B1C1:(1)求A1B1C1的坐标.(2)求三角形ABC和△A1B1C1的面积大小.【答案】解:(1)A 1(3,6),B 1(1,2),C 1(7,3).(2)ABC A B C S S '''=△△11124246143222=-⨯⨯-⨯⨯-⨯⨯=24-4-3-6=11. 考法03 综合应用【典例4】在A 市北300km 处有B 市,以A 市为原点,东西方向的直线为x 轴,南北方向的直线为y 轴,并以50km 为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C (10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km ,问经几小时后,B 市将受到台风影响?并画出示意图.【分析】当台风中心移动到据B 点200千米时,B 市将受到台风影响,从而求出台风中心的移动距离,除以速度,即可求出所需时间.【答案与解析】解:∵台风影响范围半径为200km ,∴当台风中心移动到点(4,6)时,B 市将受到台风的影响.所用的时间为:50×(10-4)÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)【点睛】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.【即学即练】一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.【答案】在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C.题组A 基础过关练1.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】【详解】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.分层提分考点:坐标与图形变化-平移.的值为()2.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a bA.2B.3C.4D.5【答案】B【解析】【分析】先根据点A、B及其对应点的坐标得出平移方向和距离,据此求出a、b的值,继而可得答案.【详解】解:由点A(2,0)的对应点A1(4,b)知向右平移2个单位,由点B(0,1)的对应点B1(a,2)知向上平移1个单位,△a=0+2=2,b=0+1=1,△a+b=2+1=3,故答案为:B.【点睛】本题主要考查坐标与图形的变化-平移,解题的关键是掌握横坐标的平移规律为:右移加,左移减;纵坐标的平移规律为:上移加,下移减.3.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)【答案】A【解析】【详解】△线段CD是由线段AB平移得到的,而点A(−1,4)的对应点为C(4,7),△由A平移到C点的横坐标增加5,纵坐标增加3,则点B(−4,−1)的对应点D的坐标为(1,2).4.如图, ,A B 的坐标为()()1,0,0,2,若将线段AB 平移至11A B ,则-a b 的值为( )A .1-B .0C .1D .2【答案】B【解析】【分析】 直接利用平移中点的变化规律求解即可.【详解】解:由B 点平移前后的纵坐标分别为2、4,可得B 点向上平移了2个单位,由A 点平移前后的横坐标分别是为1、3,可得A 点向右平移了2个单位,由此得线段AB 的平移的过程是:向上平移2个单位,再向右平移2个单位,所以点A 、B 均按此规律平移,由此可得a=0+2=2,b=0+2=2,△a -b=2-2=0,故选:B .【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .2【答案】C【解析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】△A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),△平移方法为向右平移2个单位,△x=﹣2,y=3,△x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.6.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位【答案】D【解析】【分析】根据向下平移,纵坐标相减,横坐标不变解答.【详解】△将三角形各点的纵坐标都减去3,横坐标保持不变,△所得图形与原图形相比向下平移了3个单位.故选D.【点睛】本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】已知线段AB ,BC ,AC ,分别以三条线段为平行四边形的对角线,进行分类讨论,结合图形进行判断.【详解】如果以线段AB 为对角线,AC ,BC 为边,作平行四边形,则第四个顶点在第四象限;如果以线段AC 为对角线,AB ,BC 为边,作平行四边形,则第四个顶点在第二象限;如果以线段CB 为对角线,AC ,BA 为边,作平行四边形,则第四个顶点在第三象限.故不可能在第一象限.故选A.【点睛】考查了平行四边形的性质,建立平面直角坐标系,数形结合,分类讨论是解题的关键.8.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(00),运动到(0)1,,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .(8,0)【答案】C【解析】【详解】 【分析】由题目可以知道,质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒,这样可以先确定,第80秒钟时所在的点所在正方形,然后就可以进一步推得点的坐标.【详解】质点每秒运动一次,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒钟,2秒钟,3秒钟,到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,到(4,4)用20秒,依此类推:到点(n ,n),用n 2+n 秒, △当n=8时,n 2+n=82+8=72,△当质点运动到第72秒时到达(8,8),△质点接下来向左运动,运动时间为80-72=8秒,△此时质点的横坐标为8-8=0,△此时质点的坐标为(0,8),△第80秒后质点所在位置的坐标是(0,8),故选C.【点睛】本题考查了规律题——点的坐标,解决本题的关键是读懂题意,并总结出一定的规律,难度较大.题组B 能力提升练9.将点()1,24P m m -+向上平移2个单位后落在x 轴上,则m =___.【答案】-3【解析】【分析】点坐标向上平移2个单位,就是纵坐标加上2,落在x 轴上,就是纵坐标为0,求出m 的值.【详解】解:点()1,24P m m -+向上平移2个单位得()1,26P m m '-+,△平移后落在x 轴上,△260m +=,解得3m =-.故答案是:-3.【点睛】本题考查点坐标的平移,解题的关键是掌握点坐标平移的方法.10.已知直线AB△x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________【答案】(4,2)或(﹣2,2).【解析】【详解】分析:AB△x 轴,说明A ,B 的纵坐标相等为2,再根据两点之间的距离公式求解即可.详解:△AB△x 轴,点A 坐标为(1,2),△A ,B 的纵坐标相等为2,设点B 的横坐标为x ,则有AB=|x -1|=3,解得:x=4或-2,△点B 的坐标为(4,2)或(-2,2).故本题答案为:(4,2)或(-2,2).点睛:本题主要考查了平行于x 轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.11.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.【答案】±4【解析】【详解】试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4.考点:1.三角形的面积;2.坐标与图形性质.12.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.【答案】-4或6【解析】【详解】分析:点M 、N 的纵坐标相等,则直线MN 在平行于x 轴的直线上,根据两点间的距离,可列出等式|x -1|=5,从而解得x 的值.解答:解:△点M(1,3)与点N(x ,3)之间的距离是5,△|x -1|=5,解得x=-4或6.故答案为-4或6.13.如图,点,A B 的坐标分别为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为_____.【答案】2【解析】【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【详解】由题意可知:a=0+(3-2)=1;b=0+(2-1)=1;△a+b=2.故答案为:2.【点睛】此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律.14.把点A(a,-2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于____.【答案】1.5【解析】【详解】试题解析:由题意,得a+(a-3)=0,解得a=1.5.点睛:对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.(1)把点P(2,-3)向右平移2个单位长度到达点P',则点P'的坐标是_______.(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P',则点P'的坐标是_______.【答案】(4,-3) (-2,-6) (-2,7)【解析】【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.【详解】解:(1)△把点P(2,-3)向右平移2个单位长度到达点P',△横坐标加2,纵坐标不变,△点P'的坐标是(4,-3);(2)△把点A(-2,-3)向下平移3个单位长度到达点B,△横坐标不变,纵坐标减3,△点B 的坐标是(-2,-6);(3)△把点P (2,3)向左平移4个单位长度,再向上平移4个单位长度到达点P ',△横坐标减4,纵坐标加4,△点P '的坐标是(-2,7).故答案为:(4,-3);(-2,-6);(-2,7).【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.16.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,则D 的坐标为_______,连接AC ,BD .在y 轴上存在一点P ,连接P A ,PB ,使PAB S =△S 四边形ABDC ,则点P 的坐标为_______.【答案】 (4,2) (0,4)或(0,-4)【解析】【分析】根据B 点的平移方式即可得到D 点的坐标;设点P 到AB 的距离为h ,则S △P AB =12×AB ×h ,根据S △P AB =S 四边形ABDC ,列方程求h 的值,确定P 点坐标;【详解】解:由题意得点D 是点B (3,0)先向上平移2个单位,再向右平移1个单位的对应点,△点D 的坐标为(4,2);同理可得点C 的坐标为(0,2),△OC =2,△A (-1,0),B (3,0),△AB =4,△=8ABDC S AB OC ⋅=四边形,设点P 到AB 的距离为h ,△S △P AB =12×AB ×h =2h ,△S △P AB =S 四边形ABDC ,得2h =8,解得h =4,△P 在y 轴上,△OP =4,△P (0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 题组C 培优拔尖练17.在平面直角坐标系中,P(1,4),点A 在坐标轴上,且S 三角形PAO =4,求点A 的坐标.【答案】A(2,0)或(-2,0)或(0,8)或(0,-8)【解析】【详解】试题分析:由于点A 的坐标不能确定,故应分点A 在x 轴上和点在y 轴上两种情况进行讨论.试题解析:当点A 在x 轴上时,设A(x ,0),△S △PAO =4,A(1,4) △12|x|×4=4,解得x=±2,△A(-2,0)或(2,0);当点A 在y 轴上时,设A(0,y),△S △PAO =4,A(1,4)△12|y|×1=4,解得x=±8,△A(-8,0)或(8,0).综上所述,A 点坐标为(-2,0)或(2,0)或(-8,0)或(8,0).点睛:本题考查的是平面直角坐标系中的三角形的面积,在解答此题时要注意进行分类讨论,不要漏解. 18.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△AOA 1的面积.【答案】(1)(4,-2);(2)作图见解析,(3)6.【解析】【分析】(1)根据点P 的对应点为P 1(6,2a b +-)确定出平移规律为向右6个单位,向下2个单位,,由此规律和C(-2,0)即可求出C 1的坐标;(2)根据(1)中的平移规律确定点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△AOA 1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】(1)△点P(a ,b)的对应点为P 1(a+6,b -2),△平移规律为向右6个单位,向下2个单位,△C(-2,0)的对应点C 1的坐标为(4,-2);(2)△A 1B 1C 1如图所示;(3)△AOA1的面积=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=18-12=6.考点:图形的平移变换.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.【答案】(1) (3,4);(2,0);A;(2)答案见解析;(3)10.【解析】【分析】(1)根据规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.(1)规定:向上向右走为正,向下向左走为负△A →C 记为(3,4)B →C 记为(2,0)D →A 记为(﹣4,﹣2);(2)P 点位置如图所示.(3)据已知条件可知:A →B 表示为:(1,4),B →C 记为(2,0)C →D 记为(1,﹣2);该甲虫走过的路线长为1+4+2+1+2=10.故答案为(3,4);(2,0);A ;【点睛】本题主要考查了正数与负数,利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.20.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D .连接AC ,BD .(1)写出点C ,D 的坐标及四边形ABDC 的面积.(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S 三角形PAB =S 四边形ABDC ?若存在,求出点P 的坐标,若不存在,试说明理由;(3)点Q 是线段BD 上的动点,连接QC ,QO ,当点Q 在BD 上移动时(不与B ,D 重合),给出下列结论:①DCQ BOQ CQO +∠∠∠的值不变;②DCQ CQO BOQ+∠∠∠的值不变,其中有且只有一个正确,请你找出这个结论并求值.【答案】(1)C(0,2),D(4,2),S 四边形ABCD =8;(2)存在,点P 的坐标为(0,4)或(0,-4);(3)结论①正确,DCQ BOQ CQO+∠∠∠=1. 【解析】(1)根据点平移的规律:左减右加,上加下减,即可得到点C、D的坐标,利用平行四边形的面积公式计算面积即可;(2)设点P的坐标为(0,y),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;(3)结论①正确.过点Q作QE△AB,交CO于点E,利用平行线的性质:两直线平行内错角相等证得△DCQ+△BOQ =△CQO,由此得到结论①正确【详解】(1)△将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,△C(0,2),D(4,2),AB△CD且AB=CD=4,△四边形ABDC是平行四边形,△S四边形ABCD=4×2=8.(2)存在,设点P的坐标为(0,y),根据题意,得12×4×|y|=8.解得y=4或y=-4.△点P的坐标为(0,4)或(0,-4).(3)结论①正确.过点Q作QE△AB,交CO于点E.△AB△CD,△QE△CD.△△DCQ=△EQC,△BOQ=△EQO.△△EQC+△EQO=△CQO,△△DCQ+△BOQ=△CQO.△DCQ BOQCQO∠∠∠=1.【点睛】此题考查点平移的坐标规律,利用面积求点的坐标,平行线的性质,(2)中利用面积求点坐标时,高度为点纵坐标的绝对值,得到纵坐标为两个值,这是题中易错点。
6.2 坐标方法的简单应用

如图3,将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上描出这个点,并写出点A1的坐标;再把A向上平移4个单位长度呢?再把点A向左或向下平移,观察它们坐标的变化,你能发现什么规律吗?
图3
学生活动设计:
学生独立思考,在独立思考的基础上进行适当的讨论,不难确定各种变化下的点的位置以及坐标,观察坐标的变化特点,可以发现当点进行不同的平移时,点的坐标也发生相应的变化,进而归纳出向上(下)、向右(左)平移时点的坐标的变化规律.
教师活动设计:
教师引导学生对图形平移的实质进行探索,帮助学生归纳在平移的过程中点的坐标的变化规律,进而让学生体会坐标的变化对图形的影响.
学生探究坐标系中随着点的平移,其横纵坐标变化规律.
活动4
利用课件“坐标系中平移的特点.swf”和课件“利用直角坐标系研究平移变换规律.gsp”来研究图形平移前后对应点的坐标移动规律.
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,连接这三个点,得到三角形A2B2C2,这个三角形与原三角形ABC在大小、形状和位置上有什么关系?
图4
学生活动设计:
学生自主探索,对于问题(1)(2)不难求出坐标变化后的各点坐标,然后在坐标系内画出相应的三角形即可.观察新的图形与原图形之间的关系,可以发现,它们的大小形状完全相同,三角形A1B1C1相当于是把三角形ABC向左平移6个单位得到的,三角形A2B2C2相当于是把三角形ABC向下平移5个单位得到的,如图5.
学生活动设计
观察课件,思考平移前后对应顶点的横纵坐标变化规律.
学生探究坐标系中随着图形的平移,其横纵坐标变化规律.
活动5
如图4,三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
人教版七年级下册数学全册教材分析及各单元分析【新整理】

人教版七年级下册数学全册教材分析及各单元分析一、全册教材分析七年级下册上接七年级上册4章内容,全书包括6章,共61课时,供七年级下学期使用。
具体内容如下:第五章相交线与平行线(15课时)主要内容:1.两条直线相交所成的角的位置及大小关系(邻补角、对顶角);2.两条直线平行的判定及性质;3.平移及其基本性质。
第六章平面直角坐标系(8课时)主要内容:1.有序数对与平面直角坐标系;2.坐标方法的简单应用。
第七章三角形(9课时)主要内容:1.三角形的边、高、中线和角分线,三角形的稳定性;2.说明三角形内角和等于180成立的道理,三角形的外角及有关结论;3.多边形的有关概念及其内角和。
第八章二元一次方程组(10课时)主要内容:1.二元一次方程组是解决实际问题的一种数学模型;2.二元一次方程组的有关概念,通过消元解二元一次方程组。
第九章不等式与不等式组(13课时)主要内容:1.不等式是解决实际问题的一种数学模型;2.不等式的有关概念及性质;3.一元一次不等式(组)的解法。
第十章实数(6课时)主要内容:1.算数平方根与平方根;2.立方根;3.实数。
一、教科书内容和课程学习目标本册书的6章内容涉及《全日制义务教育数学课程标准(实验稿)》中“数与代数”“空间与图形”“实践与综合应用”三个领域,其中“实践与综合应用”以课题学习的形式安排在第七章和第九章,没有“统计与概率”的内容。
这6章大体上采用相近内容相对集中的方式安排,前三章基本属于“数与代数”领域,后三章基本属于“空间与图形”领域,这样安排有助于加强知识间的纵向联系。
在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。
1.“空间与图形”领域关于“空间与图形”领域的内容,本册书在七年级上册“图形认识初步”基础上,安排了研究平面内两条直线的位置关系、平面直角坐标系及三角形的内容。
平面内两条直线的位置关系是“空间与图形”所要研究的基本问题。
这些内容学生在前两个学段有所接触,第5章“相交线与平行线”在学生已有知识的基础上,继续探究两直线相交所成的邻补角与对顶角的关系;垂直作为两条直线相交的特殊情况,与它有关的概念和结论(如点到直线的距离、垂线段最短等)是学习下一章“平面直角坐标系”的直接基础;平行公理(教科书称“基本事实”)是研究两直线平行的出发点,教科书通过设计一些探究性问题,让学生通过探究活动“发现”两条直线平行的判定与性质,并让学生初步感受推理的作用和意义;本章增加一节新内容“平移”,平移是图形的一种基本变换,平移变换是研究几何问题、发现几何结论的有效手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2 坐标方法的简单应用 第2课时 用坐标表示平移
创设情景 明确目标 如图,一只蜘蛛从A爬到B,双从B爬到C, 你能描述出它在爬行过程中,横坐标和纵 坐标的变化情况吗?
学习目标
1.掌握图形平移与点的坐标变化之间的关系. 2.能在平面直角坐标系中对图形进行平移.
合作探究 达成目标
探究点一 平面直角坐标系中点的平移规律 例1.如图,将点A(-2,-3)向右平移5个单位长度,得到 点A1,在图上标出这个点,并写出它的坐标.观察坐标 的变化,你能从中发现什么规律?把点 A 向上平移 4 个 单位长度呢?把点A向左或向下平移呢?
如何建立平面直角坐标系呢?以何参照点为原 点?如何确定x轴,y轴? 根据题意,小刚家,小强家,小敏家的位置均 是以学校及东西方向、南北方向为参照来描述的, 故选学校位置为原点,以正东方向为x轴正方向,以 正北方向为y轴正方向建立平面直角坐标系.
在画出的平面直角坐标系中,能找出小刚家,小强家, 小敏家的位置,并标明它们的坐标吗? 取适当的单位长度(即图中1 个单位长度代表500 m长),学 生画出平面直角坐标系,标出学 校的位置,即(0,0).则 小刚家(1 500,2 000), 小强家(-1 500,3 500), 小敏家(3 000,-1 750).
探究点一
用坐标表示地理位置
用坐标确定地理位置的关键是什么?同一物体、地 点在不同的平面直角坐标系中是否会发生变化?
用坐标表示地理位置的关键是建立适当的平面直角坐标系,而确定 坐标系的关键是确定原点的位置. 同一物体、地点在不同的平面 直角坐标系中,表示的坐标不同,但其相互间的位置不会变.
探究点二
探究点一
用坐标表示地理位置
思考:用坐标确定地理位置的一般方法是什么?
利用平面直角坐标系绘制区域内一些地点分布情况图的过程如下: 1、建立坐标系,选择一个适当的的参照点为原点,确定x轴,y轴的 方向; 2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 3、在坐标平面内画出这些点,写出个点的坐标和各地点的名称.
思考:再找几个点,对它们进行平移,观察它们的坐标是 否按你发现的规律变化.
探究点一
平面直角坐标系中点的平移规律
说说点或图形的平移引起点的坐标的变化规律?
在平面直角坐标系中,将点(x,y)向右 (或左)平移a个单位长度,可以得到对应点的 坐标是(x+a ,y) 或(x-a ,y) ;将点(x,y) 向上(或下)平移b个单位长度,可以得到对应 点的坐标是(x,y+b)或(x,y-b).
( 第2 题)
3.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平 面直角坐标系画出了公园的景区地图,如图所示,可是她 忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标 为(2,-2),你能帮她求出其他各景点的坐标?
答:音乐台(0,4),湖心亭(-3,2),牡丹园(3,4),望春亭(-2,-1).
7.2 坐标方法的简单应用 第1课时 用坐标表示地理位置
创设情景 明确目标
不管是出差办事,还是出去旅游,人们都愿意带上一幅地 图,它给人们的出行带来了很大的方便.如是,这是北京 市地图的一部分,你知道怎样用坐标表示地理位置吗? 和我们前面学生过的知识有关系吗?
学习目标
1.通过具体事例了解用平面直角坐标系来表 示地理位置的意义. 2.掌握建立适当的直角坐标系描述地理位置 的方法.
探究点二
“方位角+距离”表示平面内点的位置
有哪些方法可以表示平面内物体的地理位置?
一般地,可以建立平面直角坐标,用坐标表示地理位置 ,还可以用方位角和距离表示平面内物体的位置.
总结梳理 内化目标 1. 利用平面直角坐标系来表示地理位置的一 般步骤. 2.表示平面内物体的地理位置的方法.
课后作业
选取学校所在位置为原点,并以正东,正北方 向为x轴、y轴的正方向有什么优点?
选取学校所在位置为原点,并以正东,正北 方向为x轴,y轴正方向,可以容易地写出三位同 学家的位置的坐标.
根据解决问题2的探究,能说说利用平面直角坐 标系描述地理位置的过程吗?其中哪一个环节最关 键?
(1)建立坐标系,选择一个适当的参照点为原 点,确定x轴、y轴的正方向; (2)根据具体问题确定单位长度; (3)在坐标平面内画出这些点,写出各点的坐 标和各个地点的名称. 其中建立适当的平面直角坐标系最关键.
合作探究 达成目标
探究点一 用坐标表示地理位置
根据以下条件画一幅示意图,你能指出学 校和小刚家,小强家,小敏家的位置吗?
小刚家:出校门向东走1 500 m,再向北走 2 000 m.
小强家:出校门向西走2 000 m,再向北走 3 500 m,最后 向东走500 m. 小敏家:出校门向南走1 000 m,再向东走 3 000 m,最后向南走750 m.
如图4,正方形ABCD四个顶点的坐标分别是A(-2, 4),B(-2,3),C(-1,3),D(-1,4),将 正方形ABCD向下平移7个单位长度,再向右平移8个 单位长度,两次平移后四个顶点相应变为点E,F,G, H. (1)点E,F,G,H的坐标分别是什么?
“方位角+距离”表示平面内点的位置
例2 如图,一艘船在A处遇险后向相距35 n mile位于于B 处的救生船报警,如何用方向和距离描述救生船相对于 遇险船的位置?救生船接到报警后准备前往救援,如何 用方向和距离描述遇险船相对于救生船的位置?
答:用北偏东60°,35 n mile就可以确定救生船相对于 遇险船的位置.反过来,用南偏西60°,35 n mile ,就 可以确定遇险船相对于救生船的位置.
1.上交作业:教科书习题7.2第5,6题; 2.课后作业: 见“学生用书”的课后测评案 .
达标检测 反思目标
1.某市有A、B、C、D四个大型超市,分别位于一条东西走向 的平安大路两侧,如图所示,请建立适当的直角坐标系, 并写出四个超市相应的坐标.
2、根据下列条件,在右上方坐标纸中标出学校、工厂、体 育馆、百货商店的位置. ⑴从学校向东走300m,再向北走300m是工厂; ⑵学校向西走100m,再向北走200m是体育馆; ⑶从学校向南走150m,再向东走250m是百货商店.