触发器基本原理
d触发器的工作原理

d触发器的工作原理
触发器是一种能够在特定条件下自动执行指定操作的设备或程序。
它可以通过检测输入信号的改变来触发相应的输出动作。
触发器的工作原理主要包括两个方面:输入信号和输出动作。
首先,触发器需要接收输入信号。
输入信号可以来自外界的传感器、开关、计时器等设备,也可以是内部计算机程序的逻辑条件。
当输入信号满足特定条件时,触发器开始工作。
其次,一旦触发条件满足,触发器会执行相应的输出动作。
输出动作可以包括产生一个或多个输出信号、改变设备的状态、触发其他设备的动作等。
输出动作的具体内容和形式取决于触发器的类型和应用场景。
不同类型的触发器有不同的工作原理。
常见的触发器类型包括电子触发器、软件触发器和机械触发器。
电子触发器可以通过集成电路或电子元件的状态改变来触发输出动作。
软件触发器则是通过编程控制来实现触发功能。
机械触发器则是利用机械结构的物理性能来触发输出动作。
总的来说,触发器的工作原理是基于输入信号的改变来自动触发相应的输出动作。
它可以在各种自动化系统和设备中发挥重要作用,提高系统的效率和可靠性。
触发器原理

触发器原理
触发器是一种用来存储和控制电位状态的逻辑电路元件。
它可以接收输入信号,并根据触发器的特性产生相应的输
出信号。
触发器的原理基于锁存器和门电路的组合,其中
包括晶体管、集成电路等。
触发器的工作原理主要包括以下几个方面:
1. 反馈环路:触发器中的反馈环路是触发器的核心部分。
通过反馈环路,触发器可以实现存储和控制逻辑电平的功能。
当输入信号满足一定条件时,反馈环路会改变触发器
的状态,并产生输出信号。
2. 门电路:触发器内部通常包含与门、或门、非门等逻辑
门电路。
这些门电路可以根据输入信号的不同组合对触发
器进行控制,从而实现特定的逻辑功能。
3. 时钟信号:大多数触发器都需要一个时钟信号来同步其
状态变化。
触发器根据时钟信号的上升或下降沿改变状态,并在时钟信号边沿到来时产生输出信号。
4. 控制信号:触发器可以通过控制信号来改变其操作模式或功能。
通过控制信号,可以控制触发器的使能、复位、设置、清除等操作,从而满足不同的应用需求。
总之,触发器是一种基于逻辑门电路和反馈环路的存储和控制元件,通过输入信号、时钟信号和控制信号的组合来实现不同的功能。
它广泛应用于数字电路、计算机内存、计数器、寄存器等电子设备中。
单稳态触发器的基本原理

单稳态触发器的基本原理
单稳态触发器是一种具有两个稳态的电子电路,输入一个触发信号时,输出在一段时间内保持在一个稳态,然后恢复到另一个稳态。
基本原理如下:
1. 单稳态触发器由至少一个双稳态器和一个触发器组成。
双稳态器具有两个稳态,分别为Set(置位)和Reset(复位)。
2. 当输入触发信号为高电平时,触发器处于Set稳态,输出为高电平。
当输入信号回到低电平,触发器的状态不会改变。
3. 当输入触发信号为低电平时,触发器处于Reset稳态,输出为低电平。
当输入信号回到高电平,触发器的状态不会改变。
4. 通过根据上述两个稳态的状态转移规则,输入信号的变化会导致触发器状态的切换,从而改变输出信号的状态。
5. 单稳态触发器可以设置一个固定的时间延迟,当输入触发信号改变时,触发器会在一段固定的时间后恢复到另一个稳态。
6. 单稳态触发器的具体实现方式有很多,比如基于门电路的实现(如SR触发器、D触发器等)和基于集成电路的实现(如555定时器等)。
总之,单稳态触发器通过输入信号的变化从一个稳态切换到另一个稳态,以实现一段固定的时间延迟,并输出变化后的信号状态。
数字电路--触发器原理

2、CP=1时跟随,下降沿到来时才锁存, 锁存的内容是CP下降沿瞬间D的值。
D (b) CP 符号
(二)工作原理:
(a)
将S=D、R=D代入同步SR触发器的特性方程,得D锁存器的特性方程:
Q* S RQ = D+ DQ = D
CP=1期间有效
第五章
• §5.1 概述
• §5.2 SR 锁存器ne NhomakorabeatQ
0
1
Q
S
R
Q 0
1
& &
0
S
1
0
R
①R=0、S=1时:由于R=0,不论原来Q为0还是1,都有Q=1; 再由S=1、Q=1可得Q=0。即不论锁存器原来处于什么状态都 将变成0状态,这种情况称将锁存器置0或复位。 R端称为置0端或复位端。
ok
Q
1
0
Q
S 1
R 0
Q 0 1
&
&
0
1
S
0
1
R
②R=1、S=0时:由于S=0,不论原来Q为0还是1,都有Q=1; 再由R=1、Q=1可得Q=0。即不论锁存器原来处于什么状态都 将变成1状态,这种情况称将锁存器置1或置位。
Q* Q
Q* 0
保持 置0 置1
特 性 表
0 0 1 1 1 1
Q* 1
Q* Q
翻转
主要特点
①主从JK触发器采用主从控制结构,从根本上解决了输入信号直 接控制的问题,具有CP=1期间接收输入信号,CP下降沿到来 时触发翻转的特点。 ②输入信号J、K之间没有约束。 ③存在一次变化问题。
二、触发器的两个基本特点: 1.具有两个稳定状态—0状态和1状态 2.能够接收、保存和输出信号
基本触发器原理

基本触发器原理
基本触发器的工作原理如下:
基本触发器是一种具有记忆功能的基础逻辑电路,它有两个稳定状态,一个暂稳态。
在电路外加脉冲信号的作用下,可以从一个稳态转换到另一个暂稳态状态。
在电路中由RC
延时充放电的作用,该暂稳态保持一段时间后又回到原来的初始状态,暂稳态维持时间由RC的阻值和电容量来决定。
基本触发器的输出脉冲宽度tpo=1.1RC。
Ri Ci构成输入回路的微分环节,用以使输入信号Vi的负脉冲宽度tpi
限制在允许的范围内,一般tpi>5RiCi,通过微分环节,可使Vi'的尖脉冲宽度小于单稳态触发器的输出脉冲宽度tpo。
若是输入信号的负脉冲宽度tpi本来就小于tpo,则微分环节可忽略。
触发器的原理和应用

teacher_id TEACHERS.TID%TYPE;
INSERT_EXIST_TEACHER EXCEPTION;
BEGIN
SELECT TID INTO teacher_id
FROM TEACHERS
WHERE TNAME=new.TNAME;
RAISE INSERT_EXIST_TEACHER;
EXCEPTION --异常处理也可以用在这里
WHEN INSRT_EXIST_TEACHER THEN
INSRT INTO ERROR(TID,ERR)
VALUES(teacher_id,'the teacher already exists!');
创建触发器
创建触发器的语句是CREATE TRGGER,其语法格式如下:
CREATE OR REPLACE TRIGGER<触发器名>
触发条件
触发体
例子:创建触发器 my_trigger
CREATE TRIGGER my_trigger --定义一个触发器my_trigger
1、触发器类型
触发器的类型包括如下三种:
(1)、DML触发器:对表或视图执行DML操作时触发。
(2)、INSTEAD OF触发器:只定义在视图上,用来替换实际的操作语句。
(3)、系统触发器:对数据库系统进行操作(如DDL语句、启动或关闭数据库等系统事件)时触发。
ELSE
info:='Delete';
END IF;
INSERT INTO SQL_INFO VALUES(info); --记录这次操作信息
E发器
触发器实验报告

触发器实验报告一、实验目的1.1 探索触发器的基本原理触发器,简单来说,就是一个能在特定条件下改变状态的电路。
它就像一扇门,只有当你用力去推的时候,才会打开。
我们的目标是搞清楚这些“门”是如何工作的。
1.2 理解触发器在电路中的应用触发器的应用范围可广泛了。
无论是数据存储,还是控制逻辑,触发器都扮演着关键角色。
它们就像是信息的守门员,决定了什么能进,什么得被拒绝。
二、实验设备2.1 实验工具这次实验,我们用的是基本的逻辑电路组件。
包括电源、开关、LED灯,还有万用表。
这些东西就像是我们的小工具箱,缺一不可。
2.2 触发器模块我们选择了D型触发器,因其结构简单,易于理解。
它的工作原理就像是一个小孩的玩具,按一下按钮就会亮灯,放开就灭。
我们把它接入电路,准备好迎接它的“表现”。
2.3 安全措施在进行实验之前,安全可不能马虎。
我们确保电源关闭,检查所有连接,确保一切正常。
毕竟,安全第一,任何小失误都可能引发“大麻烦”。
三、实验过程3.1 连接电路首先,我们根据电路图连接所有元件。
小心翼翼地将电缆接入D型触发器。
电缆像是我们的手,仔细地操控每一个连接。
看到电路成形,心中有种莫名的期待。
3.2 测试触发器一切准备好后,开启电源。
按下开关,LED灯瞬间亮起。
那一刻,仿佛看到了触发器在欢呼。
又按一下,灯灭了,状态变化真是瞬息万变。
就像生活,时刻都在变化,让人惊喜。
3.3 数据记录我们开始记录每次实验的结果。
数据像是我们收集到的“宝藏”,每一组数字都有它的故事。
这种追踪过程,就像是在解谜,寻找背后的秘密。
四、实验结果4.1 状态变化通过几轮实验,我们观察到触发器在不同输入条件下的状态变化。
每一次按下开关,触发器都准确无误地改变状态,表现得相当稳定。
这让我想起一句话:“坚持就是胜利”。
4.2 误差分析当然,实验中也不是没有波折。
偶尔会出现状态不一致的情况。
这就引发了我们的讨论,究竟是接线问题,还是外部干扰。
最终,我们发现是接触不良导致的,改正后,一切恢复正常。
触发器的原理和类型

触发器的原理和类型触发器是一种用于存储和检测信号状态的部件,它是数字电路中的重要组成部分。
触发器有各种类型和实现方式,其原理和类型既包括基本触发器,如RS触发器、D触发器、JK触发器和T触发器,也包括复杂的触发器,如边沿触发器和级联触发器等。
下面我将详细介绍触发器的原理和各种类型。
触发器的原理:触发器的原理基于电子器件的存储和切换能力,通过控制输入信号和时钟信号的组合,实现数据的存储和传输。
触发器由至少两个稳定的稳态组成,具有一定的存储功能。
当触发器的时钟信号到来时,根据输入信号的状态改变触发器的输出。
触发器的原理可以从两方面来理解。
首先,触发器可以看作是组合逻辑电路和存储元件的结合。
其次,触发器也可以看作是一个时序电路,其输出的稳定状态受到时钟信号的控制。
触发器的类型:触发器的类型很多,以下是常见的几种类型:1. RS触发器:RS触发器是最基本的触发器之一,它由两个交叉连接的非门组成。
它有两个输入端,分别是设置输入(S)和复位输入(R)。
当设置输入为1时,触发器的输出为1;当复位输入为1时,触发器的输出为0;当两个输入都为0时,触发器的输出不变。
RS触发器的特点是可以自锁。
2. D触发器:D触发器是最常用的触发器之一,也是RS触发器的一种变体。
D触发器有一个数据输入(D)和一个时钟输入(CLK),当时钟信号到来时,D触发器将输入数据存储,并且在时钟信号边沿将其传递给输出。
D触发器可以用来实现各种功能,如数据存储、寄存器和移位寄存器等。
3. JK触发器:JK触发器是在RS触发器的基础上发展起来的。
它有两个输入端,即J输入和K输入,和一个时钟输入。
JK触发器的输入方式使其比RS触发器更灵活。
当J为1,K为0时,JK触发器的输出将置1;当J为0,K为1时,JK 触发器的输出将置0;当J和K同时为1时,JK触发器的输出将取反;当J和K 同时为0时,JK触发器的输出不变。
4. T触发器:T触发器是一种特殊的JK触发器,其输入端只有一个T输入和一个时钟输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本RS触发器
1 基本RS触发器的工作原理
基本RS触发器的电路如图1(a)所示。
它是由两个与非门,按正反馈方式闭合而成,也可以用两个或非门按正反馈方式闭合而成。
图(b)是基本RS触发器逻辑符号。
基本RS触发器也称为闩锁(Latch)触发器。
(a) (b)
图1 基本RS触发器电路图和逻辑符号
定义A门的一个输入端为Rd 端,低电平有效,称为直接置“0”端,或直接复位端(Reset),此时 Sd 端应为高电平;B门的一个输入端为 Sd 端,称为直接置“1”端,或直接置位端(Set),此时 Rd 端应为高电平。
我们定义一个与非门的输出端为基本RS触发器的输出端Q ,图中为B门的输出端。
另一个与非门的输出端为 Q 端,这两个端头的状态应该相反。
因基本RS触发器的电路是对称的,定义A门的输出端为Q端,还是定义B门的输出端为Q端都是可以的。
一旦Q端确定, Rd和 Sd 端就随之确定,再不能任意更改。
2 两个稳态
这种电路结构,可以形成两个稳态,即
Q =1,Q=0,Q=0,Q =1
当 Q=1时,Q=1和 Rd =1决定了A门的输出,即Q=0 , Q=0反馈回来又保证了Q=1 ;当 Q=0时,Q=1,Q=1和 Sd =1决定了B门的输出,即 Q=0,Q=0又保证了Q =1 。
在没有加入触发信号之前,即 Rd和Sd 端都是高电平,电路的状态不会改变。
3 触发翻转
电路要改变状态必须加入触发信号,因是与非门构成的基本RS触发器,所以,触发信号是低电平有效。
若是由或非门构成的基本RS触发器,触发信号是高电平有效。
Rd和Sd 是一次信号,只能一个一个的加,即它们不能同时为低电平。
在 Rd 端加低电平触发信号,Rd =0,于是Q =1 , Q =1和Sd =1决定了Q=0 ,触发器置“0”。
Rd 是置“0”的触发器信号。
Q=0以后,反馈回来就可以替代Rd =0的作用, Rd=0就可以撤消了。
所以, Rd 不需要长时间保留,是一个触发器信号。
在Sd 端加低电平触发信号,Sd =0,于是Q =1 , Q =1和 Rd =1决定了Q=0 ,触发器置“1”。
但Q=0 反馈回来, Sd =0才可以撤消, Sd是置“1”的触发器信号。
如果是由或非门构成的基本RS触发器,触发信号是高电平有效。
此时直接置“0”端用符号Rd;直接置“1”端用符号Sd。
4 真值表和特征方程
以上过程,可以用真值表来描述,见上表。
表中的Qn和 Qn表示触发器的现在状态,简称现态;Qn+1和Qn+1表示触发器在触发脉冲作用后输出端的新状态,简称次态。
对于新状态Qn+1而言,Qn也称为原状态。
上表真值表表中Qn=Qn+1表示新状态等于原状态,即触发器没有翻转,触发器的状态保持不变。
必须注意的是,一般书上列出的基本RS触发器的真值表中,当 Rd =0、 Sd =0时,Q的状态为任意态。
这是指当 Rd 、Sd 同时撤消时,Q端状态不定。
若当 Rd =0、Sd =0时,Q =1,状态都为“1”,是确定的。
但这一状态违背了触发器Q端和 Q端状态必须相反的规定,是不正常的工作状态。
若Rd 、Sd不同时撤消时,Q端状态是确定的,但若Rd 、Sd同时撤消时,Q端状态是不确定的。
由于与非门响应有延迟,且两个门延迟时间不同,这时哪个门先动做了,触发器就保持该状态,这一点一定不要误解。
但具体可见例1 。
把上表所列逻辑关系写成逻辑函数式,则得到
利用约束条件将上式化简,于是得到特征方程
例1:画出基本RS触发器在给定输入信号 Rd 、和Sd 的作用下,Q端和 Q 端的波形。
输入波形如图2所示。
解:此例题的解答见图2的下半部分。
图2 例1的解答波形图
5 状态转换图
对触发器这样一种时序数字电路,它的逻辑功能的描述除了用真值表外,还可以用状态转换图。
真值表在组合数字电路中已经采用过,而状态转换图在这里是第一次出现。
实际上,状态转换图是真值表的图形化,二者在本质上是一致的,只是表现形式不同而已。
基本RS触发器的状态转换图如图3所示。
图中二个圆圈,其中写有0和1代表了基本RS触发器的两个稳态,状态的转换方向用箭头表示,状态转换的条件标明在箭头的旁边。
从“1”状态转换到“0”状态,为置“0”,对应真值表中的第一行;从“0”状态转换到“1”状态,为置“1”,对应真值表中的第二行;从“0”状态有一个箭头自己闭合,即源于“0”又终止于“0”,对应真值表的第一行置“0”和第三行的保持;从“1”状态有一个箭头自己闭合,即源于
“1”又终止于“1”,对应真值表的第二行置“1”和第三行的保持。
图3 基本RS触发器的状态转换图
6 集成基本RS触发器
(1).TTL集成RS触发器
图4所示TTL集成基本RS触发器74279、74LS279的逻辑电路和引出端功能图。
在一个芯片上,集成了两个如图4(a)所示的电路和两个如图4(b)所示的电路,共4个触发器。
图4 (a)单触发电路 (b)两个触发端电路 (c)引出端功能图
(2).CMOS集成RS触发器CC4043
CC4043中集成了4个基本RS触发器,逻辑符号如图5所示。
图5 CC4043)引出端功能图
同步时钟RS触发器
1 同步时钟触发器引出
基本RS触发器具有置“0”和置“1”的功能,这种功能是由触发信号决定的,什么时刻来 Rd 或Sd 信号就什么时刻置“0”或置“1”。
也就是说Rd 或Sd到来,基本RS触发器随之翻转,这在实际应用中会有许多不便。
在一个由多个触发器构成的电路系统中,各个触发器会有所联系,一旦有一个发生翻转,其它与之连接的触发器会陆续翻转。
这在各触发器的时间关系上难于控制,弄不好会在各触发器的状态转换关系上造成错乱。
为此我们希望有一种这样的触发器,它们在一个称为时钟脉冲信号(Clock Pulse)的控制下翻转,没有CP就不翻转,CP来到后才翻转。
至于翻转成何种状态,则由触发器的数据输入端决定,或根据触发器的真值表决定。
这种在时钟控制下翻转,而翻转后的状态由翻转前数据端的状态决定的触发器,称为时钟触发器。
关注我的微信公众账号,"电路图", 或者微信公众号dialutu, 每周发一到两个最好的精品电路和设计技巧。
(注意dia后面没有n,注册的时候敲错了,腾讯不让改,杯具),扫描右面二维码也可以直接关注。
扫描二维码
关键词:基本触发器原理。