快速成型技术的种类

合集下载

四种常见快速成型技术

四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。

数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。

数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。

第二种常见快速成型技术:熔融塑料成型技术。

熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。

这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。

第三种常见快速成型技术:射出成型技术。

射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。

这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。

第四种常见快速成型技术:热压成型技术。

热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。

该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。

快速成型技术名词解释

快速成型技术名词解释

快速成型技术名词解释快速成型技术是一项技术,它可以使制造业的工人以更快的速度制造出更加精细的产品。

近年来,快速成型技术受到越来越多的注意,应用于各种行业,被广泛用于产品设计和制造。

快速成型技术是由计算机控制的,可以控制机器运动,形成有规律的加工过程,以此实现零件的快速成型。

它主要分为三类:数控加工,三维打印以及机器视觉技术。

数控加工是一种用计算机控制机器,根据3D模型和CAM程序来制造产品的技术。

这种技术有助于实现快速的成型,准确的加工尺寸,低成本,高效的加工过程。

三维打印是一种通过添加一层又一层的材料,利用计算机模型制造物品的技术。

它的优点是快速、正确,可以在非常短的时间内创建出复杂的模型,可以根据需要自由更改模型,减少加工时间,并有效地提高产品质量。

机器视觉技术是一种通过计算机分析图像来实现三维定位的技术。

它可以把机器与环境中的物体联系起来,使机器能够捕获到物体的形状、尺寸、位置等信息,用于快速成型。

在快速成型技术中,数控加工是一种关键技术。

它可以准确控制和执行加工程序,使零件具有更高的一致性,并可以实现更精细、更复杂的加工。

三维打印可以用于制造一些复杂的零件,它可以更有效地制造零件,并且具有非常快的速度。

机器视觉技术则可以实现对被加工零部件的快速、精确的过程检测,以便快速成型。

总的来说,快速成型技术的应用可以提高制造业的生产效率,减少成本,提升产品质量,为制造业提供了一种新的制造模式。

它不仅可以大大提高制造业的生产效率,还可以增强了制造业运作的灵活性,满足当下客户对于快速交付的需求。

快速成型技术的应用不仅有利于提高产品质量,也实现了资源的有效利用,促进了社会的可持续发展。

在未来,将会有更多的应用程序和新的技术出现,更好地满足客户的需求,使制造业更加先进和可持续。

快速成型技术

快速成型技术
目前快速成型机的数据输入主要有两种途径:一是设计人员利用计算机辅助设计软件 (如 Pro /Engineering , SolidWo rks, IDEAS, M DT, Auto CAD等 ) ,根据产品的要求设计三维模型 , 或将已有产品的二维三视图转换为三维模型; 另一种是对已有的实物进行数字化 , 这些实物可 以是手工模型、工艺品等。这些实物的形体信息可以通过三维数字化仪、 CT和 MRI等手段采集 处理 ,然后通过相应的软件将获得的形体信息等数据转化为快速成型机所能接受的输入数据 。
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。

机械设计中的快速成型技术有哪些

机械设计中的快速成型技术有哪些

机械设计中的快速成型技术有哪些在当今的机械设计领域,快速成型技术正发挥着日益重要的作用。

它为设计师和工程师们提供了一种高效、精确且创新的方法来将概念转化为实际的产品模型。

那么,究竟有哪些常见的快速成型技术呢?首先,我们来谈谈 3D 打印技术。

这是目前应用最为广泛的快速成型技术之一。

它通过逐层堆积材料的方式来构建物体。

常见的 3D 打印材料包括塑料、金属、陶瓷等。

根据不同的技术原理,3D 打印又可以分为熔融沉积成型(FDM)、光固化成型(SLA)、选择性激光烧结(SLS)等多种类型。

熔融沉积成型(FDM)是一种相对简单且成本较低的3D 打印技术。

它将丝状的热塑性材料通过加热喷头挤出,按照预定的路径逐层堆积,形成三维物体。

这种技术适用于制作一些对精度要求不是特别高,但需要快速获得原型的产品,比如简单的机械零件、模型等。

光固化成型(SLA)则利用紫外线激光照射液态光敏树脂,使其逐层固化成型。

由于其能够实现较高的精度和光滑的表面质量,常用于制作具有复杂形状和精细结构的零件,如珠宝模具、医疗器械部件等。

选择性激光烧结(SLS)则适用于打印金属、陶瓷等粉末材料。

激光束按照模型的切片信息有选择地烧结粉末,未被烧结的粉末则起到支撑作用。

这种技术能够制造出具有高强度和良好机械性能的零件。

除了 3D 打印,立体光刻技术(Stereolithography)也是一种重要的快速成型方法。

它使用紫外线激光逐层固化液态光敏树脂,从而构建出三维物体。

与 3D 打印中的光固化成型技术相似,但在精度和细节表现上可能更具优势。

还有一种常见的快速成型技术是分层实体制造(LOM)。

它将薄片材料(如纸、塑料薄膜等)逐层粘结在一起,然后通过激光切割或刀具切割出零件的轮廓。

这种技术的优点是成型速度快,适用于制作大型零件的原型。

数控加工(CNC)虽然不是严格意义上的快速成型技术,但在机械设计中也经常被用于快速制造零件。

通过计算机控制机床对材料进行切削、钻孔、铣削等加工操作,可以获得高精度的零件。

快速成型的种类

快速成型的种类

快速成型的种类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(LaserTechnology),例如:光固化成型(SLA)、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(JettingTechnoloy),例如:熔融沉积成型(FDM)、三维印刷(3DP)、多相喷射沉积(MJD)。

下面对其中比较成熟的工艺作简单的介绍。

SLA技术是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。

SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。

成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。

当一层扫描完成后.未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。

SLA方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。

SLA工艺成型的零件精度较高,加工精度一般可达到0.1mm,原材料利用率近100%。

但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

优点:(1)成型过程自动化程度高(2)尺寸精度高。

(3)表面质量优良。

(4)可以制作结构十分复杂的模型。

(5)可以直接制作面向熔模精密铸造的具有中空结构的消失型。

缺点:(1)成型过程中伴随着物理和化学变化,所以制件较易弯曲,需要支撑,(2)设备运转及维护成本较高。

(3)可使用的材料种类较少。

(4)液态树脂具有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性。

快速成型技术概述

快速成型技术概述

和其他几种快速成型方法相比,该方一法也存在着许多缺点。主要有:
三、光固化成型工艺
四、叠层实体制造工艺
叠层实体制造工艺的基本原理
四、叠层实体制造工艺
2.叠层实体制造技术的特点 其主要特点如下: ( 1 )原型精度高。 ( 2 )制件能承受高达200℃ 的温度,有较高的硬度和较好的力学性能,可进行各种切削加工。 ( 3 )无须后固化处理。 ( 4 )无须设计和制作支撑结构。 ( 5 )废料易剥离。 ( 6 )可制作尺寸大的制件。 ( 7 )原材料价格便宜,原型制作成本低。
( 1 )能承受一定高温。 ( 2 )与成型材料不浸润,便于后处理。 ( 3 )具有水溶性或者酸溶性。 ( 4 )具有较低的熔融温度。 ( 5 )流动性要好。
五、熔融沉积快速成型工艺
选择性激光烧结工艺的基本原理
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。
01
1940年,Perera提出相似的方法,即沿轮廓线切割硬纸板,然后堆叠,使这些纸板形成三维地貌图。
02
1964年,Zang进一步细化了该方法,建议用透明的纸板,每一块均带有详细的地貌形态标记。
03
1972年,Matsubara使用光固化材料,光线有选择地投射或扫射到这个板层,将规定的部分硬化,没有扫描或没有一硬化的部分被某种溶剂溶化。
04
五、熔融沉积快速成型工艺
五、熔融沉积快速成型工艺
2.熔融沉积工艺的特点 熔融沉积快速成型工艺之所以被广泛应用,是因为它具有其他成型方法所不具有的许多优点。具体如下: ( 1 )由于采用了热融挤压头的专利技术,使整个系统构造原理和操作简单,维护成本低,系统运行安全。 ( 2)成型速度快。 ( 3 )用蜡成型的零件原型,可以直接用于熔模铸造。 ( 4 )可以成型任意复杂程度的零件。 ( 5 )原材料在成型过程中无化学变化,制件的翘曲变形小。 ( 6 )原材料利用率高,且材料寿命长。 ( 7 )支撑去除简单,无需化学清洗,分离容易。

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。

激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。

接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。

激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。

再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。

最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。

激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。

由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。

二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。

光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将液态光固化树脂均匀地铺在工作台上。

接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。

激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。

再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。

最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。

光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。

速成形与快速模具制造

速成形与快速模具制造

速成形与快速模具制造随着现代制造业的快速发展,传统的模具制造方式已经无法满足市场的需求了。

速成形和快速模具制造成为了新型的制造技术,以其快速、高效、低成本、高质量的特点在现代工业制造中得到了广泛的应用。

一、速成形技术速成形技术,又称为快速成型制造,是一种利用数字化加工技术,在计算机辅助下,采用逐层堆叠的方式对物体进行快速成型的技术。

在此过程中,使用的主要材料是光敏感材料、熔融金属或塑料等,通常又称之为快速制造技术。

针对不同的应用领域,速成形技术主要分为以下几种:1.光固化快速成型技术光固化快速成型技术,简称SLA快速成型技术,是利用光敏性聚合物制作成型件的方法。

该技术需要先将计算机模型进行分层处理,然后通过喷头让光固化材料精确地喷出,逐层堆叠,最终形成立体的零部件。

2.熔融沉积快速成型技术熔融沉积快速成型技术,简称FDM技术,是采用熔融式ABS、PLA等材料,通过利用计算机控制的喷头,将熔化的塑料材料逐层沉积到一起,精确地制作出显微组件,并通过拼接的方式形成具有完整结构的工件。

3.熔融金属快速成型技术熔融金属快速成型技术,简称DMLS技术,是通过合金或金属材料喷射到热点区域,使其熔化形成熔化层,然后通过控制喷头位置逐渐建立3D 几何结构。

最终,采用该技术可制造出由钛合金或不锈钢等金属材料制成的组件和零件。

二、快速模具制造技术快速模具制造技术主要是针对成型模具的快速制造需求而开发的。

与传统工艺相比,快速模具工艺具有快速成型、高效、低成本、高质量等优势,因此在电子、家电、汽车、医疗和航天等行业广受欢迎。

常见的快速成型模具制造技术种类有以下几种:1.电火花加工法快速成型模具制造技术中,电火花加工法是最古老也是最基础的技术。

它采用的原理是高频电火花的腐蚀作用,可以在短时间内快速切削出各种复杂形状的模具,具有制造速度快、精度高、加工表面光洁度高等优点。

2.粉末冶金成型技术粉末冶金成型技术是一种将粉末原料通过冷压成型、保护性烧结等工序制作成3D打印模板的技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速成型技术的种类
快速成型技术是一种以数字化模型为基础,通过逐层堆积材料,实现快速制造物品的技术。

快速成型技术的种类很多,常见的有以下几种:
1. 光固化快速成型技术:通过紫外线或激光束照射光敏树脂,使其固化成所需形状。

2. 喷墨式快速成型技术:通过喷墨头控制液体喷射,将粉末材料逐层喷涂并加固。

3. 熔融沉积式快速成型技术:将金属丝或粉末熔化,通过火焰或电弧喷射,逐层沉积成型。

4. 熔化层压式快速成型技术:将塑料或金属粉末加热或熔化,通过喷嘴或挤出机,逐层堆叠并加固。

5. 粉末烧结式快速成型技术:将粉末压缩成形,然后通过高温处理或激光束烧结,实现快速成型。

以上是常见的几种快速成型技术,它们各有优劣,可以根据具体需求选择合适的技术。

- 1 -。

相关文档
最新文档