实验六 解线性方程组的迭代法

合集下载

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告一、实验目的本次实验旨在深入研究和掌握迭代法求解线性方程组的基本原理和方法,并通过数值实验分析其性能和特点。

具体目标包括:1、理解迭代法的基本思想和迭代公式的推导过程。

2、掌握雅克比(Jacobi)迭代法、高斯赛德尔(GaussSeidel)迭代法和超松弛(SOR)迭代法的算法实现。

3、通过实验比较不同迭代法在求解不同类型线性方程组时的收敛速度和精度。

4、分析迭代法的收敛性条件和影响收敛速度的因素。

二、实验原理1、线性方程组的一般形式对于线性方程组$Ax = b$,其中$A$ 是$n×n$ 的系数矩阵,$x$ 是$n$ 维未知向量,$b$ 是$n$ 维常向量。

2、迭代法的基本思想迭代法是从一个初始向量$x^{(0)}$出发,按照某种迭代公式逐步生成近似解序列$\{x^{(k)}\}$,当迭代次数$k$ 足够大时,$x^{(k)}$逼近方程组的精确解。

3、雅克比迭代法将系数矩阵$A$ 分解为$A = D L U$,其中$D$ 是对角矩阵,$L$ 和$U$ 分别是下三角矩阵和上三角矩阵。

雅克比迭代公式为:$x^{(k+1)}= D^{-1}(b +(L + U)x^{(k)})$。

4、高斯赛德尔迭代法在雅克比迭代法的基础上,每次计算新的分量时立即使用刚得到的最新值,迭代公式为:$x_i^{(k+1)}=(b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i+1}^{n}a_{ij}x_j^{(k)})/a_{ii}$。

5、超松弛迭代法在高斯赛德尔迭代法的基础上引入松弛因子$\omega$,迭代公式为:$x_i^{(k+1)}= x_i^{(k)}+\omega((b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i}^{n}a_{ij}x_j^{(k)})/ a_{ii} x_i^{(k)})$。

解线性方程组的迭代法数值计算上机实习报告

解线性方程组的迭代法数值计算上机实习报告

解线性方程组的迭代法数值计算上机实习报告一.综述:考虑用迭代法求解线性方程组,取真解为,初始向量取为零,以范数为度量工具,取误差指标为.其中。

分别完成下面各小题:第六题:编制程序实现Jacobi迭代方法和Gauss-Seidel 方法。

对应不同的停机标准(例如残量,相邻误差,后验误差停机标准),比较迭代次数以及算法停止时的真实误差。

其中残量准则:、相邻误差准则:后验误差停机准则:解:为了结果的可靠性,这里我分别对矩阵阶数为400、2500、10000进行试验,得到对应不同的方法、取不同的停机标准,迭代次数和真实误差的数据如下:分析上面数据可知,对应不同的停机标准,GS方法的迭代次数都近似为J方法的一半,这与理论分析一致。

而且从迭代次数可以看出,在这个例子中,作为停机标准,最强的依次为后验误差,再到残量,再到相邻误差。

第七题:编写程序实现SOR 迭代方法。

以真实误差作为停机标准,数值观测SOR 迭代方法中松弛因子对迭代次数的影响,找到最佳迭代因子的取值。

解:本题中考虑n=50,即对2500阶的矩阵A。

由于我们已经知道要使SOR方法收敛,松弛因子需要位于。

下面来求SOR方法中对应的最佳松弛因子。

应用筛选法的思想,第一次我们取松弛因子,间距为0.05,得到的对应的图像如下,从图中可以看出迭代次数随着的增大,先减小后变大,这与理论相符。

同时可以看出最佳松弛因子.第二次将区间细分为10份,即取,可得下面第二幅图像,从图像中可以看出最佳松弛因子第八题:对于J 方法,GS方法和(带有最佳松弛因子的)SOR 方法,分别绘制误差下降曲线以及残量的下降曲线(采用对数坐标系),绘制(按真实误差)迭代次数与矩阵阶数倒数的关系;解:对于J方法,考虑n=50时,采用相邻误差为迭代的终止条件,误差下降曲线及残量的下降曲线如下:对于GS方法,考虑n=50的时候,采用相邻误差作为迭代的终止条件,所得到的残量和误差的下降曲线如下图:从中可以看出,当相邻误差满足误差指标时,真实误差却并不小于误差指标,而为2.6281e-04。

数值分析--第6章 解线性方程组的迭代法

数值分析--第6章 解线性方程组的迭代法

数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。

对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。

迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。

故能有效地解一些高阶方程组。

1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。

由不同的计算规则得到不同的迭代法。

迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。

若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。

再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。

kB 称为迭代矩阵。

若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。

本章主要讨论具有这种形式的各种迭代方法。

1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。

定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。

定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。

用Jacobi 迭代法,Gauss-Seidol迭代法求解线性方程组,讨论收敛性

用Jacobi 迭代法,Gauss-Seidol迭代法求解线性方程组,讨论收敛性

2.高斯塞德尔迭代法令M=D-L,A=M-N,得B=(D-L)^-1U=G,G 为高斯塞德尔迭代法的迭代矩阵,得到11111i nk k k ii iij jijjij j i a xa xa xb -++==+=--+∑∑,所以高斯塞德尔计算公式为000012(X ,X ........X )Tn x =,1k ix+=(1111i nk k ij jijji j j i a xa xb -+==+--+∑∑)/ii a ,i=1,2,3.......,k=0,1,2.....【实验问题】用Jacobi 迭代法,Gauss-Seidol 迭代法求解线性方程组,判断收敛性【实验过程与结果】1.理解两种迭代法的计算思想,掌握方法推到计算公式2.用matlab 编程实现3.对实验结果进行分析,比较两种方法,并判断收敛性【结果分析、讨论与结论】两种方法得到的结果一样,雅可比k =17x =-0.1348-1.08293.9203 2.高斯塞德尔k =17x =-0.1348-1.08293.9203【附程序】1.雅可比程序算法function x=jacobi(A,b,x0,tol)n=length(b);x=zeros(n,1);x=x0+1;k=0;while norm(x-x0)>tolif k>20disp('jacobi fails')break;endk=k+1;for i=1:nx0=x;x(i)=(b(i)-A(i,1:n)*x0+A(i,i)*x(i))/A(i,i);endend。

数值分析实验报告--解线性方程组的迭代法及其并行算法

数值分析实验报告--解线性方程组的迭代法及其并行算法

disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项

(精校版)迭代法解线性方程组数值分析实验报告

(精校版)迭代法解线性方程组数值分析实验报告

(完整word版)迭代法解线性方程组-数值分析实验报告编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)迭代法解线性方程组-数值分析实验报告)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)迭代法解线性方程组-数值分析实验报告的全部内容。

数学与计算科学学院《数值分析》课程设计题目:迭代法解线性方程组专业:信息与计算科学学号: 1309302—24姓名:谭孜指导教师:郭兵成绩:二零一六年六月二十日一、前言:(目的和意义)1.实验目的①掌握用迭代法求解线性方程组的基本思想和步骤.②了解雅可比迭代法,高斯—赛德尔法和松弛法在求解方程组过程中的优缺点。

2。

实验意义迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。

迭代法的基本思想是用逐次逼近的方法求解线性方程组。

比较雅可比迭代法,高斯—赛德尔迭代方法和松弛法,举例子说明每种方法的试用范围和优缺点并进行比较.二、数学原理:设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式f Bx x k k +=+)()1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。

对任意的初始向量)0(x ,由式③可求得向量序列∞0)(}{k x ,若*)(lim x x k k =∞→,则*x 就是方程①或方程②的解。

此时迭代公式②是收敛的,否则称为发散的。

构造的迭代公式③是否收敛,取决于迭代矩阵B 的性 1。

雅可比迭代法基本原理设有方程组),,3,2,1(1n i b x a j j nj ij ==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠从式①中第i 个方程中解出x,得其等价形式)(111j nj j ij ii i x a b a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x =,对式②应用迭代法,可建立相应的迭代公式: )(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x…③ 也可记为矩阵形式:J x J k F B x k +==)()1( …④ 若将系数矩阵A 分解为A=D —L-U ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--=--00000000000000111211212211212222111211n n n nn n nn nn n n n n a a a a a a a a a a a a a a a a a a U L D A式中⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000122311312n n n n a a a a a a U 。

第六章 回归问题——线性方程组求解的迭代法

第六章 回归问题——线性方程组求解的迭代法

第六章回归问题——线性方程组求解的迭代法6.1 回归问题6.1.1 问题的引入在数理统计中,把研究对象的全体称为总体,而把组成总体的每个单元称为个体,要了解总体的规律性,必须对其中的个体进行统计观测。

但若对全部个体进行观测,这样能对总体有充分的了解,但实际上行不通,而且也不经济。

所以对整体进行随机抽样观测,再根据抽样观察的结果来推断总体的性质成为一种重要的方法。

许多数理统计建模的实际问题中,一个随机变量与另一个随机变量的关系不是线性关系,而是曲线关系,那么如何确定回归方程呢?下表给出了某种产品每件平均单价y(元)与批量x(件)之间的关系的一组数据,试确定y与x的函数关系。

表6.1.1 已知数据6.1.2 模型的分析先将表6.1.1中的数据进行曲线拟合,然后根据经过拟合的曲线形状确定回归方程的次数。

用MATLAB做出拟合图如下,由下图知,可建立二次回归多项式模型。

图6.1.1 散点图6.1.3 模型的假设假设上表给出的数据是真实的,且以上数据是随机抽取的可以较准确地推断单位与批量的关系,假设单价与批量的函数关系是一个多项式函数,可用多项回归来建立模型。

6.1.4 模型的建立根据模型的分析,可以建立多项式模型22012,(0,)y x x N βββεεδ=+++ ,令212,x x x x ==,则回归方程可写成2201121,(0,)y x x N βββεεδ=+++ ,这是一个二元线性回归模型。

且()T T X X X Y β=,其中:120400 1.18125625 1.70130900 1.651351225 1.551401600 1.481502500 1.40 1603600 1.301654225 1.261704900 1.241755625 1.211806400 1.201908100 1.18X Y ⎡⎤⎡⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢==⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎥⎣⎦⎣012 =ββββ⎤⎥⎥⎥⎥⎥⎥⎥⎡⎤⎥⎢⎥⎥⎢⎥⎥⎢⎥⎣⎦⎥⎥⎥⎥⎥⎢⎥⎢⎥⎦ 6.2 线性方程组迭代法概述迭代法:即用某种极限过程逐步逼近线性方程组精确解的方法。

高斯-赛德尔法--数值分析线性方程组的迭代解法

高斯-赛德尔法--数值分析线性方程组的迭代解法
高斯赛德尔法数值分析线性方程组的迭代解法线性方程组的迭代解法迭代法求解线性方程组高斯赛德尔迭代法高斯赛德尔迭代法原理高斯赛德尔迭代赛德尔迭代法线性方程组的解法pkpm线性方程组解法非线性方程数值解法
实验六、高斯-塞德尔法
一、实验目的
通过本实验学习线性方程组的迭代解法。掌握高斯-赛德尔迭代法编程。
二、计算公式
}
if(k==T)printf("\nNo");
else
printf("\n",k);
for(i=0;i<M;i++)
printf("x(%d)=%15.7f\n",i+1,x[i]);
}
四、例题
书P189页例6:用高斯-塞德尔迭代解线性方程组:
取 使得
#include<math.h>
#define M 3
#define N 4
main()
{
double a[M][N]={{8,-3,2,20},
{4,11,-1,33},
{6,3,12,36},
};
double x[M]={0,0,0};//初值
double r,t,q,eps=0.0000202;//需要精度
if(j!=i)q=q+a[i][j]*x[j];
x[i]=(a[i][N-1]-q)/a[i][i];
if(fabs(x[i]-t)>r)r=fabs(x[i]-t);
}
if(r<eps)break;
printf("\nk=%d,",k);
for(i=0;i<M;i++)
printf("\nx[%d]=%lf",i,x[i]);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 解线性方程组的迭代法
实验6.1(病态的线性方程组的求解)
问题提出:理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?
实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵, n j i j i h h H j i n n j i ,,2,1,,11,)(,, =-+==⨯
这是一个著名的病态问题。

通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。

实验要求:
(1)选择问题的维数为6,分别用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?
(2)逐步增大问题的维数,仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?
(3)讨论病态问题求解的算法。

相关文档
最新文档