8.8_假设检验问题的p值法

合集下载

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

统计学课后思考

统计学课后思考

1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

2.1什么是二手资料?使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。

统计学课后简答题

统计学课后简答题

3.1数据预处理内容:数据审核(完整性和准确性;适用性和实效性),数据筛选和数据排序。

3.2分类数据和顺序数据的整理和图示方法各有哪些分类数据:制作频数分布表,用比例,百分比,比率等进行描述性分析。

可用条形图,帕累托图和饼图进行图示分析。

顺序数据:制作频数分布表,用比例,百分比,比率。

累计频数和累计频率等进行描述性分析。

可用条形图,帕累托图和饼图,累计频数分布图和环形图进行图示分析。

3.3数据型数据的分组方法和步骤分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。

分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表3.4直方图和条形图的区别1条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,2直方图各矩形连续排列,条形图分开排列,3条形图主要展示分类数据,直方图主要展示数值型数据。

3.5绘制线图应注意问题时间在横轴,观测值绘在纵轴。

一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。

3.6饼图和环形图的不同饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。

3.7茎叶图比直方图的优势,他们各自的应用场合茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保留了原始数据的信息。

在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。

3.8鉴别图标优劣的准则1一张好图应当精心设计,有助于洞察问题的实质。

2一张好图应当使复杂的观点得到简明、确切、高效的阐述。

3一张好图应当能在最短的时间内以最少的笔墨给读者提供最大量的信息。

4一张好图应当是多维的。

5一张好图应当表述数据的真实情况。

3.9制作统计表应注意的问题(1)合理安排统计表结构(2)表头一般包括表号,总标题和表中数据的单位等内容(3)表中的上下两条横线一般用粗线,中间的其他用细线(4)在使用统计表时,必要时可在下方加注释,注明数据来源。

第八章 假设检验

第八章    假设检验
Z X 0 n
规定显著性水平
(significant level) ❖ 什么是显著性水平? ❖ 1. 是一个概率值
❖ 2. 原假设为真时,拒绝原假设的概率
被称为抽样分布的拒绝域
❖ 3. 表示为 (alpha)
常用的 值有0.01, 0.05, 0.10
❖ 4. 由研究者事先确定
作出统计决策
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
➢ 当问起健康的 成年人体温是
36.9
36.6
36.2
36.7
36.9
多 少 时 , 多 数 37.6 36.7 37.3 36.9 36.4
的饮料容量是否符合标准要求?
双侧检验
总体均值的检验( 2 已知)
(例题分析-大样本)
❖ H0 : = 255 ❖ H1 : 255 ❖ = 0.05
❖ n = 40 ❖ 临界值(c):
拒绝 H0
0.025
拒绝 H0
0.025
-1.96 0 1.96 z
检验统计量:
zx0 25.852551.01 n 5 40

统计学中的假设检验方法

统计学中的假设检验方法

统计学中的假设检验方法统计学中的假设检验方法是一种常见的数据分析技术,用于验证关于总体特征的假设。

通过统计抽样和概率分布的理论基础,可以通过假设检验方法来评估样本数据对于某种假设的支持程度。

本文将介绍假设检验的基本原理、步骤以及一些常见的假设检验方法。

一、假设检验的原理假设检验是基于一个或多个关于总体特征的假设提出的。

一般来说,我们称原假设为零假设(H0),表示研究者对于总体特征没有明确的预期;对立假设(H1或Ha)则用来说明研究者认为存在显著的差异或关联关系。

假设检验的基本原理是通过对抽样分布的计算和统计量进行假设检验,从而得出是否拒绝零假设的结论。

根据样本数据的统计量计算出的P值,可以作为评估假设支持程度的标准。

一般来说,当P值小于显著性水平(一般为0.05)时,我们会拒绝零假设。

二、假设检验的步骤假设检验的步骤一般包括以下几个方面:1. 明确研究问题和假设:首先要明确研究者所关注的问题和假设,以及零假设和对立假设的表述。

2. 选择适当的检验方法:根据样本数据的类型和问题的特征,选择适当的假设检验方法。

常见的假设检验方法包括t检验、卡方检验、方差分析等。

3. 设置显著性水平:根据研究者对错误接受零假设和拒绝真实假设的容忍度,设置显著性水平。

一般来说,0.05是常用的显著性水平。

4. 计算统计量和P值:根据样本数据计算统计量,并通过统计分布计算对应的P值。

P值表示了在零假设成立的情况下,获得观察到的统计量或更极端结果的概率。

5. 做出结论:根据P值和显著性水平的比较,得出是否拒绝零假设的结论。

如果P值小于显著性水平,我们会拒绝零假设,认为样本数据支持对立假设;反之,我们无法拒绝零假设。

三、常见的假设检验方法1. 单样本t检验:单样本t检验用于比较一个样本的平均值是否显著不同于一个已知的总体平均值。

适用于连续型数据,例如身高、体重等。

2. 独立样本t检验:独立样本t检验用于比较两个独立样本的平均值是否显著不同。

补充内容:P值检验

补充内容:P值检验

第六节 假设检验的功效函数
用概率反证法检验一个假设的推理依据是小概率原理.
在一次抽样中,若小概率事件发生了,则拒绝原假设; 若小概率事件没有发生,拒绝原假设的理由不充分, 因而只好接受原假设.
这样的检验结果可能出现以下两种类型的错误.
一、犯两类错误的概率
第Ⅰ类错误(弃真) 当原假设H0真时,抽样结果表明小概率事件发生了, 按检验法将拒绝H0,这样就犯了所谓“弃真”的错 误. 弃真概率为P(拒绝H0 | H0真)
t(22)
Sw 1 / n1 1 / n2
拒绝域的形式为 | t | c
观测值
t0
31075 28.67 2.85 1/12 1/12
2.647
由计算机软件算得
p值 P(| T || t0 |) P(| T | 2.647) 0.014725
由于
α=0.05 > 0.014725= p值
故拒绝 H0
结论
(1)若 p 值,则在显著性水平α下接受 H0 . (2)若 p 值,则在显著性水平α下拒绝 H0 .
有了这两条结论就能方便地确定 H0 的拒绝域. 这 种利用p值来检验假设的方法称为p值检验法.
p 值反映了样本信息中所包含的反对原假设 H0 的依据的强度,p 值是已经观测到的一个小概率事件 的概率, p 值越小, H0 越有可能不成立,说明样本 信息中反对 H0 的依据的强度越强、越充分.
n
u1
n [(u
u1 ) ]2
比如0 =0, =0.05, =1,希望当 1时,
这个检验二类风险不大于0.10 n ,8.57
最大功效检验
Neyman Pearson最有检验原则: 在控制第一类风险满足显著性水平下使得第二类风险尽可能小: () , 0 ()尽可能大, 1

第八章假设检验

第八章假设检验
/ n 0.15/ 15
查表得 z0.05 1.645,
于是
| x

/
0
n
|
0.516
z0.05

1.645
故接受 H0 , 认为该机器工作正常.
例2 公司从生产商购买牛奶.公司怀疑生产商在 牛奶中掺水以谋利. 通过测定牛奶的冰点,可以检 验出牛奶是否掺水.天然牛奶的冰点温度近似服从
单个正态总体方差的假设检验
1. 为未知, 关于 2的检验( 2 检验)
设总体 X ~ N (, 2 ), , 2均为未知,
X1 , X 2 ,, X n 为来自总体 X 的样本, 要检验假设:
其中 0 为已知常数. 设显著性水平为 ,
因为 S 2 是 2 的无偏估计,
当H
例1 某切割机在正常工作时, 切割每段金属棒 的平均长度为10.5cm, 标准差是0.15cm, 今从一批 产品中随机的抽取15段进行测量, 其结果如下: 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度 X 服从正态分布, 且标准差没

2ቤተ መጻሕፍቲ ባይዱ

2 1
/
2
(n
1)
H1 : 0 (即设牛奶已掺水)
这是右边检验问题,其拒绝域为
z

x

0
n
z0.05
1.645.
现在
z


0.535

(0.545) 2.7951
1.645,
0.008 5
z的值落在拒绝域中, 所以我们在显著性水平

假设检验的P值法

假设检验的P值法

谢谢
THANKS
如何平衡p值法的利弊
结合其他统计方法
在某些情况下,可以将p值与其他统计方法(如效应量、 置信区间等)结合起来,以获得更全面的统计推断。
01
审慎解读p值
对于p值,应该审慎解读,避免过度解 释或误用。
02
03
考虑其他证据
除了p值,还应该考虑其他相关证据, 如实验设计、样本质量、数据来源等。
05 实际应用案例
Hale Waihona Puke 03 如何解读p值CHAPTER
p值与假设检验的关系
p值是衡量观察结果与原假设之间差异的指标,如果p值较小 ,说明观察到的数据与原假设存在显著差异,从而拒绝原假 设。
p值的大小反映了观察到的数据与原假设之间的不一致程度, 越小的p值意味着不一致程度越高。
p值与置信水平的关系
p值与置信水平是相关的概念,通常在假设检验中,p值越小,表明观察到的数据与原假设之间的差异越显著,从而有更高的 信心拒绝原假设。
02 p值法的原理
CHAPTER
假设检验的基本概念
01
假设检验是一种统计推断方法, 通过提出假设并对其进行检验, 以判断假设是否成立。
02
假设检验的基本步骤包括提出假 设、选择合适的统计量、确定样 本量、收集样本数据、计算统计 量、做出推断结论。
p值的计算方法
p值是指观察到的数据或更极端的数 据出现的概率,即在原假设为真的情 况下,观察到的结果或更极端的结果 出现的概率。
假设检验的p值法
目录
CONTENTS
• 引言 • p值法的原理 • 如何解读p值 • p值法的优缺点 • 实际应用案例 • 结论
01 引言
CHAPTER
什么是p值法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解二
检验假设为
H 0 : 0 225, H1 : 225,
X 0 现在检验统计量 t 的观 察值为 S n
241.5 225 t 0.6685. 98.7259 16
由计算机算得 (见P140公式3.11) p值=P{t 0.6685} 0.2570.
就有
( 1 )若p值 , 则在显著性水平下拒绝H0 ; ( 2 )若p值 , 则在显著性水平下接受H0 .
有了这两条结论就能方便地确定是否拒绝H0 . 这种 利用p值来确定是否拒绝H0的方法, 称为p值法.
例如当 0.05 用临界值法来确定H 0的拒绝域时,
时知道要拒绝H 0, 再取 0.01也要拒绝H 0,但不
综合( i )( ii ), p值 2 (由t0界定的尾部面积)如图6;
t0 0
1 p 2
1 p 2
t0 0
o
图5
t0
t0
o
图6
上述各图中的曲线均为t (n 1)分布的概率密度曲线.
在现代计算机统计软件中, 一般都给出检验问题的 对于任意指定的显著性水平 , p值. 按p值的定义,
若显著性水平 p 0.0238,则对应的临界值 z 1.983, 这表示观察值z= 1.983落在拒绝域内 (如
因而接受H 0 . 不落在拒绝域内图( 2),
定义 假设检验问题的p值( probability value)是由
检验统计量的样本观察值得出的原假设可被拒 绝 的最小显著性水平.
X 0 z . / n 以数据代入 , 得Z的观察值为
62.75 60 1.983. z0 10 / 52
概率
P{ Z z0 } P{ Z 1.983} 1 (1.983 ) 0.0238.
此即为图中标准正态曲线下位于 z0 右边的尾部
面积.
此概率称为Z检验法的右边检验的p值.
2
那么在检验问题
H0 : 0 , H1 : 0中 p值 P0 {t t0 } t0右侧尾部面积, 如图3; H 0 : 0 , H1 : 0中
p值 P0 {t t0 } t0左侧尾部面积, 如图4;
p值
p值
o
图3
t0
t0
o
图4
H0 : =0 , H1 : 0中
牛奶掺水可使冰点温度升高而接近水的冰点温度
(0C ). 测得生产商提交的5批牛奶的冰点温度,
其均值x 0.535C , 问是否可以认为生产商在
牛奶中掺了水? 取 0.05.
解一 临界值法。 按题意需检验假设
H0 :
H1 :
0 0.545
0
(即设牛奶未掺水)
取 0.05. p值 0.05, 故接受H 0 .
H 0 : 0 225, H1 : 225,
取 0.05, n 16, x 241.5, s 98.7259,
用t检验法 , 查表得
x 0 t0.05 (15) 1.7531 t 0.6685 s/ n
故接受 H0 , 认为元件的平均寿命不大于225小时.
第八节 假设检验问题的p值法
临界值法.
假设检验方法
p值检验法
例1 设总体 X ~ N ( , 2 ), 未知 , 2 100,现有
样本 x1 , x2 ,, x52 , 算得 x 62.75.
现在来检验假设
H 0 : 0 60, H1 : 60.
采用Z检验法,检验统计量为
( i )当t0 0时 p值 P0 { t t0 } P0 {{t t0 } {t t0 }} 2 ( t0右侧尾部面积)如图5; ( ii )当t0 0时
p值 P0 { t t0 } P0 {{t t0 } {t t0 }}
能知道将再降低一些是否也要拒绝H 0 . 而p值法 给出了拒绝 H 0的最小显著性水平 . 因此p值法比
临界值法给出了有关拒绝域的更多的信息 .
例2 公司从生产商购买牛奶. 公司怀疑生产商在 可以检 牛奶中掺水以谋利. 通过测定牛奶的冰点, 验出牛奶是否掺水. 天然牛奶的冰点温度近似服从
正态分布, 均值0 0.545C , 标准差 0.008C.
任一检验问题的p值可以根据检验统计量的
样本观察值的以及检验统计量在H0下一个特定的
参数值(一般是 H0与H1所规定的参数的分界点)对 应的分布求出.
例如在正态分布N ( , )均值的检验中, 当 未知时, 可采用检验统计量 X 0 t , 在以下三个检验问题中 , 当 0时, S/ n t ~ t ( n 1).如果由样本求得统计量 t的观察值为 t 0 ,
解二 P 值法。
H 0 : 0 0.545, H 1 : 0
x 0 现在检验统计量Z 的观察 值为 n 0.535 ( 0.545) z0 = 2.7955. 0.008 5
0.0026. p值=P{ Z 2.7955} 1 ( 2.795边检验问题,用Z检验法 , x 0 z z 0.05 1.645. 其拒绝域为 n
0.535 ( 0.545) 现在 z 2.7951 1.645 , 0.008 5 所以我们在显著性水平 z的值落在拒绝域中,
0.05下拒绝H 0 , 即认为牛奶商在牛奶中掺了水.
记为p值=P{ Z z0 } 0.0238.
Z ~ N 0,1
Z ~ N 0,1
0.0238
0.0 .0238 0237
o
图1
z 0 1.983
o
图2
z 0 1.983
图1, 因而拒绝H 0 ; 又显著性水平 p 0.0238, 则对应的临界值z0 1.983, 这表示观察值 z0 = 1.983
p值 0.05, 故拒绝H 0 .
例3
某种电子元件的寿命X(以小时计)服从正态
2
分布, , 均为未知. 现测得16只元件的寿命 如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)? 解一 依题意需检验假设
相关文档
最新文档