干涉式光纤传感器
干涉型光纤温度传感器

传感器与微系统(Transducer and M icr osyste m Technol ogies) 2007年第26卷第4期设计与制造干涉型光纤温度传感器刘 晨,费业泰,卢荣胜(合肥工业大学仪器科学与光电工程学院,安徽合肥230009)摘 要:为了长期和在线实时检测各种工程结构内(如飞机机翼)的温度,在介绍了2种典型的干涉型光纤温度传感器技术的基本原理、结构及优缺点的基础上,提出了一种新型光纤温度传感器——嵌入式干涉型光纤温度传感器的工作原理和结构设计。
它用特殊加工工艺将光纤埋入材料中,通过相位调制产生干涉条纹,再通过条纹的判向计数来对材料内部温度进行测量。
实验结果表明:嵌入式光纤温度传感器能长期有效测量材料内部的温度,并且,它的灵敏度比放在空气中的灵敏度要高2~3倍。
具有很大的研究开发和应用价值。
关键词:光纤光学;相位调制;温度测量;干涉中图分类号:TP212 文献标识码:A 文章编号:1000-9787(2007)04-0058-03I n terference opti ca l2f i ber te m pera ture sen sorsL I U Chen,FE I Ye2tai,LU Rong2sheng(School of Appara tus Sc i ence and Photo2Electr i c Eng i n eer i n g,Hefe i Un i versity of Technology,Hefe i230009,Ch i n a)Abstract:I n order t o measure per manently and real2ti m e the te mperature inside all kinds of p r oject constructi onfor exa mp le air p lane wing,the basic p rinci p le,structure and characteristics of t w o kinds of interference op tical fiberte mperature sens ors are intr oduced,on the base of it,the working p rinci p le and structure designing of a new kind ofop tical fiber temperature sens or—embedded op tical2fiber temperature sens or are p resented.Op tical fiber ise mbedded int o material using s pecial p r ocessing technol ogy,interference stri pe is p r oduced thr ough phasemodulati on,then stri pe distinguishing directi on and counting is used t o measure the internal temperature.Experi m ental results show that the internal te mperature of material can be measured by a e mbedded op tical2fiberte mperature sens or,and its sensitivity is2~3ti m es higher than op tical2fiber sens or in air.It has very value ofinvestigating and utilizing.Key words:fiber op tics;phase modulati on;te mperature measure ment;interfer ometry0 引 言光纤传感器与传统传感器相比具有灵敏度高、耐腐蚀、安全可靠、抗电磁干扰、结构简单、体积小、质量轻等特点,而且,在一定条件下可任意弯曲,因此,得到了广泛的应用[1,2]。
光纤传感器的原理是

光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。
它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。
光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。
一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。
通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。
光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。
二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。
1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。
它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。
当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。
2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。
它通过纤芯中的光散射来判断外界物理量的变化。
光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。
通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。
3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。
它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。
通过测量光的强度变化,可以获得物理量的信息。
三、应用领域光纤传感器在诸多领域有着广泛的应用。
1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。
通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。
2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。
光纤传感器基本原理

光纤传感器基本原理
光纤传感器基本原理是利用光纤的特殊性质,将光信号转换为电信号。
在光纤传感器中,光源发出的光经过光纤传播,在光纤的某一点与外界的物理量进行相互作用后,光信号发生变化。
传感器的探测部分是光纤的一段,在传感区域内,光信号的幅度、相位、频率等参数会随着被测量的物理量发生变化。
光纤传感器的工作原理基于光的干涉、散射、吸收等现象。
其中,基于光纤干涉原理的传感器是最常见的类型。
这类光纤传感器一般采用法布里-珀罗特(F-P)干涉仪的结构。
当光纤中
的光信号遇到传感器传感区域的物理量变化时,传感区域的折射率发生改变,导致传感区中的干涉光程差发生变化。
这一变化会通过反射回到光纤,进而对干涉光信号产生影响。
通过测量干涉光信号的变化,可以推断出传感区域中物理量的变化情况。
除了光纤干涉原理外,还有其他一些基于光纤散射和吸收的传感器原理。
光纤散射传感器是利用光在光纤中发生散射的特性,通过测量光的散射强度或相位变化来得到物理量的信息。
光纤吸收传感器则是利用光在光纤中被介质吸收的特性,通过测量吸收光信号的强度变化来推断物理量的变化。
光纤传感器具有体积小、响应速度快、抗电磁干扰强等优点,广泛应用于温度、压力、拉力、位移等物理量的测量领域。
随着技术的不断进步,光纤传感器的精度和可靠性也在不断提高,为工业自动化、医疗、环境监测等领域的应用提供了可靠的检测手段。
白光非本征法布里—珀罗干涉光纤传感器及其应用研究

白光非本征法布里—珀罗干涉光纤传感器及其应用研究一、本文概述随着光纤传感技术的迅速发展,光纤传感器在众多领域如通信、环境监测、生物医学、航空航天等中展现出巨大的应用潜力。
作为一种重要的光学干涉现象,法布里-珀罗干涉(Fabry-Perot Interference,FPI)因其高灵敏度、高分辨率和易于实现等优点,在光纤传感领域受到了广泛关注。
本文将重点探讨一种基于非本征法布里-珀罗干涉原理的光纤传感器,即白光非本征法布里-珀罗干涉光纤传感器(White Light Non-Intrinsic Fabry-Perot Interferometric Fiber Sensor,WLNIFPI)。
本文首先介绍了法布里-珀罗干涉的基本原理和光纤传感器的基本构成,为后续研究提供理论基础。
接着,详细阐述了白光非本征法布里-珀罗干涉光纤传感器的制作原理、传感机制以及优势特点,包括其高灵敏度、宽测量范围、良好的抗电磁干扰能力等。
本文还对白光非本征法布里-珀罗干涉光纤传感器的信号解调技术进行了深入研究,以提高其测量精度和稳定性。
在应用研究方面,本文探讨了白光非本征法布里-珀罗干涉光纤传感器在多个领域的应用,如温度测量、压力传感、应变监测等。
通过实验验证,展示了该传感器在实际应用中的可行性和有效性。
本文总结了白光非本征法布里-珀罗干涉光纤传感器的研究现状,并对其未来的发展趋势进行了展望,以期为该领域的研究人员提供有益的参考和启示。
二、白光非本征法布里—珀罗干涉光纤传感器的基本理论白光非本征法布里—珀罗干涉(White Light Non-Intrinsic Fabry-Perot Interferometric,WLN-FPI)光纤传感器是一种基于干涉原理的光纤传感技术。
其基本理论主要涉及光的干涉、光纤传输以及信号解调等方面。
干涉是光波在传播过程中因遇到障碍物或介质界面而发生反射、折射等现象,使得光波在空间某一点叠加形成加强或减弱的现象。
光纤传感器的分类及其应用原理

光纤传感器的分类及其应用原理
光纤传感器是利用光学法对物理量进行测量的一种传感器。
其分类主要有以下几种:
1. 基于干涉原理的光纤传感器:通过利用光的干涉效应来测量物理量,包括干涉型位移传感器、Fabry-Perot干涉型传感器、Mach-Zehnder光学干涉型传感器等。
2. 基于散射原理的光纤传感器:通过利用光在材料中散射的现象来测量物理量,包括拉曼散射光纤传感器、布里渊散射光纤传感器等。
3. 基于吸收原理的光纤传感器:通过利用物质对光的吸收现象来测量物理量,包括光纤气体传感器、光纤液位传感器等。
光纤传感器应用原理主要包括光学原理和材料物理学原理两个方面。
其中,光学原理对于基于干涉原理和散射原理的光纤传感器起到重要作用,其基本思路是利用不同的物理量导致光在光纤中发生不同的相位变化,通过测量光的相位变化来获得物理量的信息。
而材料物理学原理则对基于吸收原理的光纤传感器起到决定性作用,其基本思路是通过材料对光的吸收性能来间接测量物理量的信息。
基于白光干涉原理的光纤传感技术——Ⅰ.光纤传感器与智能结构

度传 感器的传感机理 ,分析 了光纤传感 器与基体材料 的相 互作 用及其 力学传递特性 ;最后 ,较 为详细 的探 讨 了多种 可能 的
白 光 干 涉 式 准 分 布 光 纤 多路 复 用传 感 技 术 ,展 示 了其 基 本 的 环 形 传 感 网络 拓 扑 结 构 ,并 给 出 了若 干 简 化 解 调 系统 的 例 子 。 系 列论 述共 分 为 8个部 分 ,本 刊 自本 期 起 陆 续 刊 出 , 以期 推 动 国 内相 关领 域 基 于 白光 干 涉 原 理 的 光 纤 传 感 技 术 及 其 应 用 的
哈 尔滨 10 0 ) 5 0 1
摘 要 :概述了用于智能结构和材料监测 的光纤传感技术 ,阐述 了对建 筑结 构进 行监测的原 因和将 光纤传感器
用作结 构健 康监测的理 由。众所周知 ,很多光纤传感 器 已经 成功地 应用 到了智能结 构监测 领域 。本研究 一直关 注自光干涉式光纤传感器技术及近 2 年来此类传感 器的发展 。由于 白光干涉式光纤传感器 在智能结构 监测尤其 O
为 万亿 元 规 模 的 高科 技 市场 ,其 产 业 规 模 要 比 互联 网 大 3 O倍 ,具 有 广 阔 的 发展 空 间 和 前 景 。 作 为 最 为基 础 的 物 理 感 知 层 的光 纤 传 感 器是 各 种 传 感 器 中 的 一 种 先进 传 感 技 术 。 为 了促 进 这 一 新 兴 产 业 技 术 的发 展 ,
广 泛深入 的研 究 ,本刊也将优 先刊载该领域的最新优 秀研 究成果 。
基 于 白光 干 涉原 理 的 光 纤传 感 技 术
一
工.光 纤 传 感器 与智 能结 构
苑 立 波
( .哈 尔滨工程 大学 理学院 光子科 学与技 术研 究中心 ,哈 尔滨 10 0 ;2 黑龙 江省光 纤传 感科 学与技术 重点 实验 室, 1 50 1 .
光纤干涉传感实验报告

1. 了解光纤干涉传感的基本原理和实验方法。
2. 掌握光纤干涉传感器的构造及其在测量中的应用。
3. 通过实验验证光纤干涉传感器的测量精度和可靠性。
二、实验原理光纤干涉传感器是基于光干涉原理的一种新型传感器。
当两束光波在空间相遇时,如果它们的相位差为零或整数倍的2π,则两束光波相互加强,形成亮条纹;如果相位差为奇数倍的π,则两束光波相互抵消,形成暗条纹。
通过测量干涉条纹的变化,可以实现对被测物理量的精确测量。
光纤干涉传感器通常采用迈克尔逊干涉仪或法布里-珀罗干涉仪等光学原理。
本实验采用迈克尔逊干涉仪,其基本原理如下:1. 激光器产生一束连续激光,经扩束镜后变为平行光束。
2. 平行光束经分束器分为两束,一束作为参考光,另一束作为测量光。
3. 测量光经光纤传输到达被测物体,反射后返回光纤。
4. 参考光和测量光在光纤端面发生干涉,形成干涉条纹。
5. 干涉条纹通过光纤传输,经光电探测器接收并转换为电信号。
6. 电信号经处理后,可得到被测物理量的信息。
三、实验仪器与设备1. 激光器2. 扩束镜3. 分束器4. 光纤传感器5. 光电探测器6. 数据采集系统7. 计算机1. 将激光器、扩束镜、分束器、光纤传感器、光电探测器和数据采集系统连接成实验电路。
2. 打开数据采集系统,设置采集参数。
3. 启动激光器,调节扩束镜和分束器,使激光束通过光纤传感器。
4. 测量参考光和测量光的强度,记录数据。
5. 改变被测物理量,观察干涉条纹的变化,记录数据。
6. 对采集到的数据进行处理,得到被测物理量的信息。
五、实验结果与分析1. 当被测物理量改变时,干涉条纹发生相应的变化。
根据干涉条纹的变化规律,可以计算出被测物理量的变化量。
2. 通过实验验证,光纤干涉传感器的测量精度较高,可满足实际应用需求。
3. 分析实验数据,探讨影响光纤干涉传感器测量精度的因素,并提出改进措施。
六、实验总结1. 本实验成功实现了光纤干涉传感器的测量,验证了其测量精度和可靠性。
光纤温度传感器

5、荧光光纤温度传感器
传光型
功能型 传光型:采用荧光材料粘接或涂敷在光纤端头或被测
物体表面作为敏感部分
功能型:在光纤中掺杂一定浓度的稀有元素作为敏感部
分。 • 根据对荧光信号处理方式的不同,荧光光纤温度传感器可分为荧光强度 型、荧光寿命型。
外汞灯
光纤荧光温度传感器
测温范围为-30~200℃ ,精度为 5℃ .在0~70℃的测温范围内,连 续测温偏差0.04℃ 简单的工作流程图如右图所示
4.光纤光栅温度传感器
工作原理:借助于某种装置将被测参量的变化转化为作用于光纤光栅上的应变 或温度的变化,从而引起光纤光栅布喇格波长的变化通过建立并标定光纤光栅的 应变或温度响应与被测参量变化的关系,就可以由光纤光栅布喇格波长的变化,测 量出被测量的变化。
将被测参 量的变化
光纤光栅上 的应变或温 度的变化
优点: 1、蓝宝石单晶物理化学性能稳定、机械强度好、本质绝缘, 耐腐蚀 2、在0.3~0.4μm波段范围内透光性很好,熔点高达2 045℃ . 3、蓝宝石单晶光纤既有蓝宝石单晶的优良性能又有光波导 的特点, 测温范围在500~2 000℃
缺点:当温度高于1 700℃时,表面有所变化,应用受到一定的 限制
传输型:光导纤维只起到传输光的作 用,必须在光纤端面加装其它的敏感 元件才能构成新型传感器的传输型传 感器。
三、两种传感器的举例介绍
1
功 能 型
干涉式光纤温度传感器 分布式光纤温度传感器
2 3
4
反射式光纤温度传感器
光纤光栅温度传感器
1.干涉式光纤温度传感器
• 属于相位调制式功能型光纤温度传感器,主要应用于精密测 温领域 • 工作原理:当两根在温度场的光纤在不同的温度场工作时, 其折射率会产生差异,随之光程也会发生差异.若此时进行耦 合,就会产生干涉现象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#
ST70测量水听器
接收声压灵敏度 (dB re.1v/µPa) 204 自由电容 C0(nf) 4.2 ±15% 15% 带前置的放大器增益 (d B) 20 (ST70A型) 外壳材料 不锈钢 声窗材料 聚氨酯
#
光纤传感器的分类
根据测量对象来分: 根据测量对象来分: 温度传感器、压力、位移传感器等。 温度传感器、压力、位移传感器等。 根据光纤是否对被测量敏感来分: 根据光纤是否对被测量敏感来分: 元件型和传输型传感器。 元件型和传输型传感器。 根据被测量调制光波参数来分: 根据被测量调制光波参数来分: 光强调制型、 相位调制型、 波长调制型、 频 光强调制型 、 相位调制型 、 波长调制型 、 率 调制型及偏振调制型。 调制型及偏振调制型。
式中第一项表示光纤长度变化引起的相位差(应变效应或热胀效应), 第二项为光纤折射率变化引起的相位差(光弹效应或热光效应),第三 项为光纤芯径变化引起的相位差(泊松效应)。 为了测到各效应对其所产生的影响,自然要对调制在相位中的信号需要 进行解调,用于光相位解调的干涉结构有多种,如双光束干涉法、三光 束干涉法、多光束干涉法及环形干涉法等,此处主要介绍双光束干涉法。
#
双光束光纤干涉仪有迈克尔逊(Michlson)干涉仪、马赫-陈德尔 干涉仪、马赫 陈德尔 陈德尔(Mach双光束光纤干涉仪有迈克尔逊 干涉仪 Zehnder)干涉仪及斐索 干涉仪及斐索(Fizeau)干涉仪。 干涉仪。 干涉仪及斐索 干涉仪
1)迈克尔逊干涉仪 ) 信号臂 3dB 参考臂
(a) 迈克尔逊干涉仪
#
2)马赫-陈德尔干涉仪 )马赫 陈德尔干涉仪 信号臂 3dB 参考臂 3)斐索干涉仪 )
(b) 马赫-陈德尔干涉仪
光源
3dB 探测器
马赫-陈德尔干涉仪使用了两个 耦合器, 马赫 陈德尔干涉仪使用了两个3dB耦合器,光源发出的相干光 陈德尔干涉仪使用了两个 耦合器 由第一个3dB耦合器进入信号臂光纤与参考臂光纤,在经第二个 耦合器进入信号臂光纤与参考臂光纤, 由第一个 耦合器进入信号臂光纤与参考臂光纤 3dB耦合器后在探测器端汇合,产生干涉条纹。马赫 陈德尔干涉仪 耦合器后在探测器端汇合, 耦合器后在探测器端汇合 产生干涉条纹。马赫-陈德尔干涉仪 的优点是克服了迈克尔逊干涉仪中反馈光波对光源的影响 克服了迈克尔逊干涉仪中反馈光波对光源的影响, 的优点是克服了迈克尔逊干涉仪中反馈光波对光源的影响,得到广 泛的应用。 泛的应用。
缺陷
各个类别的传感器其实都是尤其缺陷的。 各个类别的传感器其实都是尤其缺陷的。 今天我们所要介绍的是干涉型光纤传感器自然也有 它的不足地方。 它的不足地方。 1.它只是元件型的光纤传感器,测量方法单一。 1.它只是元件型的光纤传感器,测量方法单一。 它只是元件型的光纤传感器 由于光纤是在单模光纤构成的干涉型光纤传感器中, 2.由于光纤是在单模光纤构成的干涉型光纤传感器中 由于光纤是在单模光纤构成的干涉型光纤传感器中 故存在偏振衰落问题,将导致干涉效率降低 将导致干涉效率降低。 故存在偏振衰落问题 将导致干涉效率降低。而为了 消偏振衰落采用全保偏器件的光纤传感器成本过于高 影响其实用性。 泽德干涉仪为基础,用反馈 昂,影响其实用性。以马赫 泽德干涉仪为基础 用反馈 影响其实用性 以马赫-泽德干涉仪为基础 信号控制偏振控制器加起偏器的结构消除了偏振衰落, 信号控制偏振控制器加起偏器的结构消除了偏振衰落 构造了基于部分保偏器件的干涉型光纤传感器。 构造了基于部分保偏器件的干涉型光纤传感器。实验 得到系统输出信噪比稳定在60 左右 左右。 得到系统输出信噪比稳定在 dB左右。
#
有个例子可以看看: 有个例子可以看看: 现以双光束干涉仪为例来分析干涉场。设信号光与参考光的场强分别为: 现以双光束干涉仪为例来分析干涉场。设信号光与参考光的场强分别为:
E 1 = E 10 exp {i [ω t + s ( t ) + φ s ]} E 2 = E 20 exp {i [ω t + φ r ]}
式中E10 :信号光场振幅 S(t):信号光相位调制量 O/s:信号光初始相位 E20:参考光场振幅 O/r:参考光初始相位 W:光波圆频率
#
两光束相干产生的干涉场分布为
E = {E10 exp[i(s(t ) + φ s )] + E20 exp(iφr )}exp(iωt )
相应的光强分布为
I = I 0 { + k cos[ s (t ) + φ s − φ r ]} 1
1.光纤水听器 光纤水听器
• 光纤水听器的种类多种多样,主要应用 光纤水听器的种类多种多样, 于军事领域。将光纤水听器放入水中, 于军事领域。将光纤水听器放入水中, 可以检测远处船只、 可以检测远处船只、潜艇发动机引起的 水压扰动,从而发现敌方目标。 水压扰动,从而发现敌方目标。
#
例:ST70测量水听器
这样,可将相位变化转换为强度变化,可以获得被测信号的大小。 这样,可将相位变化转换为强度变化,可以获得被测信号的大小。 相位调制型光纤传感器在温度,压力测量等方面具有广泛应用,其特 点是系统灵敏度非常高。如后面还将介绍的一种运用在军事上的光纤 水听器就是一种相位调制型光纤传感器,其主要就是通过水压的扰动, 发现地方目标。
#
光纤传感技术是许多经济、军事强国争相研究的高新 光纤传感技术是许多经济、 技术, 技术,它可广泛应用于国民经济的各个领域和国防军事领 在航天航空(飞机及航天器各部位压力测量、 域。在航天航空(飞机及航天器各部位压力测量、温度测 陀螺等)、航海(光纤水听器、声纳等)、 )、航海 )、工程项目 量、陀螺等)、航海(光纤水听器、声纳等)、工程项目 桥梁建设及修复的监测、铁路等)石油开采(液面高度、 (桥梁建设及修复的监测、铁路等)石油开采(液面高度、 流量测量、二相流中空隙度的测量 )、电力传输(高压 流量测量、 )、电力传输( 电力传输 输电网的电流测量、电压测量)、核工业(放射剂量测量、 )、核工业 输电网的电流测量、电压测量)、核工业(放射剂量测量、 原子能发电站泄漏剂量监测)医疗(血液流速测量、 原子能发电站泄漏剂量监测)医疗(血液流速测量、血压 及心音测量)、科学研究(地球自转,敏感蒙皮) )、科学研究 及心音测量)、科学研究(地球自转,敏感蒙皮)等众多 领域都得到了广泛的应用。各种光纤传感器如: 领域都得到了广泛的应用。各种光纤传感器如:白光法布 里-珀罗(Fabry-Perot)干涉仪型光纤传感器产品,布 珀罗(Fabry-Perot)干涉仪型光纤传感器产品, 拉格(Bragg) 拉格(Bragg)光栅型分布式和荧光式光纤传感器等相关 产品,能满足相应行业的应用。 产品,能满足相应行业的应用。
光源 探测器
在迈克尔逊干涉仪中,光源发射光经3dB光纤耦合器被分成功率相等的两部分, 分别进入信号臂光纤与参考臂光纤,然后分别被端面的反射镜反射回各自的光纤中, 在信号臂光纤中传输的光波相位被调制,在参考臂光纤中传输的光波相位与外界无 关。被反射回来的光波在3dB耦合器另一端汇合,产生干涉条纹,信号由与此端相 连的探测器接收。
小型水声通用测量水听器 特点: 主要用于海、河、湖、池溏上和 水池 中水声测量之用。 可以用于水下噪声探测。 无方向性。 水听器用不锈钢结构,耐海水,安装结 构牢固可靠。
#
ST70测量水听器
有供选购的带前置放大器(ST70A) 电缆: 15米软性电缆(可以加长) 重量: 270克(含电缆)
#
ST70测量水听器
#
干涉式光纤传感器的应用
因为干涉式光纤传感器是一 种相位调制型光纤传感器, 种相位调制型光纤传感器,而影 响传播在光纤中的光波相位的主 要因素是温度和外界应力,所以, 要因素是温度和外界应力,所以, 干涉式光纤传感器在温度以及压 力测量等方面具有广泛的应用。 力测量等方面具有广泛的应用。
干涉式光纤传感器的应用
#
干涉式光纤传感器原理
光波通过长度为 l 的光纤,其相位延迟为 φ
= βl
其中β为光波在光纤中的传播常数,β=nk0。N为纤芯折射率 ,k0 为光波在真空中的波数,也就是说其与真空中波长倒数成正比。 对上式微分得:
∂β ∂β ∆φ = ∆ ( βl ) = β∆l + l ∆n + l ∆a ∂n ∂a
#Hale Waihona Puke 干涉式光纤水听器与传统压电 水听器的比较
• 光纤还可以降低 系统的重量, 系统的重量,同 时也大大提高了 声纳阵列的使用 寿命。 寿命。 其声压灵 敏度比传统的压 电型水听器高出 三个数量级。 三个数量级。
#
2.光纤陀螺仪 光纤陀螺仪
• 光纤陀螺仪具有结构紧凑,灵敏 光纤陀螺仪具有结构紧凑, 度高,工作可靠等等优点, 度高,工作可靠等等优点,所以 目前光纤陀螺仪在很多的领域已 经完全取代了机械式的传统的陀 螺仪, 螺仪,成为现代导航仪器中的关 键部件。 键部件。
干涉式光纤传感器
组员: 组员: 骆鑫盛,黄超宇,陆侃,王俊。 骆鑫盛,黄超宇,陆侃,王俊。
干涉式光纤传感器
† 光纤传感器的形成与发展 † 光纤传感器的分类 † 光纤传感器的缺陷 † 干涉式光纤传感器的目的 干涉式 † 干涉式光纤传感器原理 † 干涉式光纤传感器的应用
#
光纤传感器的形成与发展
伴随着光导纤维和光纤通信技术发展而出现的 光纤传感器,由于光纤传感器是以光波为载体。 光纤传感器,由于光纤传感器是以光波为载体。以 光纤为介质的新型传感器, 光纤为介质的新型传感器,所以具有一系列独特 的优点。 的优点。 首先,其传感灵敏度要比传统传感器高许多倍。 首先,其传感灵敏度要比传统传感器高许多倍。 其次,它可以在高电压、大噪声、 其次,它可以在高电压、大噪声、高 温、强腐蚀性等很多特殊环境下正常工 作。 最后,其可以与光纤遥感、 最后,其可以与光纤遥感、遥测技术 配合, 配合,形成光纤遥感系统和光纤遥测系 统。