第8章 假设检验8.8 假设检验问题的p值检验法
概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
第八章假设检验

查表得 z0.05 1.645,
于是
| x
/
0
n
|
0.516
z0.05
1.645
故接受 H0 , 认为该机器工作正常.
例2 公司从生产商购买牛奶.公司怀疑生产商在 牛奶中掺水以谋利. 通过测定牛奶的冰点,可以检 验出牛奶是否掺水.天然牛奶的冰点温度近似服从
单个正态总体方差的假设检验
1. 为未知, 关于 2的检验( 2 检验)
设总体 X ~ N (, 2 ), , 2均为未知,
X1 , X 2 ,, X n 为来自总体 X 的样本, 要检验假设:
其中 0 为已知常数. 设显著性水平为 ,
因为 S 2 是 2 的无偏估计,
当H
例1 某切割机在正常工作时, 切割每段金属棒 的平均长度为10.5cm, 标准差是0.15cm, 今从一批 产品中随机的抽取15段进行测量, 其结果如下: 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度 X 服从正态分布, 且标准差没
2ቤተ መጻሕፍቲ ባይዱ
2 1
/
2
(n
1)
H1 : 0 (即设牛奶已掺水)
这是右边检验问题,其拒绝域为
z
x
0
n
z0.05
1.645.
现在
z
0.535
(0.545) 2.7951
1.645,
0.008 5
z的值落在拒绝域中, 所以我们在显著性水平
假设检验的P值法

谢谢
THANKS
如何平衡p值法的利弊
结合其他统计方法
在某些情况下,可以将p值与其他统计方法(如效应量、 置信区间等)结合起来,以获得更全面的统计推断。
01
审慎解读p值
对于p值,应该审慎解读,避免过度解 释或误用。
02
03
考虑其他证据
除了p值,还应该考虑其他相关证据, 如实验设计、样本质量、数据来源等。
05 实际应用案例
Hale Waihona Puke 03 如何解读p值CHAPTER
p值与假设检验的关系
p值是衡量观察结果与原假设之间差异的指标,如果p值较小 ,说明观察到的数据与原假设存在显著差异,从而拒绝原假 设。
p值的大小反映了观察到的数据与原假设之间的不一致程度, 越小的p值意味着不一致程度越高。
p值与置信水平的关系
p值与置信水平是相关的概念,通常在假设检验中,p值越小,表明观察到的数据与原假设之间的差异越显著,从而有更高的 信心拒绝原假设。
02 p值法的原理
CHAPTER
假设检验的基本概念
01
假设检验是一种统计推断方法, 通过提出假设并对其进行检验, 以判断假设是否成立。
02
假设检验的基本步骤包括提出假 设、选择合适的统计量、确定样 本量、收集样本数据、计算统计 量、做出推断结论。
p值的计算方法
p值是指观察到的数据或更极端的数 据出现的概率,即在原假设为真的情 况下,观察到的结果或更极端的结果 出现的概率。
假设检验的p值法
目录
CONTENTS
• 引言 • p值法的原理 • 如何解读p值 • p值法的优缺点 • 实际应用案例 • 结论
01 引言
CHAPTER
什么是p值法
贾俊平版统计学课件 第8章

▽与原假设对立的假设称备择假设,记为 H1 ,用 、 或 表示。 对于新生儿体重的例子,可以表示为
H 0 : 3190
H1 : 3190
(2)确定检验统计量及其分布
▽用于检验假设的统计量称为检验统计量
▽根据 H 0 及相应条件选择适当的统计量,并确定统计量
的分布 对于新生儿体重的例子,可利用 x 0 构造检验统计量. 若新生儿体重为正态分布 N ( , 2 ) ,且 已知,则在 H 0 为真 时,用 z 作为检验统计量,并且
H 0 : 3190 H1 : 3190
并已知 x 3210, 80, n 100 ,则
z0 x 0
n
3210 3190 80 100
2.5
于是
p 2Pz z0 2 0.00621 0.01242
双侧检验的P值
/ 2
/ 2 拒绝
▽犯第二类错误的概率为 。
表8-1 假设检验中各种可能结果的概率
实际情况
H 0 为真 H 0 不真
决策
接受 H 0
1
拒绝 H 0
1
假设检验中的两类错误(决策结果)
H0: 无罪
假设检验就好像一场审判过程 统计检验过程
陪审团审判
实际情况 裁决 无罪 无罪 有罪 正确 错误 有罪 错误 正确 接受H0 拒绝H0 决策
若p-值 /2, 不能拒绝 H0 若p-值 < /2, 拒绝 H0
8.1.6 假设检验的形式
研究的问题 假设
双侧检验
H0 H1
左侧检验
右侧检验
= 0 ≠0
概率与数理统计第8章--假设检验与方差分析

第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与 600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg 组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表所示:表乙肝新疫苗的应答率注:εP A-44为治疗用(合成肽)乙型肝炎疫苗简称。
上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”为什么说这个结论表示乙肝新疫苗无效什么叫“在统计意义上无差异”如何根据样本数据作出统计意义上有无差异的判断解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
统计学第八章

8.1.3 两类错误
项目
没有拒绝H0
拒绝H0
H0为真
1-α(正确)
α(弃真错误)
H0为假
β(取伪错误)
1-β(正确)
假设检验中各种可能结果的概率
20
8.1.3 两类错误
α和β的关系: 1、 α和β的关系就像跷跷板, α小β就大, α大β就小。因为, 要减少弃真错误α,就要扩大接受域。而扩大接受域,就必然导致取 伪错误的可能性增加。因此,不能同时做到犯两种错误的概率都很 小。要使α和β同时变小,唯一的办法就是增大样本量。 α和β两者的 关系就像是区间估计当中可靠性和精确性的关系一样。 2、在假设检验中,大家都在执行这样一个原则,即首先控制犯α错 误原则。
一般来说,在研究问题的过程中,我们想要予以反对的那个结论, 我们就把它作为原假设。
比如,一家研究机构估计,某城市当中家庭拥有汽车的比例超过 30%。为了验证这种估计是否正确,该研究机构随机的抽取了一个样本 进行检验。试陈述用于检验的原假设和备择假设。
解:研究者想要收集证据予以支持的假设是:“该城市中家庭拥有 汽车的比例超过30%”。因此,原假设是总体比例小于等于30%,备择 假设是总体比例大于30%。可见,通常我们应该先确定备择假设,再确 定原假设。
6
8.1.2 假设的表达式
在假设检验中,一般要先设立一个假设(比如从来没做过坏事),然 后从现实世界的数据中找出假设与现实的矛盾,从而否定该假设。所以, 在多数统计教材当中,假设检验都是以否定事先设定的那个假设为目标的。
如果搜集到的数据分析结构不能否定该假设,只能说明我们掌握的现 实不足以否定该假设,但不能说明该假设一定成立。这是假设检验做结论 的时候尤其要注意的一点。比如一个人在数次的观察中都没有干坏事,但 并不说明他从来都没干过坏事。
管理定量分析课程第8章:假设检验

判决
无罪 有罪
陪审团审判
真实的情况
无罪
有罪
判决正确
判决错误
判决错误
判决正确
结论
未拒绝原假设 拒绝原假设
假设检验 总体参数的实际情况
原假设为真 备择假设为真 结论正确 第二类错误 第一类错误 结论正确
11
假设检验中犯Ⅰ型错误的概率,称为显著性水平(level of significance),即指当零假设实际上是正确时,检验统计量落
7
又如:教育部要检验2012年录取的大学新生平均身高是否 达到了170cm标准,这样需要提出原假设(H0):2012
年大学新生(总体)的平均身高(µ )是170cm。为了检
验这个假设是否正确,需要根据随机取样的原则,从2012 年的大学新生总体中选取样本并计算样本的平均高度,以 此来检验原假设的正确性。
8
假设检验一般分为参数假设检验和非参数假设检验两种类型。参 数假设检验对变量的要求较为严格,适合于等距变量和比率变量 ,非参数假设检验对变量的要求较为自由,既适合于等距变量和 比率变量,也适用于类别变量和顺序变量。
变量测量层次
分类(nominal)变 量
数学性(interval)变量
4
一、假设与假设检验
假设是科学研究中广泛应用的方法,它是根据已知理 论与事实对研究对象所作的假定性说明。统计学中的 假设一般专指用统计学术语对总体参数所做的假定性 说明。在进行任何一项研究时,都需要根据已有的理 论和经验事先对研究结果作出一种预想的假设。这种 假设叫科学假设,在统计学上称为研究假设。对这种 研究假设进行证实或证伪的过程叫假设检验。
非参数检验是一种与总体分布状况无关的检验方法,它不 依赖于总体分布的形式。
讲座-8第八章 参数估计与假设检验基础学习文档

从N(165.70 , 3.212) 抽到的100份随机样本的计算结果(n=20)
Path of Statistical inference
总体
抽样
样本
估计 参数: , ,
统计推断
获取统计量
如: x, s, p
探讨成年男性肺炎患者与男性健康成年的血红蛋白(g/dl)有无区别? 在这两个人群中随机抽取各10例:
组别 肺炎 健康
1 11.9 13.9
2 10.9 14.2
3 10.1 14.0
t 分布曲线(ν=9)
① 相同自由度时,∣t∣值越大,概率P 越小; ∣t∣值越小, 概率P 越大;
② 在相同∣t∣值时,同一自由度的双侧概率是单侧概率的两 倍。
归纳:
随机变量 X
N(μ, σ2)
均数 X
N(μ ,σ2/n )
Z X
Z 变换 Z X
n
标准正态分布 N(0, 12)
用途不同: 当资料呈正态分布时,标准差与均数结合可估计参考值范围,
计算 CV 等;标准误可用于估计参数的置信区间,进行假设检验。
与样本例数关系不同: 样本量足够大时,标准差趋向于稳定,标准误随例数的增加而减小,甚至
趋近于0,若样本量趋向总例数,则标准误接近0;
二者联系: 均为变异指标,若把总体中各样本均数看作一个变量,则标准误可称为样
p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前的观的值, 目前的观的值, 我们就 这说明拒绝 H 0的理由很强, 的理由很强, 拒绝H 0 .
一般 , 若p值 ≤ 0.01, 称推断拒绝 H 0的依据很强
或称检验是高度显著的; 若0.01 < p值 ≤ 0.05,称判断拒绝 H 0的依据是强 的或称检验是显著的; 的或称检验是显著的;
若0.05 < p值 ≤ 0.1, 称推断拒绝 H 0的理由是弱 的, 检验是不显著的;
若显著性水平 α ≥ p = 0.237, 则对应的临界值 z0 ≤ 1.983, 这表示观察值 z 0 1.983落在拒绝域内 (如 =
因而接受 H 0 . 不落在拒绝域内图( 2),
一般 , p值的定义为 定义 假设检验问题的 p值( probabilit y value )是由 检验统计量的样本观察 值得出的原假设可被拒 绝
的最小显著性水平 .
任一检验问题的p 任一检验问题的 值可以根据检验统计量 的 样本观察值的以及检验 统计量在 H 0下一个特定的
参数值(一般是 H 0与H 1所规定的参数的分界 对应的分布求出.
2
点)
例如在正态分布 N ( µ ,σ )均值的检验中, 当σ 可采用检验统计量 未知时, 未知时,
X − µ0 , 在以下三个检验问题中 , 当µ = µ0时, t= σ/ n t ~ t ( n − 1).如果由样本求得统计量 t的观察值为 t 0 , 的观察值为
若p值 > 0.1, 一般来说没有理由拒绝 . 研究者可以使用任意希 望的显著性 基于p值, 水平来作计算 .
许多研究者在 报告中, 在杂志上或在一些技术 报告中,
讲述假设检验的结果时 , 常不明显地论及显著性 水平以及临界值 , 代之以简单地引用假设 检验的 p值, 利用或让读者用它来评 价反对原假设的依
那么在检验问题
H 0 : µ ≥ µ0 , H 1 : µ > µ0中 p值 = Pµ0 { t ≥ t0 } = t0右侧尾部面积 , 如图3;
H 0 : µ ≥ µ0 , H 1 : µ < µ0中
如图4 p值 = Pµ0 { t ≤ t0 } = t0左侧尾部面积 , 如图 ;
p
o
图3
t0
t0
此即为图中标准正态曲线下位于 z0 右边的尾部 面积. 面积
此概率称为 Z检验法的右边检验的 p值.
记为p值=P { Z ≥ z0 } = 0.237. 值
Z ~ N (0,1)
Z ~ N (0,1)
α ≥ 0.0238
α ≤ 0.0237
o
图1
z 0 = 1.983
o
图2
z 0 = 1.983
图1), 因而拒绝 H 0 ; 又显著性水平 α < p = 0.237, 则对应的临界值 z0 > 1.983, 这表示观察值 z 0 1.983 =
H 0 : µ = µ0 = 60, H 1 : µ > 60.
采用Z检验法 检验统计量为 采用 检验法,检验统计量为 检验法
X − µ0 z= . σ/ n 以数据代入 , 得Z的观察值为 62.75 − 60 = 1.983. z0 = 10 / 52
概率
P { Z ≥ z0 } = P{ Z ≥ 1.983} = 1 − Φ(1.983) = 0.023.
由计算机算得
p值=P { t ≥ 2.9775}= 0.2570. p值 > ຫໍສະໝຸດ = 0.05, 故接受 H 0 .
例 4 用p值法检验本章第三节例 1 的检验问题 H 0 : µ ≤ µ 0 = 225, H 1 : µ > 225, α = 0.02. 解 用χ 2 检验法 , 现在检验统计量 χ 2 =
o
图4
H 0 : µ=µ0 , H 1 : µ ≠ µ0中
( i )当t0 > 0时 p值 = Pµ0 { t ≥ t0 } = Pµ0 {{t ≥ t 0 } ∪ {t ≥ t0 }}
= 2 × ( t0右侧尾部面积 )如图5; ( ii )当t 0 < 0时
p值 = Pµ0 { t ≥ − t0 }= Pµ0 {{t ≤ t0 } ∪ {t ≥ − t 0 }}
假设检验问题的p 第八节 假设检验问题的p值检验法
一、p值检验法 二、典型例题 三、小结
一、p值检验法 值检验法
临界值法. 临界值法 假设检验方法 p值检验法 值检验法
σ 2 = 100, 例1 设总体 X ~ N ( µ ,σ ), 未知, µ
2
现有样本 x1 , x 2 ,L, x 52 ,算得 x = 62.75. 现在来检验假设
( n − 1) S 2
2 σ0
的观察值为
25 × 9200 χ = = 46. 5000 由计算机算得
2
p值=2 × P { χ 2 ≥ 46} = 0.0128. 值 p值 < α = 0.02, 故拒绝 H 0 .
p值表示反对原假设 0的依据的强度 , p值越 值表示反对原假设H 的依据越强、 小,反对H 0的依据越强、越充分 (譬如对于某 个检验问题的检验统计 量的观察值的 p值 = 0.0009 , 如此地小, 以至于几乎不可能在 H 0为真时出现
综合 ( i )( ii ),
p值 = 2 × (由t0 界定的尾部面积 )如图6;
t0 > 0
1 p 2
1 p 2
t0 < 0
o
图5
t0
t0
o
图6
上述各图中的曲线均为 t ( n − 1)分布的概率密度曲线 . 在现代计算机统计软件 中, 一般都给出检验问题的
值的定义, p值. 按p值的定义, 对于任意指定的显著性 水平α , 就有 ()若p值 ≤ α, 1 则在显著性水平 α下拒绝 H 0 ;
据的强度作出判断 .
三、小结
(2 若p值 > α, ) 则在显著性水平 α下接受 H 0 . 有了这两条结论就能方 便的去定 H 0的拒绝域 .这种
利用p值来确定检验拒绝域的 方法,称为p值检验法.
的拒绝域时, 用临界值法来确定 H 0的拒绝域时,例如当 α = 0.05 时知道要拒绝 H 0, α = 0.01也要拒绝 H 0,但不 再取 能知道将 α再降低一些是否也要拒 绝H 0 . 而p值法
给出了拒绝 H 0的最小显著性水平 . 因此 值法比 因此p
临界值法给出了有关拒 绝域的更多的信息 .
二、典型例题
例 2 用p值法检验本章第一节例 2 的检验问题 H 0 :µ ≤ µ 0 = −0.545 H 1 : µ > µ 0 α = 0.05 x − µ0 解 用z检验法 , 现在检验统计量 z = 的观察 σ n 值为 − 0.535 − ( −0.545) z= = 2.7955. 0.008 5 p值=P { Z ≥ 2.9775} = 1 − Φ(2.9775 0 )= .0026.
p值 < α = 0.05, 故拒绝 H 0 .
例 3 用p值法检验本章第二节例 1 的检验问题 H 0 : µ ≤ µ0 = 225, H 1 : µ > 225, α = 0.05.
X − µ0 解 用t检验法 , 现在检验统计量 t = 的观 S n 察值为 241.5 − 225 t= = 0.6685. 9837259 16