实验二 三极管基本放大电路
模电实验2三极管共射极放大电路

T:9013(NPN);RP=10K;
R1=15K、R2=3K、Re=2K、
Rc=3K、RL=3K、Rs=5K1;
C1=10μF、C2=10μF、Ce=100μF。 CHENLI
13
三、实验电路图
VCC
Rw1 R5 C3
S R1 H C1
R3
ICQ
υs
K
R2
R4 Rw2
R6
C2υo
R
R7
L
Ri
共射极放大C电HE路NLI
三极管共射极放大电路
CHENLI
1
一、实验目的
1. 学习共射放大电路的设计方法、安装与调试技术; 2. 掌握放大器静态工作点的测量与调整方法,了解在不
同偏置条件下静态工作点对放大器性能的影响; 3. 学习放大电路的电压放大倍数、输入电阻、输出电阻
及频率特性等性能指标的测试方法; 4. 了解静态工作点与输出波形失真的关系,掌握最大不
调试电路如图所示。图中Rs 为已知外接电阻,用交流毫
伏表分别测出Us和Ui,然后根据下式可求得放大电路的
Ro14
CHENLI
15
四、实验内容
1. 静态工作点的调整和测量 2. RL=∞及RL=3K时,电压放大倍数的测量 3. 输入电阻和输出电阻的测量 4. 放大电路上限频率fH、下限频率fL的测量 5. 观察静态工作点对输出波形的影响
CHENLI
16
1. 静态工作点的调整和测量
1. 按所设计的放大器的元件参数焊接电路,根据电路原 理图仔细检查电路的完整性和焊接质量。
即UCE=1/2×UC或IC=1/2×ICS。 (ICS为集电极饱和电流,ICS≈UC/RC)。 这样便可获得较大输出动态范围。当放大器输出端
(中职)2-2 三极管基本放大电路 ppt课件

1.放大电路中各元件的作用
(1) V :三极管,起电流放大作用,是放大电路的核心器件。
(2)V CC :直流电源,有两个作用。一是为三极管的发射结提供正偏电压和为集电
结提供反偏电压,保证三极管工作于放大区;二是给放大电路提供能源。
(3) R b :基极偏置电阻,使发射结获得正偏置电压,向三极管的基极提供合适的
2.放大电路中电压、电流符号的规定
在放大电路中,既有输入信号源 v i 产生的交流量,又有直流电源 V CC 产生的直流量。
因此,为了避免电路分析时出现符号上的混淆,特作如下规定:
(1)大写物理量符号加大写下标,表示直流信号。如 I B 表示基极直流电流。
(2)小写物理量符号加小写下标,表示交流信号。如 i b 表示基极交流电流。
【教学难点】
1.基本共射极放大电路放大信号的工作原理。 2.三种放大电路的电路结构及(中性职能)2比-2较三。极管基本放大电路 ppt
课件
2.2.1 基本共射放大电路 2.2.2 小信号放大器的主要性能指标 ﹡ 2.2.3 三种基本放大电路的性能比较
(中职)2-2 三极管基本放大电路 ppt 课件
(3)小写物理量符号加大写下标,表示交流和直流叠加信号。如 iB IB ib 表示
基极电流的总和。
(4)大写物理量符号加小写下标,表示交流信号的有效值。如 I b 表示基极交流电
流的有效值。
(中职)2-2 三极管基本放大电路 ppt 课件
3.放大电路的工作原理
放大电路在未加输入信号时( vi 0 )的工作状态称为静态。此时,三极管
各电极上只有直流电压和直流电流,称其为三极管的静态工作点,用下标Q表示,
如 V BEQ 、I BQ 、V CEQ 、 I CQ 。
三极管及基本放大电路教案

三极管及基本放大电路教案课程名称:三极管及基本放大电路课程时长:2小时课程对象:高中物理学生教学目标:1.了解三极管的基本结构和工作原理。
2.理解三极管的放大特性和应用。
3.掌握基本放大电路的设计和计算方法。
教学准备:1.三极管和相关电路的实物模型。
2. PowerPoint演示文稿。
3.实验器材和电路板。
教学过程:Step 1: 引入(10分钟)a.向学生解释现在我们要学习的内容:三极管及其在基本放大电路中的应用。
b.显示三极管的实物模型,并解释它的基本结构。
c.引导学生思考:三极管是如何工作的?我们为什么要学习它?Step 2: 三极管的工作原理(20分钟)a. 使用PowerPoint演示文稿,详细解释三极管的工作原理,包括发射极、基极和集电极之间的关系。
b.引导学生观察示意图,并帮助学生理解电流流动的过程。
c.通过演示实物模型,展示三极管的工作原理。
Step 3: 三极管的放大特性(20分钟)a.解释三极管的放大特性,包括电压放大系数、电流放大系数和功率放大系数。
b.使用示意图和示波器显示放大效果,帮助学生更好地理解放大特性。
Step 4: 三极管基本放大电路设计(30分钟)a.介绍基本放大电路的种类,如共射放大电路、共基放大电路和共集放大电路。
b. 使用PowerPoint演示文稿和实物模型,逐步讲解这些电路的特点和设计方法。
c.通过示波器演示放大效果,让学生亲自动手设计和制作一个基本放大电路。
Step 5: 实验演示(20分钟)a.分发实验器材和电路板,组织学生进行实验演示。
b.引导学生观察实验现象,记录数据,并帮助学生分析实验结果。
Step 6: 总结与提问(10分钟)a.对本节课的内容进行总结,并再次强调三极管的重要性和应用。
b.提问学生关于三极管和基本放大电路的问题,并进行讨论。
课后作业:1.复习本节课内容,整理笔记。
2.阅读相关教科书内容,进一步理解三极管的工作原理和应用。
3.设计一个简单的基本放大电路,并计算电流和电压放大系数。
实验二基本放大电路的研究

六 实验报告要求
整理实验数据,列表进行必要的计算, 画出必要的曲线。
讨论Rw、Rc的变化对静态工作点、 电压增益及输出波形的影响。 分析比较实测值与理论值。 分析放大器输出波形失真的原因,
提出解决的办法。
七 思考题
1.如何调节最佳静态工作点? 2.当图3-3-1中电容 CE 去掉后,静态工作 点是否受到影响?电压放大倍数呢?为什么? 3.测通频带时,怎样测量最方便? 4.输出端接负载RL后,静态工作点、电压 增益是否受到影响?
2调节r5mv的正弦信号电压观察输出波形在不失真的条件下测量输出电压u观察输出波形的变化再分别测出相应的静态工作点i5用晶体管图示仪或数字万用表测量三极管的电流放大倍数从理论上估计a12rw工作点测量值uiuoauicqucqubqueq实测值理论值正常值2ma5mv最大值输出波形最小值输出波形13基本放大电路通频带幅频特性的测量1电路的静态工作点恢复至icq2ma保持输入信号幅度5mv不变确定flkhz时的输出电压uo或电压放大倍数
静态工作点的调整
实验电路为分压式偏置共发射极电路,原理如 图3-3-1所示。为使电路正常工作须设置合适的静态 工作点。影响工作点的因素很多,当晶体管T确定后, 电源电压UCC的变动、集电极负载RC的改变、基极 电流 IB 的变化都会影响工作点Q。一般通过调节上 偏置电阻 RW 大小来调整静态工作点。
三 基本原理
阻容耦合放大器是多级放大器中最常见的一种放大 电路,为使放大器能正常工作而不产生非线性失真, 必须设置合适的静态工作点。静态工作点Q设三极管 输入特性线性部分,同时,使Q点位于输出特性的 放大区,当输入信号变化时,工作点始终在放大区 内,且要求所设置的静态工作点保持稳定, 即不随外界因素的变化而变化。
晶体三极管及基本放大电路PPT

四、三极管器件手册的使用
三极管的类型非常多,从晶体管手册可以查找到三极管的型号,主要用途、主
要参数和器件外形等,这些技术资料是正确使用三极管的依据。
1.三极管型号
国产三极管的型号由五部分组成。
第一部分是数字“3”,表示三极管。 第二部分是用拼音字母表示管子的材料和极
性。 A——PNP锗材料,B——NPN锗材料, C——PNP硅材料,D——NPN硅材料。
电流iB经放大后获得对应的集电极电流iC,如图(d)所示。集—射极电压vCE 波形与输出电流iC变化情况相反,如图(e)所示。 vCE经耦合电容C2隔离直流成分 ,输出的只是放大信号的交流成分vo,波形如图(f)所示。
放大电路的电压和电流波形
第三节 放大电路的分析方法
一、主要性能指标 1.放大倍数 电压放大倍数
在实际放大电路中,除了共发射极联接方式外,还有共集电极和共基极联接方 式。
共发射极接法
共基极接法
共集电极接法
三、三极管的特性曲线 1.输人特性曲线
输人特性曲线是反映三极管输人回路电压和电流关系的曲线,它是在输出电压 VCE为定值时,iB与vBE对应关系的曲线。
当输入电压vBE较小时,基极电流iB很
第一节 晶体三极管
晶体三极管是一种利用输入电流控制输出电流的电流控制型器件,它由两个PN 结构成,在电路中主要作为放大和开关元件使用。
一、结构与分类
1.外形
近年来生产的小、中功率管多采用硅酮塑料封装;大功率三极管多采用金属封 装,通常做成扁平形状并有螺钉安装孔,有的大功率管制成螺栓形状。
塑料封装小功率管 塑料封装中功率管
集电极最大允许电流ICM 若三极管的工作电流超过ICM,其ß值将下降到正
模电实验报告 2 三极管共射放大电路

实验报告专业:物理系姓名:傅立承学号:日期:2014/5/19桌号:F3课程名称:模拟电子技术基础实验指导老师:蔡忠法成绩:________________实验名称:三极管共射放大电路一、实验目的1. 掌握共射放大电路的仿真方法。
2. 掌握放大电路的调试和测量方法。
3. 进一步熟悉示波器、函数信号发生器的使用。
二、实验器材1. 示波器、信号发生器、万用表2. 共射电路实验板三、实验内容1. 静态工作点的调整与测量2. 测量电压放大倍数3. 测量最大不失真输出电压4. 测量输入电阻5. 测量输出电阻6. 测量上限频率和下限频率7. 研究静态工作点对输出波形的影响四、实验电路与原理实验电路(仿真电路图):电路原理:1)三极管放大电路的静态工作点应置于直流负载线还是交流负载线的中点?为什么?如何实现?答;应置于交流负载线中点,可实现最大动态范围。
调节时先调至直流中点,再利用电位器调至交流中点。
2)静态工作点设置过高或过低时,放大电路会先出现饱和失真还是先出现截止失真?饱和失真与截止失真在形状上有何区别?区别是如何产生的?答;设置过高,先出现饱和失真,为‘‘削顶’‘失真;设置过低,先出现截止失真,为’‘缩顶’‘失真。
产生原因是理想三极管β恒定,特性曲线等间距。
实际上,工作点越低,β越小,间距越小;工作点越高,β越大,间距越大。
3)电路中,R7引入什么反馈?起什么作用?若R7被短路,Q点、A v、R i、R o如何变化?答;R7引入负反馈,可稳定静态工作点,Q点基本不变,A v变大,Ri变小,Ro不变。
五、实验步骤和实验结果1. 静态工作点的调整与测量实验步骤:1) 将直流稳压电源的输出调至12V;连接稳压电源与电路板的电源线和地线。
2) 调节偏置电位器,使放大电路的静态工作点满足设计要求(I CQ=1.5mA)。
3) 测出共射电路的静态工作点,记录测量值,并与理论估算值和仿真值进行比较。
实验结果记录:2. 测量电压放大倍数实验步骤:1) 从函数信号发生器输出1kHz的正弦波(幅度要小,有效值10mV),送示波器确认波形和幅值。
三极管基本放大电路ppt课件

(a)原理电路
(b)实物图
精品课件
发射极单管放大电路各组成元件的作用
精品课件
电路中各电流、电压的符号规定
电路中既包含输入信号所产生的交流量,又包含直流电源所产生 的直流量。为了区分不同分量,通常做了以下规定
精品课件
放大电路原理图的画法
1.直流通路和交流通路 【直流通路】指静态时放大电路直流电流通过的路径。 画直流通路原则 :将电容视为开路。
确定出静态工作点Q。
以单管共射放大电路为例,其直流通路如右下图所示。设电路参数VCC、 Rb、RC和三极管放大倍数β已知,忽略三极管的UBEQ(硅管UBEQ≈0.7V,锗 管UBEQ≈0.3V),可以推导得:
IBQVCC UBEQ VCC
Rb
Rb
ICQ=βIBQ
UCEQ = VCC-ICQ RC
由上述公式求得的IB、 IC和UCE值即是静态工作点Q。
Ro=Ron
精品课件
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接 方式叫耦合。下表为三种常用耦合方式的比较。
精品课件
本章小结
1.三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极 电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发 射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输 出特性曲线可分成截止区、饱和区、放大区。
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路 不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以 该电路具有稳定静态工作点的作用。B>>UBEQ
精品课件
C C V Q Q C E I I T V ec RR QEB Q B U I 2 1 b b R R Q B U 21 II
三极管放大实验报告

(一)、实验目的1.对晶体三极管进行实物识别,了解它们的命名方法和主要技术指标;2.学习放大电路动态参数(电压放大倍数等)的测量方法;3.调节电路相关参数,用示波器观测输出波形,对饱和失真失真的情况进行研究;4.通过实验进一步熟悉三极管的使用方法及放大电路的研究方法。
(二)、实验原理一、三极管1. 三极管基本知识三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。
三极管的分类方式很多,按照材料可分为硅管和锗管;按照结构可分为NPN和PNP;按照功能可分为开关管、功率管、达林顿管、光敏管等;按照功率可分为小功率管、中功率管和大功率管;按照工作频率可分为低频管、高频管和超频管;按照安装方式可分为插件三极管和贴片三极管。
三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,根据排列方式的不同可将三极管分为PNP和NPN两种。
从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN 结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大。
两种不同类型三极管的表示方式如图1所示,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
发射极箭头指向也是PN结在正向电压下的导通方向。
图1 不同类型三极管表示方式2.三极管放大原理(1)发射区向基区发射电子电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。
同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二三极管基本放大电路
一、实验目的
学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。
掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。
熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理
共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。
改变电路的静态工作点,可调节电路的电压放大倍数。
而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。
该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。
静态工作点是否合适,对放大器的性能和输出波形都有很大影响。
如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。
这些情况都不符合不失真放大的要求。
所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。
如不满足,则应调节静态工作点的位置。
工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。
所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。
图2-1 基本放大电路实验图
三、实验内容与步骤
1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋
钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。
2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be)
3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种
情况下的U0值,此时的U0和U i相位相反。
4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率
要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。
渐加大输入信号强度,观察输出波形,并调节Rw,使输出波形最大,不失真,直到输入信号不能再加大为止。
测量此时的输入、输出电压,求出放大倍数。
四实验仪器和仪表
虚拟实验仪器及器材
双踪示波器信号发生器交流毫伏表数字万用表
五实验报告要求
1、认真记录结果,画出幅频特性曲线,分别利用直流通路和图解法确定静态工作值,
和软件测得的直流工作点进行对照分析;
2、画出本实验的微变等效电路,求出输入电阻r
i 和输出电阻r
o。
3、总结静态工作点的位置与那些因素有关。