基本触发器原理
触发器原理

触发器原理
触发器是一种用来存储和控制电位状态的逻辑电路元件。
它可以接收输入信号,并根据触发器的特性产生相应的输
出信号。
触发器的原理基于锁存器和门电路的组合,其中
包括晶体管、集成电路等。
触发器的工作原理主要包括以下几个方面:
1. 反馈环路:触发器中的反馈环路是触发器的核心部分。
通过反馈环路,触发器可以实现存储和控制逻辑电平的功能。
当输入信号满足一定条件时,反馈环路会改变触发器
的状态,并产生输出信号。
2. 门电路:触发器内部通常包含与门、或门、非门等逻辑
门电路。
这些门电路可以根据输入信号的不同组合对触发
器进行控制,从而实现特定的逻辑功能。
3. 时钟信号:大多数触发器都需要一个时钟信号来同步其
状态变化。
触发器根据时钟信号的上升或下降沿改变状态,并在时钟信号边沿到来时产生输出信号。
4. 控制信号:触发器可以通过控制信号来改变其操作模式或功能。
通过控制信号,可以控制触发器的使能、复位、设置、清除等操作,从而满足不同的应用需求。
总之,触发器是一种基于逻辑门电路和反馈环路的存储和控制元件,通过输入信号、时钟信号和控制信号的组合来实现不同的功能。
它广泛应用于数字电路、计算机内存、计数器、寄存器等电子设备中。
单稳态触发器的基本原理

单稳态触发器的基本原理
单稳态触发器是一种具有两个稳态的电子电路,输入一个触发信号时,输出在一段时间内保持在一个稳态,然后恢复到另一个稳态。
基本原理如下:
1. 单稳态触发器由至少一个双稳态器和一个触发器组成。
双稳态器具有两个稳态,分别为Set(置位)和Reset(复位)。
2. 当输入触发信号为高电平时,触发器处于Set稳态,输出为高电平。
当输入信号回到低电平,触发器的状态不会改变。
3. 当输入触发信号为低电平时,触发器处于Reset稳态,输出为低电平。
当输入信号回到高电平,触发器的状态不会改变。
4. 通过根据上述两个稳态的状态转移规则,输入信号的变化会导致触发器状态的切换,从而改变输出信号的状态。
5. 单稳态触发器可以设置一个固定的时间延迟,当输入触发信号改变时,触发器会在一段固定的时间后恢复到另一个稳态。
6. 单稳态触发器的具体实现方式有很多,比如基于门电路的实现(如SR触发器、D触发器等)和基于集成电路的实现(如555定时器等)。
总之,单稳态触发器通过输入信号的变化从一个稳态切换到另一个稳态,以实现一段固定的时间延迟,并输出变化后的信号状态。
基本触发器实验报告

基本触发器实验报告一、实验目的本实验旨在掌握基本触发器的工作原理和使用方法,通过实验验证其稳定性和可靠性。
二、实验原理基本触发器是一种常用的数字电路元件,主要用于存储和传输数字信号。
常见的基本触发器包括RS触发器、D触发器、JK触发器和T触发器。
RS触发器由两个输入端R和S以及两个输出端Q和Q'组成。
当R=0,S=1时,Q=1,Q'=0;当R=1,S=0时,Q=0,Q'=1;当R=S=1时,保持原状态不变;当R=S=0时,禁止状态转换。
D触发器只有一个输入端D和两个输出端Q和Q'。
当D为高电平时,Q为高电平;当D为低电平时,Q为低电平。
JK触发器由三个输入端J、K和CLK以及两个输出端Q和Q'组成。
当CLK上升沿到来时,若J为高电平,则Q取反;若K为高电平,则Q 不变。
当J与K同时为高电平时,则保持原状态不变。
T触发器只有一个输入端T和两个输出端Q和Q'。
当T为高电平时,在CLK上升沿到来时,若Q为低电平,则Q为高电平;若Q为高电平,则Q为低电平。
三、实验器材数字逻辑实验箱、示波器、信号源、多用表等。
四、实验步骤1. 按图连接RS触发器,设置R=0,S=1,观察输出端Q和Q'的变化情况;2. 将R和S接反,设置R=1,S=0,观察输出端Q和Q'的变化情况;3. 将R和S均设为1,观察输出端Q和Q'的变化情况;4. 将R和S均设为0,观察输出端Q和Q'的变化情况;5. 按图连接D触发器,将输入端D接到信号源上,并设置不同的输入信号频率和占空比,观察输出端Q的变化情况;6. 按图连接JK触发器,将J和K接到信号源上,并设置不同的输入信号频率和占空比,观察输出端Q的变化情况;7. 按图连接T触发器,将输入端T接到信号源上,并设置不同的输入信号频率和占空比,观察输出端Q的变化情况。
五、实验结果与分析1. RS触发器:当R=0时,输出端Q为1,Q'=0;当S=0时,输出端Q为0,Q'=1;当R=S=1时,输出端Q和Q'不变;当R=S=0时,输出端Q和Q'保持原状态不变。
jk触发器的工作原理及工作过程

jk触发器的工作原理及工作过程
JK触发器是数字电路中的一种基本触发器,由两个交叉耦合
的门电路组成。
它们的工作原理和工作过程如下:
工作原理:
1. J (Set) 输入信号:当J输入为高电平时,会将Q输出置为高
电平。
2. K (Reset) 输入信号:当K输入为高电平时,会将Q输出置
为低电平。
3. Q 输出信号:JK触发器的输出Q与输入J、K信号以及时
钟信号有关。
4. 时钟信号:时钟信号用于控制JK触发器的工作。
在上升沿
或下降沿(取决于电路的设计)时,JK触发器根据输入信号
的状态更新输出。
工作过程:
1. 初始状态:JK触发器的初始状态由上电时输入信号的状态
确定。
当J=K=0时,Q为先前状态的保持,即保持原来的值。
2. J=1,K=0:当J为高电平而K为低电平时,触发器会被置
入Set状态,即Q被置为高电平。
3. J=0,K=1:当J为低电平而K为高电平时,触发器会被置
入Reset状态,即Q被置为低电平。
4. J=1,K=1:当J和K均为高电平时,触发器处于反转状态。
当时钟信号的边沿到来时,Q的状态将发生改变,即Q的原
始值被翻转。
5. J=0,K=0:当J和K均为低电平时,触发器继续保持前一
个状态,即Q的值不变。
6. 更新输出:无论何时发生状态的改变,输出Q都会立即更新为新的状态。
总结起来,JK触发器根据输入信号和时钟信号的组合,可以实现保持状态、置高状态、置低状态和翻转状态四种操作。
它是许多复杂数字系统以及时序逻辑电路的重要组成部分。
常用触发器的工作原理和结构

常用触发器的工作原理和结构常用触发器是数字电路中常见的一种基本元件,它用来存储和稳定输入信号的状态,并在特定条件下产生输出信号。
常用触发器包括RS触发器、D触发器、JK触发器和T触发器。
本文将详细介绍这些触发器的工作原理和结构。
1.RS触发器:RS触发器是一种简单的触发器,由两个互补反馈的门组成。
它有两个输入端R和S以及两个输出端Q和\(\bar{Q}\)。
当R=0、S=1时,Q=0;当R=1、S=0时,Q=1;当R=S=1时,上一状态保持不变。
RS触发器的结构可以用两个门(通常是与非门)构成。
其中一个门的输入是R和Q,输出是\(\bar{Q}\);另一个门的输入是S和\(\bar{Q}\),输出是Q。
当输入的电平变化时,会通过门电路的逻辑运算,产生输出信号。
2.D触发器:D触发器是一种RS触发器的扩展形式,它只有一个输入端D、一个输出端Q和一个时钟信号端CLK。
D触发器通过时钟信号的输入,对输入信号D进行锁存并在时钟的上升沿或下降沿将锁存的值输出到Q。
D触发器的结构也可以用两个门(与非门和与门)构成。
与非门的输入是D和CLK,输出是\(\bar{Q}\);与门的输入是D和CLK,输出是Q。
当时钟信号变化时,根据输入信号D的电平,通过与非门和与门的逻辑运算,传递输出信号。
3.JK触发器:JK触发器是一种RS触发器的改进形式,它相比于RS触发器可以解决RS触发器由于S和R同时为1时的不稳定状态。
JK触发器有两个输入端J和K,以及两个输出端Q和\(\bar{Q}\)。
当J=0、K=1时,Q=0;当J=1、K=0时,Q=1;当J=K=1时,上一状态取反。
JK触发器的结构可以用两个门(与非门和或门)构成。
与非门的输入是J和Q,输出是\(\bar{Q}\);或门的输入是K和\(\bar{Q}\),还有一个输入是J和K的异或。
当输入信号J和K的电平变化时,通过与非门和或门的逻辑运算,传递输出信号。
4.T触发器:T触发器是一种特殊的JK触发器,其输入端只有一个T(Toggle)信号,以及与JK触发器相同的输出端Q和\(\bar{Q}\)。
基本RS触发器的工作原理

1 G1
1
S
&
Q
1 G1
0
S
&
Q
G2
&
Q
R
0
1
若初态Qn = 1
G2 & R
1
Q
1
若初态 Qn = 0
2) S 0,R 1 ,无论初态Qn为0或1, 触发器都会转变为1态。
0
0
G1
1
S
&
Q
G1
01
S
&
Q
置1端
低电平 有效
G2
&
Q
R
0
1
若初态Qn = 1
G2 & R
Q
01
1
若初态Qn = 0
逻辑功能表分析
基本RS触发器的工作原理
-----数字电子技术基础
触发器功能简介
1.触发器的功能:记忆1位二值信号 它有两个稳定的状态:0状态和1状态; 在不同的输入情况下,它可以被置成0状态或1状态; 当输入信号消失后,所置成的状态能够保持不变。
2.触发器的分类: 根据结构形式的不同,又可分为基本触发器、同步触发
S R Qn
11
0
11
1
01
0
01
1
Q n1
0 1 1 1
S
1
R
0-1-1
Q
对 比! 1
Q
C alculator.lnk
保持 置1
0-1-0
3) S 1,R 0,无论初态Qn为0或1, 触发器都会转变为0态。
置0端
低电平 有效
1 G1
x0
S
基本触发器

一、触发器概述1.基本性质:它有两个稳定的工作状态,一个是“0”态,即输出Q=0,=1;另一个是“1”态,即输出Q=1,=0。
当无外界信号作用时,触发器状态维持不变。
在一定的外界信号作用时,触发器可以从一个稳态翻转到另一个稳态,当外界信号消失后,能保持更新后的状态。
总之,触发器是一种能记忆一位二进制数的存储单元。
由它可以构造计数器、寄存器、移位寄存器等时序逻辑电路。
按结构形式可以分为没有钟控的基本触发器和有钟控的时钟触发器。
按逻辑功能还可以分为RS触发器、D触发器、JK触发器和T触发器。
2.基本RS触发器由两个与非门交叉耦合构成。
逻辑图如图4-1(a)所示,惯用符号如图4-1(b)所示。
工作原理:==1时,不管初态如何,触发器状态将保持不变。
=0,=1时,不管初态如何,门2的输出=1,使门1的输出Q=0,即此时触发器维持“0”态,称为直接置“0”端。
=1,=0时,不管初态如何,门1的输出Q=1,使门2的输出=0,即此时触发器维持“1”态,称为直接置“1”端。
==0时,不管初态如何,两与非门的输出均为“1”,此时的状态称非法状态。
之后,如、变为“1”时,由于翻转速度的差异,触发器的最终状态是无法确定的。
正常工作时不允许出现这种情况。
3.触发器逻辑功能的描述方法通常有功能真值表、特性方程、激励表、状态图及时序图等方法。
功能真值表:以表格的形式反映触发器从初态(接收输入信号前的状态,用表示)向次态(接收输入信号后的状态,用表示)转移的规律,也称状态转移真值表。
特性方程:以表达式的形式反映触发器在输入信号作用下,次态与输入信号初态之间的逻辑关系,它可由真值表推得。
激励表:又称驱动表,用表格的形式反映触发器从一个状态转到另一个状态,所需的输入条件。
可由真值表转换得到,也是真值表的逆关系。
状态图:又称状态转移图。
它是一种以图形的方式描述触发器状态转移与输入信号之间的关系。
它用圆圈表示时序电路的各种状态,用带箭头的直线表示状态转移方向,直线上方表示状态转移的条件。
触发器的原理和类型

触发器的原理和类型触发器是一种用于存储和检测信号状态的部件,它是数字电路中的重要组成部分。
触发器有各种类型和实现方式,其原理和类型既包括基本触发器,如RS触发器、D触发器、JK触发器和T触发器,也包括复杂的触发器,如边沿触发器和级联触发器等。
下面我将详细介绍触发器的原理和各种类型。
触发器的原理:触发器的原理基于电子器件的存储和切换能力,通过控制输入信号和时钟信号的组合,实现数据的存储和传输。
触发器由至少两个稳定的稳态组成,具有一定的存储功能。
当触发器的时钟信号到来时,根据输入信号的状态改变触发器的输出。
触发器的原理可以从两方面来理解。
首先,触发器可以看作是组合逻辑电路和存储元件的结合。
其次,触发器也可以看作是一个时序电路,其输出的稳定状态受到时钟信号的控制。
触发器的类型:触发器的类型很多,以下是常见的几种类型:1. RS触发器:RS触发器是最基本的触发器之一,它由两个交叉连接的非门组成。
它有两个输入端,分别是设置输入(S)和复位输入(R)。
当设置输入为1时,触发器的输出为1;当复位输入为1时,触发器的输出为0;当两个输入都为0时,触发器的输出不变。
RS触发器的特点是可以自锁。
2. D触发器:D触发器是最常用的触发器之一,也是RS触发器的一种变体。
D触发器有一个数据输入(D)和一个时钟输入(CLK),当时钟信号到来时,D触发器将输入数据存储,并且在时钟信号边沿将其传递给输出。
D触发器可以用来实现各种功能,如数据存储、寄存器和移位寄存器等。
3. JK触发器:JK触发器是在RS触发器的基础上发展起来的。
它有两个输入端,即J输入和K输入,和一个时钟输入。
JK触发器的输入方式使其比RS触发器更灵活。
当J为1,K为0时,JK触发器的输出将置1;当J为0,K为1时,JK 触发器的输出将置0;当J和K同时为1时,JK触发器的输出将取反;当J和K 同时为0时,JK触发器的输出不变。
4. T触发器:T触发器是一种特殊的JK触发器,其输入端只有一个T输入和一个时钟输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本触发器原理
基本触发器的工作原理如下:
基本触发器是一种具有记忆功能的基础逻辑电路,它有两个稳定状态,一个暂稳态。
在电路外加脉冲信号的作用下,可以从一个稳态转换到另一个暂稳态状态。
在电路中由RC
延时充放电的作用,该暂稳态保持一段时间后又回到原来的初始状态,暂稳态维持时间由RC的阻值和电容量来决定。
基本触发器的输出脉冲宽度tpo=1.1RC。
Ri Ci构成输入回路的微分环节,用以使输入信号Vi的负脉冲宽度tpi
限制在允许的范围内,一般tpi>5RiCi,通过微分环节,可使Vi'的尖脉冲宽度小于单稳态触发器的输出脉冲宽度tpo。
若是输入信号的负脉冲宽度tpi本来就小于tpo,则微分环节可忽略。