蛋白质组学及其主要技术

合集下载

蛋白质组学技术及应用

蛋白质组学技术及应用

蛋白质组学技术及应用在生物学研究中,蛋白质组学已经成为一种有效的手段。

因为蛋白质是生命体内最为重要的功能分子,具有复杂的结构,并且在病理发生过程中起着重要的作用。

因此,了解蛋白质的组成和功能,对于认识生物学的本质和疾病的发生机理都至关重要。

蛋白质组学技术的应用范围涉及医学、生物工程、食品科学等众多领域。

一、蛋白质组学技术蛋白质组学技术是基于对生物样品中全部蛋白质的高通量分析,以生成有关蛋白质组成、富集、表达、结构、功能以及相互作用的信息。

蛋白质组学技术通过蛋白质的翻译后修饰、表达水平、相互作用、位置、结构信息等方面研究细胞及生物体系统的生理功能,从而洞悉细胞及生物体系统的机理和事件。

蛋白质组学技术主要分为以下几种:1. 质谱分析技术。

质谱分析是目前最常用的蛋白质组学分析技术。

其主要利用蛋白质的序列和质量来进行分析。

质谱分析技术又包括MALDI-TOF、ESI-Q-TOF、MALDI-TOF/TOF等方法。

通过质谱分析,可以确定蛋白质序列、修饰以及结构信息,并且对于某些代谢异常、蛋白质变异等情况也能进行定量测定。

2. 电泳分离技术。

电泳分离技术是最早的分离方法之一,其基本原理是根据蛋白质质量与荷电性质的不同,利用电场将蛋白质进行分离。

电泳技术主要包括SDS-PAGE、两级荧光差异凝胶电泳以及等电点聚焦电泳等方法。

通过电泳技术,可以测定和比较不同组织、不同生长条件下蛋白质组成的差异。

3. 免疫分析技术。

免疫分析技术是一种非常灵敏的检测方法,其原理是利用蛋白质的免疫特性对蛋白质进行分析。

免疫分析技术主要包括免疫电泳、ELISA、免疫印迹等方法。

通过免疫分析,可以定量测定蛋白质的富集度和表达水平,用于研究生长条件和疾病状态下蛋白质的变化。

二、蛋白质组学技术的应用1. 蛋白质组学在医学中的应用。

蛋白质组学技术可以用于探测对疾病具有敏感性的分子标志物,比如肿瘤标志物、血管生成因子、免疫调节因子等。

并且,通过对样本的蛋白质组成进行分析可以找出疾病的发生机理,并可以利用蛋白质组学技术对药物的疗效及其副作用进行评估。

蛋白质组学三大基本技术

蛋白质组学三大基本技术

蛋白质组学三大基本技术
1、质谱技术:质谱技术是蛋白质组学中最常用的和最基本的技术,它可以检测和识
别各种生物样品中的蛋白质和其他大分子有机物,从而可以提高研究的准确性,特别是在
研究动态蛋白信号转导及表观遗传因子的时候,质谱技术的应用更加广泛。

质谱技术包括
两种:基于气相法的高级数据库技术,和基于液相法的maldi技术。

质谱技术主要是利用
质谱仪来获取受体上蛋白质结构的数据,然后利用数据库搜索,来识别出蛋白质结构特征
及在受体上的结合状态。

2、SDS-PAGE技术:SDS-PAGE技术是一种蛋白电泳分析技术,它可以分离组成复合蛋
白的每个蛋白质组分,并对蛋白质的组成成分及其特有的分子量进行测定,是一种蛋白质
分类及检测的基础性技术。

SDS-PAGE技术利用聚丙烯酰胺亚胺(SDS)作为为分子内部量均
分剂,可将蛋白链折叠、聚集形成单个分子,然后进行电泳分离操作,在膜隔开一定距离,然后再对所获取到的蛋白分子特征进行识别,以得出它的结构和分子量的信息,进而得出
受体上分子的特征及其功能。

3、免疫淋巴细胞技术:免疫淋巴细胞技术是实验可能性较好、分离效果更好。

它以
电泳分离技术作为分离介质,从新鲜样品中分离出完整的肽盐化药物,可有效地检测及克
隆受体上的蛋白片段及肩膀,进而得出蛋白质组学上受体特征及其功能。

蛋白质组学研究内容和相关技术

蛋白质组学研究内容和相关技术

一、什么是蛋白质组?与基因组差别?蛋白质组学的主要研究内容及技术体系?答:蛋白质组:Proteome,源于蛋白质(protein)与基因组(genome)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。

蛋白质组学本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是由Marc Wilkins 在1994年提出的。

基因组:Genome,一个细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和间隔序列。

可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。

因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。

二者区别:蛋白质组研究和基因组研究依然是形影相随的两个重要领域,它们之间既为互相补充又能互相帮助,但二者之间仍有一些区别:蛋白质组:多样性,无限性,动态性,空间性,互相作用。

基因组:同一性,有限性,静态性,周期性,孤立性。

蛋白质组学的主要研究内容:(1)表达蛋白质组学(expressionproteomics):是对蛋白质组表达模式的研究,即检测细胞、组织中的蛋白质,建立蛋白质定量表达图谱,或扫描表达序列(EST)图谱。

在整个蛋白质组水平上提供了研究细胞通路、疾病、药物相互作用和一些生物刺激引起的功能紊乱的可能性,对寻找疾病诊断标志、筛选药物靶点、毒理学研究等具有重要作用。

(2)细胞图谱蛋白质组学(cellmapproteomocis):是对蛋白质组功能模式的研究,即确定蛋白质在亚细胞结构中的位置和鉴定蛋白质复合物组成等,便于研究蛋白质在细胞内的行为、运输及蛋白质相互作用网络关系,它对确定蛋白质功能和疾病诊疗的靶位极有价值。

蛋白质组学技术体系:(1)蛋白质组学分离技术,在整个蛋白质组学的研究中,分离技术是最基础的部分。

蛋白质组学及技术介绍PPT通用课件.ppt

蛋白质组学及技术介绍PPT通用课件.ppt
拖尾"point streaking") 。
3.二相SDS-PAGE
丙烯酰胺/甲叉双丙烯 酰胺溶液
分离胶缓冲液
10%(w/v)过硫酸铵 溶液
(30.8%T,2.6%C):30%(W/V)丙烯酰胺和 0.8%甲叉双丙烯酰胺的水溶 液。将 300g 丙烯酰胺和 8g 甲叉双丙烯酰胺溶解于去离子水中,最后用去离
研究 内容
蛋白质的研究内容主要有两方面:
1、结构蛋白质组学:主要是蛋白质表达模型的研究,包括蛋白质氨基酸序列 分析及空间结构的解析种类分析及数量确定; 2、功能蛋白质组学:主要是蛋白质功能模式的研究,包括蛋白质功能及蛋白 质间的相互作用。
研究 内容
蛋白质组学可分为三个主要领域: 1、蛋白质的微特性以供蛋白质的规模化鉴定和他们的后翻译饰; 2、“差异显示”蛋白质组学供蛋白质水平与疾病在广泛范围的有力应用比 较; 3、应用特定的分析技术如质谱法(包括串联质谱法、生物质谱法)或酵母 双杂交系统以及其他蛋白质组学研究新技术研究蛋白质-蛋白质相互作用。
该方法所研究的蛋白均是在体内经过翻译后修饰的,并且是可 分离的天然状态的相互作用蛋白复合物,能够反映正常生理条件下的 蛋白质间相互作用
蛋白质相互作用
2、酵母双杂交系统:
该系统利用真核细胞调控转录起始过程中,DN A结合结构域(binding domain,BD)识别DNA上的特异序列并使转录激活结构域(activation domain, AD)启动所调节的基因的转录这一原理,将己知蛋白X和待研究蛋白Y的基 因分别与编码AD和BD的序列结合,通过载体质粒转入同一酵母细胞中表 达,生成两个融合蛋白。若蛋白X和Y可以相互作用,则AD和BD在空间上 接近就能形成完整的有活性的转录因子,进而启动转录,表达相应的报告 基因;反之,如果X和Y之间不存在相互作用,报告基因就不会表达。这样, 通过报告基因的表达与否,便可确定是否发生了蛋白质的相互作用。

《蛋白质组研究技术》课件

《蛋白质组研究技术》课件
纯化得到相互作用蛋白。
酵母双杂交技术
利用酵母细胞表达的蛋白与待测蛋白 进行相互作用,筛选出与待测蛋白相 互作用的蛋白。
串联亲和纯化技术
将待测蛋白与其相互作用蛋白一起纯 化下来,再通过分离纯化得到相互作 用蛋白。
03 蛋白质组学在生物医学中 的应用
疾病标志物发现
疾病诊断
通过蛋白质组学技术,发现与疾病相关的特异性蛋白质标志物,有助于疾病的早 期诊断和预后评估。
电泳技术
利用蛋白质在电场中的迁移率不同,将蛋白质分 离成不同的条带。
蛋白质芯片技术
将蛋白质固定在芯片上,通过与待测蛋白质的相 互作用,实现对蛋白质的筛选和检测。
蛋白质鉴定技术
蛋白质鉴定技术
利用各种技术手段对分离得到的蛋白 质进行鉴定,确定其氨基酸序列和分 子量等信息。
氨基酸序列分析
通过测定蛋白质中氨基酸的排列顺序 ,确定蛋白质的种类和来源。
未来发展趋势与展望
技术创新
未来蛋白质组学技术将继续创新 ,如高通量、高灵敏度、高分辨 率的蛋白质检测技术。
跨学科融合
蛋白质组学将与生物信息学、计 算生物学等学科进一步融合,实 现多维度、多层次的数据分析。
临床应用拓展
随着技术的进步和应用研究的深 入,蛋白质组学将在临床诊断、 治疗和药物研发等方面发挥更大 的作用。
分子量测定
利用质谱等技术手段测定蛋白质的分 子量,以验证蛋白质鉴定的准确性。
免疫学检测
利用特异性抗体对蛋白质进行检测和 识别,具有高灵敏度和特异性。
蛋白质功能研究技术
蛋白质功能研究技术
通过各种手段研究蛋白质在生物体内的功能 和作用机制。
细胞生物学技术
通过观察蛋白质在细胞内的定位、分布和动 态变化,研究其功能和作用机制。

蛋白质组学三大基本技术

蛋白质组学三大基本技术

蛋白质组学三大基本技术
蛋白质组学是一种研究蛋白质结构和功能的科学,它为研究蛋白质及其相互作用提供了一种有效的手段。

蛋白质组学的基本技术主要有质谱分析、电泳分析和免疫分析三种。

质谱分析是蛋白质组学中最重要的技术,它可以确定蛋白质的结构和物质组成,以及蛋白质之间的相互作用。

质谱分析主要通过电喷雾电离和高能质谱来确定蛋白质的结构和物质组成,从而可以研究蛋白质的自由基反应和结合反应。

电泳分析是蛋白质组学中另一重要的技术,它可以用来检测蛋白质的结构和特性。

电泳分析主要通过静电层析、交叉层析、离子交换层析、聚焦层析等手段来研究蛋白质的结构和特性,从而可以研究蛋白质的分子量、组成以及与其他蛋白质之间的相互作用。

免疫分析是蛋白质组学中最后一项基本技术,它可以用来研究蛋白质的抗原性和抗体识别特性。

免疫分析通常通过免疫印迹、免疫沉淀、免疫荧光和免疫质谱等方法,来检测蛋白质的抗原性和抗体识别特性,从而研究蛋白质的结构和功能。

总之,蛋白质组学的基本技术包括质谱分析、电泳分析和免疫分析三种,它们可以帮助我们研究蛋白质的结构和功能,为蛋白质组学的研究提供了重要的技术支持。

蛋白质组学及技术介绍

蛋白质组学及技术介绍

蛋白质组学及技术介绍蛋白质组学是研究细胞、组织和生物体中蛋白质产生、结构、功能以及相互作用的一门科学。

蛋白质是生物体中最重要的有机物之一,扮演着许多生理和生化过程的关键角色。

蛋白质组学的目标是通过大规模研究蛋白质的组成、结构和功能,深入了解生物体的调控机制和疾病的发生发展规律。

蛋白质组学的研究内容包括蛋白质的鉴定、分类、结构分析、表达调控、功能研究等。

与基因组学类似,蛋白质组学也具有高通量、全面性、定量性等特点。

蛋白质组学研究可以帮助科学家在生物体水平上揭示生物的基本功能,并揭示蛋白质在各种生理和病理过程中的重要作用。

1.蛋白质分离技术:蛋白质组学研究需要从复杂样品中分离目标蛋白质。

常用的蛋白质分离方法有SDS-、二维电泳等。

其中,二维电泳是一种常用的高分离效果的方法,可以将蛋白质根据等电点和分子量进行分离,更好地了解蛋白质组成。

2.质谱法:质谱法是蛋白质组学研究中最重要的技术之一、质谱法可以用来鉴定蛋白质的氨基酸序列、确定修饰位点、测定蛋白质的分子量等。

常用的质谱方法包括MALDI-TOF、ESI-MS等。

3. 蛋白质组分析软件:蛋白质组学研究得到的大量数据需要通过蛋白质组分析软件进行处理和分析。

这些软件可以对质谱数据进行解析、蛋白质鉴定和定量分析等。

常用的分析软件包括Mascot、MaxQuant等。

4.蛋白质相互作用研究技术:蛋白质在生物体内通常与其他蛋白质相互作用,形成复杂的蛋白质网络。

蛋白质相互作用研究技术可以帮助科学家了解蛋白质在细胞内的功能调控机制。

常用的蛋白质相互作用研究技术有酵母双杂交、蛋白质亲和纯化、共免疫沉淀等。

5.大规模蛋白质组测定技术:蛋白质组学研究需要同时分析大量的蛋白质样品。

目前,已经发展出了很多高通量、全面性的蛋白质组测定技术,如蛋白质芯片技术、TMT标记质谱技术等。

这些技术可以同时分析大量样品,提高研究效率。

总之,蛋白质组学及其相关技术在生物学、生物医学研究中具有重要的地位和应用前景。

蛋白质组学及其主要研究方法

蛋白质组学及其主要研究方法

蛋白质组学及其主要研究方法摘要:蛋白质组学是对机体、组织或细胞的全部蛋白质的表达和功能模式进行研究。

蛋白质组是动态的,随内外界刺激而变化,对蛋白质组的研究可以使我们更容易接近对生命过程的认识。

本文就蛋白质组学研究所使用的主要技术如二维凝胶电泳、质谱、酵母双杂交系统、生物信息学等进行了相关综述。

关键词:蛋白质组学;双向凝胶电泳;质谱;酵母双杂交;生物信息学Proteomics and its main research techniquesAbstract:Proteomics aims at the analysis and identification of entire proteins present in the cell tissue or the organism, and of the functions and the linkage of these proteins.the proteome of an organism is dynamic.It changes with the intro and outer stimulus.The study on proteomics can make us easily know how the vital progress goes. The article will introduce these tech-niques of proteomics such as two-dimensional gel electrophoresis、mass spectrometry、two-hybrid system and bioinformatics etc.Key words: Proteomics;Two-dimensional gel electrophoresis;Mass spectrometry;Two-hybrid system; Bioinformatics众所周知,始于20世纪90年代初的庞大的人类基因组计划业已取得了巨大的成就,人类基因组序列草图已经绘制完成[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质组学及其主要技术朱红1 周海涛2 (综述) 何春涤1, (审校)(1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学科,广东深圳518036)【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。

蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。

目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。

本文就蛋白质组学概念及主要技术进行综述。

【关键词】蛋白质组,蛋白质组学1蛋白质组学的概念随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。

从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。

蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。

因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。

蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。

蛋白质组学有两种研究策略。

一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。

但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。

另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。

2蛋白质组学的常用技术2.1样品的制备和蛋白质的分离技术2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。

激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。

尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。

2.1.2蛋白质的分离技术①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。

第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。

较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。

IPG胶实验的重复性好。

第二向为十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-polyacrylamide gel electrophoresis,SDS-PAGE),它是按蛋白质分子量的大小进行分离,双向电泳的最新进展是用IPG干胶条代替两性电解质加上与干胶条相配套的电泳仪如PROTEAN IEF Cell、IPG-phort等进行第一向等电聚焦[7,8],不仅极大地提高了电泳的分辨率,也提高了结果的重复性,尤其是不同实验室之间结果的可比性。

2-DE最大的应用是能分离相同分子量的同分异构体以及经过翻译后修饰的蛋白质,蛋白质经过诸如磷酸化后,其电荷数量发生改变。

通常蛋白质的磷酸化形式可以与未磷酸化的对应物分离开,在双向电泳胶上出现一串水平斑点。

虽然该技术不断的发展,依然存在一些不足: 疏水性强及强酸强碱性蛋白质无法用2-DE 进行检测、低拷贝的蛋白质很难被检测到、检测分子量有一定范围、样品上样量相对少使得检测的灵敏度受到限制。

而且电泳结果需染色处理,而不同蛋白质与染料的结合差异较大。

另外该技术尚不能完全自动化,消耗时间长。

最近发展起来的差异凝胶电泳(Differences gel electrophore-sis)[9]是将两种蛋白质样品分别用不同的染料进行荧光标记,混合后在一块胶上进行双向电泳。

因此,该技术可用于蛋白质的差异鉴定,尤其是用于大样本实验。

②毛细管电泳(Capillary electrophoresis,CE): CE是20 世纪80 年代由Joenson 和Lukacs 提出的高效分离分析技术。

即在高电场强度作用下,对毛细管(内径5~10 μm) 中的待测样品按分子质量、电荷、电泳迁移率等差异进行有效分离。

主要包括毛细管区带电泳、毛细管等电聚焦和筛板SDS-毛细管电泳。

该技术弥补了双向凝胶电泳无法实现自动化分析的不足,并可用于分子量范围不适用于双向电泳样品的检测,对单一样品尤为适用,但对复杂样品的分离尚不完全[10]。

③高效液相色谱(High performance liquid chromatography, HPLC):HPLC适用于单一蛋白质或简单样品蛋白质组的分离与纯化。

它与质谱结合,利用蛋白质等电点、疏水性和分子量的特性进行蛋白质分离鉴定,借助计算机联机检索,实现蛋白质分离鉴定一次完成,能满足高通量、自动化分析的要求。

与双向电泳比较,操作简单、速度快且灵敏度高。

但由于一维的HPLC仅能分析一些不太复杂的蛋白质体系,而对复杂的多肽混合物常不能满足分离的要求。

利用蛋白质不同特性,用多个分离柱对蛋白质进行多次高效液相分离的多维色谱(multi-LC)分离的方法在某种程度上满足了对复杂蛋白质混合分离鉴定的要求,常用于膜蛋白及低丰度蛋白质的分离鉴定[11]。

2.2蛋白质的检测与图像分析蛋白质样品经双向电泳分离后,首先要经过染色再进行图像分析。

常用方法有考马斯亮蓝染色、银染色。

考马斯亮蓝染色因简单易行而常用,但灵敏度低。

银染的机制是将蛋白带上的硝酸银(银离子)还原成金属银,以使银颗粒沉积在蛋白带上。

其灵敏度比考马斯亮蓝染色高100倍,可以检测小至0.38 ng/mm2的牛血清白蛋白,但操作复杂,动态线性关系不明显,某些蛋白染色不明显甚至不染色。

其他的方法也可以在特定情况下使用,包括 [35S]蛋氨酸或14C放射性标记,胶质金、锌咪唑、丽春红、氨基黑及印度红染色等。

尽管蛋白质染色方法可以进行蛋白质的定量分析,但不能在一个广泛的浓度、等电点和氨基酸范围内进行蛋白质检测,尤其是对于大量翻译后修饰的蛋白质。

凝胶经过染色并显色后,通过专用扫描仪,将图像扫入计算机内,用特定分析软件进行分析,得到各个蛋白质点的相关数据(pI、分子量、密度等),然后对感兴趣的蛋白质点进行鉴定。

2.3蛋白质的鉴定2.3.1肽质量指纹谱(peptide mass fingerprinting, PMF)技术指蛋白质被酶切位点专一的蛋白酶水解后,由于每种蛋白质的氨基酸序列不同,产生的肽片段序列也不同,其肽混合物的质量具有特征性,得到肽片段质量图谱,称为肽质量指纹谱,可用于蛋白质的鉴定。

基质辅助激光解吸电离飞行时间质谱(Matrix assistedlaser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF-MS) 是一种常用的取得蛋白质PMF测定方法。

基本原理是:将大分子待测样品与基质混合,通过基质分子吸收激光能量,转化为系统的激发能,导致大分子样品的电离和气化,生成的离子在真空无场区飞行并到达检测器,不同荷质比的离子到达检测器的时间不同从而得到该蛋白质PMF[12]。

实验所得肽谱数据与数据库进行匹配,再采用一定的方法对匹配结果进行打分和排序,最后根据分值高低而确定所测的蛋白质[13,14]。

该法灵敏度高,是大规模鉴定蛋白质的首选方法。

2.3.2同位素标记亲和标签(Isotope coded affinity tages, ICAT)鉴定蛋白质技术ICAT是一种人工合成的化学试剂,由三个功能区域:半胱氨酸反应区、8个H或2H的连接子和有亲和标签作用的生物素形成8个Da质量差异的亲和标签。

实验时,两种不同细胞状态的蛋白质样品分别用不同的ICAT标记,等量混合并用蛋白酶消化,经过生物素亲和层析进行分离,标记的多肽由于生物素的作用被吸附下来,经过液相色谱-质谱(LC-MS)或液相色谱-串联质谱(LC-MS/MS)分析,经不同ICAT标记的相同肽段一前一后相邻分布在MS图谱上,经计算机数据库查询,得到在不同细胞状态下蛋白质的表达差异。

该技术灵敏度及准确度均很高,主要用于研究蛋白质组差异,能够快速定性和定量鉴定多肽和翻译后修饰蛋白质、低丰度蛋白质,尤其是膜蛋白等疏水性蛋白[15]。

但该技术只能对含半胱氨酸残基的蛋白质进行分析;ICAT分子量约为500 Da,相对肽段来讲是一个很大的修饰物,增加了数据库搜索的难度;而且操作的步骤较多,对精确的定量分析有影响。

2.3.3肽序列标签(Peptide sequence tag, PST)技术蛋白质由20种氨基酸组成,5~6个氨基酸残基的序列片段在一个蛋白质组成中具有很高的特异性,这个片段称为PST,可用于蛋白质鉴定。

色谱串联质谱(LC-MS/MS)及液相色谱-电喷雾-串联质谱(LC-ESI-MS/MS)能够检测离子结构碎片的质荷比及提供离子的结构信息,即得到肽段的分子量及部分PST信息,最后通过计算机联网查询,其信息在数据库查询中特异性更强,最后可对该蛋白质进行鉴定。

该技术自动化程度高、重复性好,尤其是它能够分离鉴定低丰度蛋白质。

2.3.4蛋白质芯片(Protein chips)技术是指以蛋白质分子作为配基,将其固定在固相载体的表面,形成的蛋白质微阵列(Protein microarray) 。

一个蛋白质芯片可以容纳一个蛋白质家族所有成员或一种蛋白质的所有变异体。

根据检测目的不同,作为配基的蛋白质分子可以是酶、受体、抗原、抗体或抗体片断等。

蛋白质芯片技术主要包括蛋白质微阵列的构建、样品的制备、芯片生化反应、信号检测及分析。

实验时,将带有特殊标记的蛋白质分子与芯片反应,探针捕获样品中的待测蛋白质并与之结合,然后通过检测器对标记物进行检测,计算机分析出待测样品的结果。

相关文档
最新文档