勾股定理复习课件
合集下载
勾股定理数学优秀ppt课件

实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》复习课件ppt

答案5
根据勾股定理和相似三角形的性质,BD² = AB² - AD² = AC² + BC² - (AC + CD)² = 4² + 6² - (4 + 2)² = 20。 所以 BD = √20 = 2√5。
THANKS
感谢您的观看
勾股定理公式
a² + b² = c²,其中a和b是直角三 角形的两条直角边,c是斜边。
勾股定理的证明方法
欧几里得证明法
利用相似三角形的性质和比例关系, 通过一系列的逻辑推理证明勾股定理 。
毕达哥拉斯证明法
利用正方形的性质和勾股定理的关系 ,通过构造两个正方形证明勾股定理 。
勾股定理的应用场景
实际问题求解
要点一
勾股定理在三维空间的应用
要点二
勾股定理在三维空间的应用示例
勾股定理不仅适用于平面图形,还可以应用于三维空间中 的几何体。
在解决三维几何问题时,可以使用勾股定理来计算空间几 何体的边长或体积。
04
勾股定理的解题技
巧和策略
利用勾股定理求边长
总结词
勾股定理是解决直角三角形问题的重要工具 ,通过已知两边长,可以求出第三边长。
详细描述
勾股定理公式为$c^2 = a^2 + b^2$,其中 $c$为斜边长,$a$和$b$为直角边长。已知 $a$、$b$和$angle C = 90^circ$,可以通
过勾股定理求出第三边长$c$。
利用勾股定理证明三角形为直角三角形
总结词
勾股定理也可以用来证明一个三角形是否为直角三角形。
详细描述
勾股定理复习课件理的回顾 • 勾股定理的常见题型解析 • 勾股定理的变式和推广 • 勾股定理的解题技巧和策略 • 勾股定理的练习题和答案解析
勾股定理课件(共19张PPT)人教版初中数学八年级下册

1
+2·
2
ab =
即:在Rt△ABC 中,∠C=90 °
c2 = a2 + b2
1 2
c +ab
2
伽
菲
尔
德
证
法
归纳小结
“赵爽弦图”通过图形的切割、拼接,巧妙地利用面积关系证实
了命题的正确性,命题与直角三角形的边有关,我国把它称为
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
即a2+b2=c2.
勾股定理: 直角三角形两直角边a、b的平
方和,等于斜边c的平方。
即:a2+b2 =c2
谢谢观看
哲学家、数学家、天文学家
新知探究
思考
图17.1-2中三个正方形的面积有什么关系?等腰
直角三角形的三边之间有什么关系?
A
B
a
b
c
C
图17.1-2
三个正方形A、
B、C的面积有
什么关系?
新知探究
探究
等腰直角三角形有上述性质,其他
直角三角形是否也有这个性质?
C
A
B
C'
图1
A'
B'
图17.1-3
图2
(图中每个小方格代表一个单位面积)
教 学 目 标 / Te a c h i n g a i m s
1
2
了解勾股定理文化背景,体验勾股定理的探究过
程。
理解不同勾股定理的证明方法,能够分析
它们的异同。
能够用勾股定理解决直角三角形的相关学习
3
和解决生活中的实际问题。
情景导入
图17.1-1
毕达哥拉斯(Pythagoras,约前
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
勾股定理小结与复习初中数学原创课件

二、勾股定理的逆定理
1.勾股定理的逆定理
A
c
如果三角形的三边长a,b,c满足 b
a2 +b2=c2 ,那么这个三角形是直角三角形. C a B
2.勾股数 满足a2 +b2=c2的三个正整数,称为勾股数.
3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫做它的逆命题.
考点二 勾股定理的逆定理及其应用
例4 已知在△ABC中,∠A,∠B,∠C的对边分别是a,b, c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为 直角三角形. 【解析】要证∠C=90°,只要证△ABC是直角三角形,并且 c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
解:如图,过半圆直径的中点O,作直径的垂线交下底边 于点D,取点C,使CD=1.4米,过C作OD的平行线交半圆直 径于B点,交半圆于A点. 在Rt△ABO中,由题意知OA=2米,DC=OB=1.4米, 所以AB2=22-1.42=2.04. 因为4-2.6=1.4,1.42=1.96, 2.04>1.96, 所以卡车可以通过. 答:卡车可以通过,但要小心.
∴AC= AB2 BC2 =24米,
已知AD=4米,则CD=24-4=20(米), ∵在直角△CDE中,CE为直角边,
∴CE= DE2 CD2 =15(米),
BE=15-7=8(米).故选C.
针对训练
3.如图,某住宅社区在相邻两楼之间修建一个上方是一个 半圆,下方是长方形的仿古通道,现有一辆卡车装满家 具后,高4米,宽2.8米,请问这辆送家具的卡车能否通 过这个通道?
第十七章 勾股定理
要点梳理
一、勾股定理
1.如果直角三角形两直角边分别为a,b,斜边为c,
勾股定理复习课件

h
1.如图,已知长方体的长、宽、高分 别为4cm、3cm、12cm,求BD’的长。
解:连结BD,在直角三角形 ABD中,根据勾股定理 A’
BD AB AD 4 3 5
2 2 2 2 2 2
D’ B’
C’
BD 5
在直角三角形D’ BD 中,根 据勾股定理
BD'2 DD '2 BD 2 12 2 52 13 2 BD' 13(cm)。
4.若一个三角形某两边的平方和不等于第三边的平 方,则这个三角形一定不是直角三角形( ).
选择: 直角三角形的两条直角边长为a,b, 斜边上的高为h,则下列各式中总能成立 的是 ( D )
A. ab=h
2
B. a +b =2h
2
2
2
1 1 1 C. + = a b h
1 1 1 D. 2 + 2 = 2 a b h
4.互逆命题与互逆定理的概念
无理数在数轴上的表示
在数轴上表示 13 , 17 , 5,20
4.勾股定理及其逆定理的应用
①勾股定理可以解决直角三角形当中一些
与边有关的问题(直角边、斜边、斜边上
的高、面积等)
②勾股定理的逆定理可以判断一个三角形
是否是直角三角形(此时先找到最长边,再
看看两较短边的平方和是否等于长边的平
本章知识框图:
实际问题
(直角三角形边长计算)
互逆 定理
由形到数
勾股定理
实际问题 (判定直角三角形)
由数到形
勾股定理 的逆定理
题设
勾股定理 在Rt△ABC 中,∠C=900
勾股定理的逆定理 在△ABC 中, 三边 a,b,c满足a2+b2=c2
人教版八年级下册数学《勾股定理》教学说课复习课件巩固

C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
等腰直角三角形三边的关系为:两直角边的平方和等于斜边的平方。
探究新知
问题3 网格中为一般的直角三角形,以它的三边为 边长的三个正方形A、B、C 是否也有类似的面积关 系?(每个小正方形的面积为单位1):
A C
、地面构成的两个直角三角形,
什么量没有发生变化?
O
BD
问题3 下滑后梯子底端外移的距离是哪条线段的长度?
如何计算?
解:可以看出,BD=OD-OB.
在Rt△ABC中,根据勾股定理,
OB2=AB2-OA2=2.62-2.42=1. OB=1.
在Rt△COD中,根据勾股定理,
OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15
二 用勾股定理巧证明“HL”
思考 在八年级上册中,我们曾经通过画图得到结论:斜边和一 条直角边分别相等的两个直角三角形全等.学习了勾股定理后 ,你能证明这一结论吗?
已知:如图,在Rt△ABC 和Rt△A ′ B ′ C ′ 中,∠C= ∠C ′=90°,AB=A′ B ′,AC=A′ C′ .
求证:△ABC≌△A ′B ′C′ .
12
3 4 5 ,…
1
12
3
4
5
“数学海螺”
归纳总结
利用勾股定理表示无理数的方法 (1)利用勾股定理把一个无理数表示成直角边是两个正 整数的直角三角形的斜边. (2)以原点O为圆心,以无理数斜边长为半径画弧与数 轴存在交点,在原点左边的点表示是负无理数,在原点 右边的点表示是正无理数.
勾股定理课件ppt

THANKS
感谢观看
衡性非常重要。
03
地貌形成
地貌的形成过程中涉及到物体的高度和距离的关系,而这种关系可以用
勾股定理来描述,因此勾股定理可以帮助我们理解地貌的形成过程。
06
总结与回顾
勾股定理的重要性和应用价值
勾股定理是几何学中一个非常重要的定理,它揭示了直角三角形三边之间的数量关 系,对于解决几何问题具有关键作用。
建筑中的支撑结构需要精确计算和设计,勾股定理可以帮助建筑师确 定支撑结构的尺寸和形状,以确保建筑物的承重能力。
勾股定理在航天工程中的应用
确定飞行轨道
在航天工程中,勾股定理被用来确定飞行器的轨道和速度 ,以确保飞行器能够准确到达目标。
导航
飞行器在飞行过程中需要精确的导航,勾股定理可以帮助 飞行员计算出飞行器的位置和方向,以确保飞行器的安全 和准确性。
04
勾股定理的变式和推广
勾股定理的变式
勾股定理的逆定理
如果一个三角形的三条边满足勾 股定理的条件,那么这个三角形
是直角三角形。
勾股定理的推广
如果一个三角形的两条边长分别 为a和b,且它们的夹角为α,那 么这个三角形的第三条边长c满
足$c^2 = a^2 + b^2 2ab\cos(α)$。
勾股定理的变形
在现实生活中,勾股定理的应用非常广泛,例如在建筑、测量、航空等领域都有实 际应用。
通过对勾股定理的学习和应用,可以更好地理解几何学的基本概念和原理,提高解 决实际问题的能力。
学习勾股定理的收获和感悟
学习勾股定理需要掌握其基本 概念和定理,了解其历史背景 和证明方法。
通过学习和实践,可以培养自 己的逻辑思维能力和空间想象 力,同时提高对数学的兴趣和 热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
勾股定理复习
知识 梳理
勾股定理
精品
如果直角三角形两直角边分别为a,b, 斜边为c,那么a2 + b2 = c2
B
c a
AC
b
符号语言:
在Rt△ABC中, ∠C=90 ∴a2+b2=c2
练习
1、求出下列直角三角形中未知的边.
A
B
2
8 C
(1)
30°
A
C
(2)
C
精品
45°B
2
A
(3)
精品
2.已知一个直角三角形的两边长分别为3和4, 则第三边长的平方是( )
A、25 B、14 C、7 D、7或25
3.小明想知道学校旗杆的高度,他发现旗杆上 的绳子垂到地面还多1m,当他把绳子的下端拉 开5m后,发现下端刚好接触地面,求旗杆的 高
4、如图,小颖同学折叠一个直角三角形
的纸片,使A与B重合,折痕为DE,若已
知AB=10cm,BC=6cm,你能求出CE的长
吗?
B
D
精品
A
E
C
变式:如图,小颖同学折叠一个直角三 角形的纸片,使C与D重合,折痕为BE, 若已知AB=10cm,BC=6cm,你能求出 CE的长吗?BD精品AC
E
5、你能在数轴上表示 1 7 的点吗?
精品
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 ,
那么这个三角形是直角三角形
精品
B
符号语言: 在△ABC中,
c b
∵a2+b2=c2
C aA
∴ △ABC 是直角三角形, ∠C=90
互逆定理
如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.
精品
说出下列命题的逆命题.并判断逆命题 成立?
(1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平 方相等. (3)如果两个实数相等,那么它们的绝 对值相等. (4)全等三角形的对应角相等.
精品
“海天”
“远航”
精品
谈谈本节课收获有哪些?
1.在已知下列三组长度的线段中,
不能构成直角三角形的是 ( )
A 5,12,13 B 2,3, 5
C 4,7,5
D 1, 2 , 3
精品
2.若△ABC中 ,AB=5 ,BC=12 ,AC=13 , 求AC边上的高.
3、如图10所示,某港口P位于东西方向的海岸线 上,“远航号”和“海天号”两艘轮船同时从港口 离开,各自沿着一个固定的方向航行。“远航号” 每小时航行16海里,“海天号”每小时航行12海 里,它们离开港口一个半小时后,两船相距30海里, 如果知道“远航号”的航行方向是东北方向,你能 知道“海天号”是沿着哪个方向航行吗 ?
勾股定理复习
知识 梳理
勾股定理
精品
如果直角三角形两直角边分别为a,b, 斜边为c,那么a2 + b2 = c2
B
c a
AC
b
符号语言:
在Rt△ABC中, ∠C=90 ∴a2+b2=c2
练习
1、求出下列直角三角形中未知的边.
A
B
2
8 C
(1)
30°
A
C
(2)
C
精品
45°B
2
A
(3)
精品
2.已知一个直角三角形的两边长分别为3和4, 则第三边长的平方是( )
A、25 B、14 C、7 D、7或25
3.小明想知道学校旗杆的高度,他发现旗杆上 的绳子垂到地面还多1m,当他把绳子的下端拉 开5m后,发现下端刚好接触地面,求旗杆的 高
4、如图,小颖同学折叠一个直角三角形
的纸片,使A与B重合,折痕为DE,若已
知AB=10cm,BC=6cm,你能求出CE的长
吗?
B
D
精品
A
E
C
变式:如图,小颖同学折叠一个直角三 角形的纸片,使C与D重合,折痕为BE, 若已知AB=10cm,BC=6cm,你能求出 CE的长吗?BD精品AC
E
5、你能在数轴上表示 1 7 的点吗?
精品
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 ,
那么这个三角形是直角三角形
精品
B
符号语言: 在△ABC中,
c b
∵a2+b2=c2
C aA
∴ △ABC 是直角三角形, ∠C=90
互逆定理
如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.
精品
说出下列命题的逆命题.并判断逆命题 成立?
(1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平 方相等. (3)如果两个实数相等,那么它们的绝 对值相等. (4)全等三角形的对应角相等.
精品
“海天”
“远航”
精品
谈谈本节课收获有哪些?
1.在已知下列三组长度的线段中,
不能构成直角三角形的是 ( )
A 5,12,13 B 2,3, 5
C 4,7,5
D 1, 2 , 3
精品
2.若△ABC中 ,AB=5 ,BC=12 ,AC=13 , 求AC边上的高.
3、如图10所示,某港口P位于东西方向的海岸线 上,“远航号”和“海天号”两艘轮船同时从港口 离开,各自沿着一个固定的方向航行。“远航号” 每小时航行16海里,“海天号”每小时航行12海 里,它们离开港口一个半小时后,两船相距30海里, 如果知道“远航号”的航行方向是东北方向,你能 知道“海天号”是沿着哪个方向航行吗 ?