计数原理及二项式定理概念公式总结
35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
计数的公式知识点总结

计数的公式知识点总结1.基本计数原理基本计数原理是计数问题中最基本的方法之一。
它适用于一些简单的问题,例如从一个有限的集合中选择元素的方式数量。
基本计数原理的核心思想是:如果一件事情可以划分为若干个独立的步骤,每个步骤有若干个选择,那么总的选择数就是所有步骤的选择数的乘积。
例如,考虑从一个4位数字(0-9)中选择一个数字的问题。
根据基本计数原理,我们可以将这个问题划分为4个步骤:先选第一位数字,再选第二位数字,以此类推。
每一步都有10种选择,因此总的选择数量为$10^4$=10000。
2.排列排列是计数中比较常见的问题之一。
排列是指从一个集合中选择一部分元素,并按照一定的顺序进行排列。
对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$n\cdot(n-1)\cdot...\cdot(n-r+1)=\frac{n!}{(n-r)!}$种排列方式。
排列问题的应用十分广泛,例如在密码学中用于生成密码、在组合游戏中用于解决游戏的排列问题等。
在实际应用中,我们也可以用排列的方法来解决一些实际问题。
比如,在一家商店里,有10种不同的衣服,小王要挑选3种不同的衣服,问他共有多少种不同的选择方式?根据排列的计数方法,答案为$P^{10}_3=10\cdot 9 \cdot 8=720$种选择方式。
3.组合组合是另一个常见的计数问题。
组合是指从一个集合中选择一部分元素,并不考虑元素的排列顺序。
对于一个包含n个元素的集合,如果从中选择r个元素进行排列,则一共有$\frac{n!}{r!(n-r)!}$种组合方式。
组合问题在实际中也有着很多应用,例如在概率论中,组合问题用于计算事件发生的概率;在统计学中,组合问题用于计算样本的数量等。
组合问题也有着很多有趣的性质和应用,例如在计算机程序设计中,组合问题用于生成排列和组合的算法。
4.二项式定理二项式定理是组合的一个重要的应用。
它描述了二项式的幂的表达式。
二项式定理-计数原理

二项式系数
二项式系数是二项式定理中的重要概念,它代表了展开式中每一项的系数。 二项式系数的计算方法是利用组合数学中的排列组合原理。 这些系数有很多有趣的性质,例如对称性、递推关系等。
二项式定理的公式形式
二项式定理的公式形式是: (a + b)^n = C(n,0) * a^n + C(n,1) * a^(n-1) * b + ... + C(n,n) * b^n 其中,C(n,k)表示组合数,它可以利用二项式系数的性质来计算。
二项式定理在实际问题中的应 用
二项式定理在实际问题中有着广泛的应用。 例如,在统计学中,我们可以利用二项式定理来计算二项分布的概率。 在计算机科学中,我们可以利用它来设计高效的算法以解决各种问题。
二项式系数可以用于计算组合数,而二项式定理提供了展开多项式和计算组 合数的方法。
通过学习二项式定理,我们可以定理的证明和推导
数学家们通过数学归纳法等方法对二项式定理进行了证明和推导。 证明过程涉及到数学中的一些基本概念和技巧,例如二项式系数的递推关系和组合数的性质。 通过深入研究二项式定理的证明和推导过程,我们可以增强对数学的理解和掌握。
二项式定理-计数原理
二项式定理是一种重要的数学定理,它与计数原理密切相关,可以帮助我们 解决各种计数问题。
二项式定理的概念和定义
二项式定理是一个关于展开幂次多项式的公式,它可以用于计算任意次幂的 展开式。 通过二项式定理,我们可以将任意次幂的展开式中的每一项系数都计算出来。
这个定理是数学中的基础定理之一,在代数、概率论等领域有广泛的应用。
二项式定理的应用举例
二项式定理具有广泛的应用,例如在概率论中,我们可以利用它来计算不同结果出现的概率。 在代数中,它可以用于展开多项式、简化运算等。 在实际问题中,我们可以利用二项式定理来解决计数和排列组合等问题。
计数原理:第3讲二项式定理

二项式定理1.二项式定理n*(a + b) = _______________________________ (k , n € N ),这个公式所表示的规律叫做二项式定理.(a + b)n 的二项展开式共有 _______________ 项,其中各项的系数 ______________ (k € {0 , 1, 2,…,n})叫 做二项式系数,式中的 _____________ 叫做二项展开式的通项,用 T k +1表示,即 ____________________ •通项为展开式的第 ___________ 项.2.二项式系数的性质 (1) 对称性在二项展开式中,与首末两端等距离”的两个二项式系数相等,即 C n = C n , C n = C n , C n =,…,C n = C 0.(2) 增减性与最大值二项式系数c n ,当 _______________ 时,二项式系数是递增的;当 ______________ 时,二项式系数是递减 的.当n 是偶数时,中间的一项 _____________ 取得最大值.当n 是奇数时,中间的两项 _____________ 和 _____________ 相等,且同时取得最大值. ⑶各二项式系数的和(a + b)n 的展开式的各个二项式系数的和等于 ____________ ,即C 0 + C 1+ U+…+ ◎+••• + C ;; = _________ 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即 c 1+ C 3+ ◎+•••=氏+ U+C 4+ …= __________ .【答案】1.++...+...+w+iCj C 制Ti 二C 紗乍护七+12.【基础自测】1在2x 2— 1 5的二项展开式中,x 的系数为( )A . 10B . — 10C . 40D .— 40解:二项展开式的通项为 T r +1= C 5(2x 2)5 'J — X / = C 525 r x 10 3r (一 1)r ,令 10— 3r = 1,解得 r = 3,所以w+_l 7T 4= C;22X (— 1)3=— 40x ,所以 x 的系数为一40•故选 D.2n *2 (1 + X ) (n € N )的展开式中,系数最大的项是 ( )A •第n + 1项B •第n 项C .第n + 1项D .第n 项与第n + 1项解:展开式共有2n + 1项,且各项系数与相应的二项式系数相同•故选 C.3使?x + 总](n € N *)的展开式中含有常数项的最小的 n 为( )A . 4B . 5C . 6D . 74 设(X — 1)21 = a °+ a 1x + a 2X 2+…+ 玄2低21,贝V a® + a^= ________________ .解:T r + 1 = C 21X^ r (一 1),,…a 10= C 21(一 1)" , a 11= C 21 ( 一 1)勺° •- a 10 + a 11 = 0.故填 0. 5 设「2+ X )10= a °+a 1x + a 2X 2+…+ a 10x 10,贝V (a °+ a 2 + a 4+…+ ag)2—⑻十 a 3 + a 5+…+ a g )2的值为解:设 f(x)=(”』2 + X )10,则(a °+ a ?+ a °+…+ ag)2—⑻十 a 3 + a §+…+ a g )2= [(a °+ a ?+ a °+…+ aw)+ ⑻ + a 3 + a 5+ …+ a 9)][( a o + a 2 + a 4 + …+ ag)—(a 1 + a 3 + a 5 + …+ a ?)] = f(1)f( — 1)=(岑2 + 1)10(p2 — 1)10 = 1.故填 1.【典例】 类型一求特定项例一 (1) x + a 2X — 1 5的展开式中各项系数的和为 2,则该展开式中的常数项为 ( )A . — 40B . — 20C . 20D . 40解:令"1,可得卄1=2, 口f的展幵式中+项的系数为C 辺(―卩工项的系数为€?2\.■.«+典肚一打的展开式中常数顷为C?2:. - 1 ]十匚工:=40一故选D.【评析】①令工=1可得所有项的系数和,②在求出口的值后,再分析常数项的构成,便可解得常数 项.广 1 帯(2)已知在 饭一 丁 '的展开式中,第6项为常数项,求含 X 2项的系数及展开式中所有的有理项.< 2钱丿 n —5 1 丨 r / 1 r n —2r解:通项 T r +1= C fi x 3 一 2 X 3= C n 一 2 X 3,•••第6项为常数项,••• r = 5时,有上器=0,得n = 10.令芝芦=2,得r = 2,二含x 2项的系数为C ?。
计数原理及二项式定理概念公式总结

计数原理及二项式定理概念公式总结排列组合及二项式定理概念及公式总结1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有N=m 1+m 2+……+m n2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示(2)排列数公式:)1()2)(1(+---=m n n n n A mn或m nA )!(!m n n -=()n m N m n ≤∈*,,nnA =!n =()1231- n n =n(n-1)! 规定 0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+==或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且(3)组合数的性质:① m n n m n C C -=.规定:10=n C ;②m n C 1+=m n C +1-m n C . ③0132nn nn n n C C C C ++++= ④n C C n n n ==-11 ⑤1=n n C6.二项式定理及其特例:(1)二项式定理()()*--∈+++++=+N n b C b a C b a C a C b a nn n k k n k n n n n n n110展开式共有n+1项,其中各项的系数{}()n k C kn ,,2,1,0 ∈叫做二项式系数。
高中数学常见公式总结与应用

高中数学常见公式总结与应用数学作为一门基础学科,其中公式的运用是不可或缺的。
在高中数学的学习中,学生们常常需要掌握和应用各种常见的数学公式。
本文将对高中数学常见公式进行总结,并给出相应的应用示例。
一、代数公式1. 二次方程求根公式对于一元二次方程ax^2 + bx + c = 0(其中a≠0),其根可以通过求根公式得到。
其公式为:x = (-b ± √(b^2 - 4ac))/2a应用示例:已知二次方程3x^2 + 2x - 1 = 0,求解x的值。
解:a = 3,b = 2,c = -1根据求根公式,代入数值进行计算:x = (-2 ± √(2^2 - 4×3×(-1)))/2×3= (-2 ± √(4 + 12))/6= (-2 ± √16)/6= (-2 ± 4)/6= -1 或 1/3所以方程的解为x = -1 或 x = 1/3。
2. 二项式定理二项式定理是代数中一个重要的展开定理,用于计算(x + y)^n的展开式,其中n为自然数。
其公式为:(x + y)^n = C(n, 0)x^n y^0 + C(n, 1)x^(n-1) y^1 + C(n, 2)x^(n-2) y^2 + ... + C(n, n-1)x^1 y^(n-1) + C(n, n)x^0 y^n应用示例:计算展开式(2x - 3)^4。
解:根据二项式定理,展开式为:(2x - 3)^4 = C(4,0)(2x)^4 (-3)^0 + C(4,1)(2x)^3 (-3)^1 + C(4,2)(2x)^2 (-3)^2 + C(4,3)(2x)^1 (-3)^3 + C(4,4)(2x)^0 (-3)^4= 1(16x^4) + 4(8x^3)(-3) + 6(4x^2)(9) + 4(2x)(-27) + 1(1)(81)= 16x^4 - 96x^3 + 216x^2 - 216x + 81所以展开式为16x^4 - 96x^3 + 216x^2 - 216x + 81。
高中数学二项式定理知识点总结

高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。
根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。
二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。
例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。
而组合数实际上就是二项式展开中的系数。
因此,通过二项式定理可以方便地求解组合数。
3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。
例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。
4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。
通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。
第1讲计数原理二项式定理

第1讲计数原理二项式定理计数原理是组合数学中的一个重要分支,它研究的是对一些数量进行计数的方法和原理。
而二项式定理是计数原理的一个经典定理,它在数学和实际生活中都有着广泛的应用。
二项式定理是由法国数学家帕斯卡在17世纪提出的,他是计数原理的奠基人之一、二项式定理的具体内容是指出了如何求一个二项式的n次方。
一个n次方的二项式可以表示为(a+b)^n,其中a和b是任意常数。
二项式定理告诉我们可以通过展开这个二项式,得到它的展开式。
(a+b)^n的展开式的一般形式是:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,n)b^n其中C(n,0),C(n,1),C(n,2),...,C(n,n)被称为组合数,它表示从n 个元素中取k个元素的组合数。
组合数的计算可以借助计数原理中的排列组合问题来解决。
组合数C(n,k)的计算公式为:C(n,k)=n!/(k!(n-k)!)其中n!表示n的阶乘,k!表示k的阶乘。
阶乘是一个非常重要的数学概念,它表示从1到一些正整数的连乘积。
阶乘的计算可以通过递归或迭代的方式进行。
二项式定理通过组合数的计算,将一个n次方的二项式展开为多个项的和,其中每个项都包含了a和b的不同次数的幂。
这个展开式的应用非常广泛,几乎涉及到了所有领域的数学问题。
在代数中,二项式定理可以求解多项式的展开式,简化复杂表达式的计算。
在概率论中,二项式定理可以用来计算事件的可能性,求解二项分布等概率分布。
在组合数学中,二项式定理可以用来计算组合数,求解排列组合问题。
总之,二项式定理是计数原理中的一个重要定理,它通过组合数的计算,将一个n次方的二项式展开为多个项的和。
二项式定理的应用涉及到了代数、概率论、组合数学等多个领域。
深入理解和掌握二项式定理,对于推导和解决各种数学问题都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)排列数公式:
或
= = =n(n-1)!规定0!=1
5.组合:一般地,从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合
(1)组合数:从 个不同元素中取出 个元素的所有组合的个数,用 表示
(2)增减性与最大值:当 时,二项式系数逐渐增大,由对称性知它的后半部分是逐渐减小的,且在中间取得最大值。
当 是偶数时,在中间一项 取得最大值;
当 是奇数时,在中间两项 , 取得最大值.
9.各二项式Βιβλιοθήκη 数和:(1)(2)
10.各项系数之和:(采用赋值法)
例:求 的各项系数之和
解:
令 ,则有 ,
故各项系数和为-1
(2)组合数公式: 或
(3)组合数的性质:
.规定: ; = + .
6.二项式定理及其特例:
(1)二项式定理
展开式共有n+1项,其中各项的系数 叫做二项式系数。
(2)特例: .
7.二项展开式的通项公式: (为展开式的第r+1项)
8.二项式系数的性质:
(1)对称性:在 展开式中,与首末两端“等距”的两个二项式系数相等即 ,直线 是图象的对称轴.
排列组合及二项式定理概念及公式总结
1.分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,……,在第n类办法中有 种不同的方法 那么完成这件事共有N=m1+m2+……+mn种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事有N=m1×m2×……mn种不同的方法
分类要做到“不重不漏”,分步要做到“步骤完整”
3.两个计数原理的区别:
如果完成一件事,有n类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.
4.排列:从n个不同的元素中取出m个(m≤n)元素并按一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.