数据采集系统基本组成

合集下载

数据采集系统与微机的接口参考PPT

数据采集系统与微机的接口参考PPT
X0~X7:输入; X: 输出,可以通过外部地址(C,B, A引脚)选择8路输入中的某1路与输出X 接通; VDD和VEE :提供工作电源,其幅值不得 低于模拟信号; INH:禁止控制输入,输入高电平时,多 路开关中各开关均不通,输出呈高阻态。
•25
4D型触发器74LS175用作通道译码控制器:
(1)RD=1,CP=0时,输出处于保持状态,MUX与微机总线隔离。 (2)RD=1,CP由0 —>1,Q=D,数据总线的通道选择码被加至多 路开关八选一译码器输入端。
•26
2.微机与DAC的接口
实现D/A转换器和微型计算机接口技术的关键是数据锁存 问题。有些D/A转换器芯片本身带有锁存器,但也有些 D/A从转换器芯片本身不带锁存器。此时一些并口芯片如 8212,74LS273及可编程的并行I/O接口芯片8255A均可 作为D/A转换的锁存器。
A/D和D/A与微机的接口有串行接口和并行接口之分。本 章主要介绍并行D/A和A/D转换的并行接口。目前大多数 A/D转换器(高速)都内含采样保持器,所以,此处不考 虑采样保持器。
•7
数据采集系统对微机接口的要求:
(1)具有能与系统总线相连接的数据缓冲器和多根数据线。 由于接口电路是挂在系统总线上的,只有接口电路为三态输出 时才不会对数据产生影响。传输数据在接口电路被激活之前先 保存在数据缓冲器内。 (2)应有地址译码和片选功能,以便微机能通过寻址对其进 行访问。 (3)应有地址或数据锁存功能。因为外部设备送到接口电路 的信息,微机不一定有空读取,此时接口应把信息暂时锁存, 以待微机空闲时读取。 (4)具有中断请求和处理的功能,以便微机能通过中断来读 取或输出信息。
从X、Y同步输出不同电压的程序:
MOV DPTR,#addr1 ;1#输入寄存器地址

数据采集与处理技术试卷

数据采集与处理技术试卷

一、绪论(一)、1、“数据采集"是指什么?将温度、压力、流量、位移等模拟量经测量转换电路输出电量后再采集转换成数字量后,再由PC 机进行存储、处理、显示或打印的过程。

2、数据采集系统的组成?由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。

3、数据采集系统性能的好坏的参数?取决于它的精度和速度。

4、数据采集系统具有的功能是什么?(1)、数据采集,(2)、信号调理,(3)、二次数据计算,(4)、屏幕显示,(5)、数据存储,(6)、打印输出,(7)、人机联系。

5、数据处理系统的分类?分为预处理和二次处理两种;即为实时(在线)处理和事后(脱机)处理。

6、集散式控制系统的典型的三级结构?一种是一般的微型计算机数据采集系统,一种是直接数字控制型计算机数据采集系统,还有一种是集散型数据采集系统.7、控制网络与数据网络的结合的优点?实现信号的远程传送与异地远程自动控制.(二)、问答题 :1、数据采集的任务是什么?数据采集系统的任务:就是传感器输出信号转换为数字信号,送入工业控制机机处理,得出所需的数据。

同时显示、储存或打印,以便实现对某些物理量的监视,还将被生产过程中的PC机控制系统用来控制某些物理量。

2、微型计算机数据采集系统的特点是(1)、系统结构简单;(2)、微型计算机对环境要求不高;(3)、微型计算机的价格低廉,降低了数据采集系统的成本;(4)、微型计算机数据采集系统可作为集散型数据采集系统的一个基本组成部分;(5)、微型计算机的各种I/O模板及软件齐全,易构成系统,便于使用和维修;3、简述数据采集系统的基本结构形式,并比较其特点?(1)、一般微型计算机数据采集与处理系统是由传感器、模拟多路开关、程控放大器、采样/保持器、A/D转换器、计算机及外设等部分组成。

(2)、直接数字控制型数据采集与处理系统(DDC)是既可对生产过程中的各个参数进行巡回检测,还可根据检测结果,按照一定的算法,计算出执行器应该的状态(继电器的通断、阀门的位置、电机的转速等),完成自动控制的任务。

第五章 数据采集与处理

第五章 数据采集与处理

二、数据采集系统基本功能
5、能够定时或随时以表格或图形形式 打印采集数据。 6、具有实时时钟 。 7、系统在运行过程中,可随时接受由 键盘输入的命令,以达到随时选择采集、 显示、打印的目的。
第一节
数据采集系统的 基本功能和一般结构
一、数据采集系统组成原理
二、数据采集系统基本功能 三、数据采集系统的一般结构 四、数据采集系统的三种工作方式
二、标度变换 三、非线性补偿 四、查表法 五、上下限检查
本科课程:
计算机控制系统
二、标度变换 在微型计算机控制系统中,检测的物理 参数都有着不同的量纲和数值 ,由A/D转 换后得到的都是只能表示其大小的二进制代 码。 为了便于显示、打印及报警,必须把这些数 字量转换成它所代表的实际值,即工程量, 这就是所谓的标度变换 。 标度变换的方法有:线性变换法、公式转换 法、多项式插值法和查表法等等。
一、数字滤波 2、算术平均滤波 压力、流量等周期变化的参数进行平滑 加工效果较好,而对消除脉冲干扰效果 不理想,所以它不适合脉冲干扰比较严 重的场合。对于n值的选择, 通常流量取12次, 压力取4次。
一、数字滤波 3、限幅滤波 考虑到被测参数在两次采样时间间隔内, 一般最大变化的增量 x 总在一定的范围内, 如果两次采样的实际增量 xn xn1 x 则认为是正常的,否则认为是干扰造成的, 则用上次的采样 xn1 代替本次采样值 xn
一、数字滤波 5、一阶滞后滤波 一阶滞后滤波又称为一阶惯性滤波,它相 当于RC低通滤波器。 假设滤波器的输入电压为 Ui(t) , 输出为Uo(t) ,则们之间存在下列关系 :
duo (t ) RC u o (t ) u i (t ) dt
一、数字滤波 5、一阶滞后滤波 采用两点式数值微分公式,可得:

电力通信系统的基本组成及各自的作用

电力通信系统的基本组成及各自的作用

电力通信系统的基本组成及各自的作用电力通信系统是电力系统中不可或缺的一部分,主要用于监测、控制和保护电力设备,同时也为电力系统提供重要的通信支持。

本文将介绍电力通信系统的基本组成及各自的作用,从而让读者更深入地了解这一领域。

电力通信系统主要包括三部分:数据采集系统、通信传输系统和控制中心系统。

下面分别进行介绍。

一、数据采集系统数据采集系统是一套用于采集电力设备工作状态、运行参数、故障信息等数据的系统,通常由传感器、智能终端设备、监测单元等组成。

其主要作用是将设备信息采集并传输给控制中心,以供操作人员进行分析和判断。

传感器是数据采集系统的核心部件,常用的传感器包括电流互感器、电压互感器、温度传感器、烟雾传感器和光纤传感器等。

智能终端设备是用于采集传感器数据的设备,常用的终端设备有终端节点控制器(RTU)、智能电表和无线传输终端等。

监测单元则是数据采集系统中的重要组成部分,主要负责对数据进行处理和分析,并将数据传输给控制中心系统。

二、通信传输系统通信传输系统是电力通信系统中最为关键的一部分,主要负责将数据采集系统采集到的设备信息传输给控制中心。

传输系统的重要性在于,它的可靠性和实时性直接影响到电力设备的监测、控制和保护效果。

通信传输系统主要包括有线传输和无线传输两种,有线传输一般采用电缆、光纤等传输媒介进行数据传输,其优点在于传输稳定可靠,数据实时性好。

而无线传输则是利用数传设备通过无线信号进行数据传输,使用方便,通信范围广,且能适应复杂的环境。

三、控制中心系统控制中心系统是电力通信系统中最中枢的部分,主要包括数据处理、控制命令下达、故障监测和数据分析等功能。

其主要作用是基于数据采集系统和通信传输系统收集到的信息,实时监测设备的运行状态,并进行智能控制和保护。

控制中心系统包括硬件和软件,常用的硬件设备包括工作站、服务器、数据存储设备等。

而软件方面则有数据管理软件、监控软件、控制软件、故障诊断软件,它们的功能不同,但相互协作,实现了对电力系统的全面控制和管理。

智能仪器第7章 数据采集系统

智能仪器第7章 数据采集系统
200-300Ω 200-300Ω
20nA
20nA 20nA
40ns
40ns\ 40ns
40us
40us 40us
双向三路 单选一
双向单十 六选一 双向双八 选一
±7.5V
±7.5V ±7.5V
≤30mA
≤30mA ≤30mA
7.4 数据采集系统设计
1 系统设计考虑的因素 数据采集系统设计要根据测试对象及系统的技术指标,主要考虑下列因素。 1.1 输入信号的特征 在输入信号的特性方面主要考虑:信号的数量,信号的特点,是模拟量还是数字 量,信号的强弱及动态范围,信号的输入方式,信号的频带宽度,信号是周期信号还 是瞬态信号,信号中的噪声及其共模电压大小,信号源的阻抗等等。 1.2 对数据采集系统性能的要求 1.2.1 系统的通过速率 系统的通过速率通常又称为系统速度、传输速率、采样速率或吞吐率,是指单位 时间内系统对模拟信号的采集次数。 1.2.2 系统的分辨力 系统的分辨力是指数据采集系统可以分辨的输入信号最小变化量。 1.2.3 系统的准确度 系统准确度是指当系统工作在额定通过速率下,系统采集的数值和实际值之间的 接近程度,它表明系统误差的总和。 1.3 接口特性 接口特性包括采样数据的输出形式,数据的编码格式,与什么数据总线相接等。
2 模拟电路的误差
2.1 模拟开关导通电阻RON的误差 模拟开关存在一定的导通电阻,信号经过模拟开关会产生压降。模拟开关 的负载一般是采样/保持器或放大器。显然,开关的导通电阻越大,信号在开 关上的压降越大,产生的误差也越大。 2.2 多路模拟开关泄漏电流IS引起的误差 如果信号源的内阻小,泄漏电流影响不大,有时可以忽略。如果信号源内 阻很大,而且信号源输出的信号电平较低,就需要考虑模拟开关的泄漏电流的 影响。一般希望泄漏电流越小越好。 2.3 采样保持器衰减率引起的误差 如果衰减率大,在A/D转换期间保持电压减小,影响测量准确度。一般选 择漏电流小的聚四氟乙烯等优质电容,可以使衰减率引起的误差忽略不计。 2.4 放大器的误差 数据采集系统往往需要是用放大器对信号进行放大并规一化。放大器是 系统的主要误差来源之一。其中有放大器的非线性误差、增益误差,零位误差 等。在计算系统误差时必须把它们考虑进去。

高精度数据采集系统的设计及性能分析

高精度数据采集系统的设计及性能分析

高精度数据采集系统的设计及性能分析现代工业生产过程中往往需要涉及大量的监测和控制,而高精度数据采集系统的设计和性能分析就是为了满足这种需求而诞生的。

本文将介绍高精度数据采集系统的设计和性能分析的相关技术及应用,同时分析这些技术的应用场景和性能优劣,希望能够对读者有所帮助。

一、高精度数据采集系统的组成高精度数据采集系统是由多个部件组成的复杂系统,其中主要包括传感器、信号调理器、数据采集卡、数据处理软件等。

下面详细介绍这些部件的作用及原理:1. 传感器传感器是高精度数据采集系统中最核心的组成部分之一。

它的作用是将测量对象的物理量转换为电信号输出,常见的传感器包括温度传感器、压力传感器、角度传感器、力传感器等。

不同类型的传感器在测量的物理量和范围上存在差异,同时也有不同的转换方式和输出形式。

2. 信号调理器信号调理器是传感器信号处理的核心,主要负责将传感器输出的信号进行放大、滤波、线性化等处理,使其适合于数据采集卡进行数字化转换。

信号调理器的设计将直接影响系统的稳定性和精度。

3. 数据采集卡数据采集卡是高精度数据采集系统中另一个重要的组成部分,它起到将模拟信号转换成数字信号的作用。

数据采集卡的数字化转换精度和采样率将直接影响采集系统的精度。

4. 数据处理软件数据处理软件是高精度数据采集系统中最后一道关键工序的组成部分。

它的作用是将数据从数据采集卡中读取,并将其经过校准、滤波、标定、控制等算法处理,最终输出给用户需要的数据。

数据处理软件应当具有友好的用户界面、高效的运算能力和稳定的运行性能。

二、高精度数据采集系统的应用场景高精度数据采集系统的应用场景十分广泛,主要包括以下几个领域:1. 工业控制众所周知,现代工厂生产过程需要各种各样的传感器和数据采集设备,以保证产品质量和生产效率。

高精度数据采集系统可以应用于无污染的检测、高速电机控制、发电温度观测、高分辨率精细控制等技术领域。

2. 航空雷达航空雷达数据采集系统需要在高速行动的飞机上进行复杂的数据采集和传输,并要求精度高、稳定性好、机动性强、重量轻等特点。

数据采集_设计实验报告

数据采集_设计实验报告

一、实验目的1. 理解数据采集系统的基本原理和组成;2. 掌握数据采集系统的设计方法和步骤;3. 学会使用数据采集设备进行数据采集;4. 分析和解读采集到的数据。

二、实验原理数据采集系统是指将各种物理量、化学量、生物量等转换成数字信号,并存储、处理和分析的系统。

它由数据采集器、信号调理电路、数据传输线路和数据处理软件等组成。

三、实验器材1. 数据采集器:采用USB接口的数据采集器,可连接计算机;2. 信号调理电路:包括放大器、滤波器等;3. 计算机及数据处理软件;4. 模拟信号源:提供不同的模拟信号;5. 连接线及电源。

四、实验步骤1. 数据采集器与计算机连接,打开数据处理软件;2. 设计信号调理电路,对模拟信号进行放大、滤波等处理;3. 将信号调理电路与数据采集器连接,并连接模拟信号源;4. 设置数据采集器参数,如采样频率、分辨率等;5. 采集模拟信号,并将数据保存到计算机;6. 对采集到的数据进行处理和分析。

五、实验内容1. 采集不同频率的正弦信号,分析频率与幅值的关系;2. 采集不同带宽的滤波信号,分析带宽与滤波效果的关系;3. 采集不同放大倍数的信号,分析放大倍数与信号幅值的关系;4. 采集不同温度下的热电偶信号,分析温度与电势的关系。

六、实验结果与分析1. 频率与幅值的关系:在信号源频率不变的情况下,采集到的正弦信号的幅值随放大倍数的增大而增大,符合正比关系;2. 带宽与滤波效果的关系:在信号源带宽不变的情况下,滤波器的带宽越大,信号中的噪声成分越少,滤波效果越好;3. 放大倍数与信号幅值的关系:在信号源幅值不变的情况下,采集到的信号幅值随放大倍数的增大而增大,符合正比关系;4. 温度与电势的关系:在热电偶温度不变的情况下,采集到的电势随温度的升高而增大,符合线性关系。

七、实验结论1. 数据采集系统是进行科学实验和工程应用的重要工具,具有广泛的应用前景;2. 在数据采集过程中,信号调理电路的设计对采集结果具有重要影响;3. 通过数据处理软件对采集到的数据进行处理和分析,可以得到有价值的实验结果。

数据采集控制系统组成于功能

数据采集控制系统组成于功能

数据采集控制系统组成于功能基于PC的数据采集控制系统已被广泛应用于工业现场及实验室,如监测控制数据采集及自动化测试等等,选择并构建一个能满足需要的数据采集及控制系统需要一定的电子及计算机工程知识。

一般数据采集及控制系统配置包括:①变送器和执行器;②信号调理;③数据采集控制硬件;④计算机系统软件。

1. 变送器变送器能够将温度、压力、长度、位置等物理信号转换成电压、电流、频率、脉冲或其他信号,热电偶电热调节器及电阻温度检测器都是常用的温度测量变送器。

其他类型的变送器包括流量传感器、压力传感器、应力传感器、测压单元,它们可以用来测量流体的速率、应力变化、压力或位移。

执行器是一种通过使用气压、水压或电力来执行过程控制的设备,比如调节阀通过打开或关闭阀门来控制流体的速率。

2. 信号调理变送器产生的信号通过数据采集硬仵转换成数字信号之前,应该采用信号调理电路来改善信号的质量,例如信号的定标、放大、线性化、冷端补偿、滤波衰减、共模抑制等等常见的信号处理。

为了获得最大的分辨率,输人电压的范围应与D/A转换器的最大输人范围相当。

放大扩展了变送器信号的范围,这样它就能与D/A转换器的输人范围相匹配,比如一个10倍的放大器,能够将电压范围在0~IV 的变送器信号,在其到达D/A转换器之前变成0~10V的信号。

3. 数据采集控制硬件一般完成以下一个或多个功能:模拟量输入、模拟量输出、数字量输人、数字量输出及计数定时功能。

4. 模拟量输入模拟量到数字量的转换,将模拟电压或电流转换为数字信息,为了使计算机能够处理或存储信号,这种转换是必须的。

选择D/A 硬件的标准:①输人通道的个数;②单端或差分输人信号;③采样频率(每秒的采样次数);④分辨率(通常以A/D转换位数来衡量);⑤输入范围(由满量程伏特数决定);⑥噪声及非线性。

5. 模拟量输出模拟量到数字量相反的变换是数字量到模拟量的变换(D/A)。

该变换将数字信号转换为模拟的电压或电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.系统精度:当系统工作在额定采集速率下,每个离散 子样的转换精度。
➢ 模数转换器的精度是系统精度的极限值。 ➢ 系统精度是系统的实际输出值与理论输出值之差,它
是系统各种误差的总和。通常表示为满度值的百分数 。 3.采集速率(系统通过速率、吞吐率):在满足系统精 度指标的前提下,系统对输入模拟信号在单位时间内 所完成的采样次数,或者说是系统每个通道、每秒钟 可采集的子样数目。 ➢ “采集”包括对被测物理量进行采样、量化、编码、 传输、存储等过程。 ➢ 采集速率的倒数是采样周期。
精品课件
Uo
S n-1
I
21
I
21 2R V REF
2R A I
d0 d1 d2
dn-2 dn-1
R
I
2n 2R
2R// 2R=R
S0 S1 S2
I II
2n
2n-1 2n-2
2R 2R 2R
RRR
R+R=2R
Iout1
A
Uo
Iout2
Sn-2 Sn-1
II
22
21
2R 2R
R
R
VREF
I
I
VREF R
数据采集系统基本组成
数据采集系统包括硬件和软件两大部分,硬件部分又可分为 模拟部分和数字部分。
图1.1 数据采集精系品课统件 硬件基本组成
多通道数据采集系统的几种结构形式
多通道A/D转换
每个通道都有各自独自的采样保持器与A/D转换器, 这种结构形式可以对各通道输入信号进行同步、高速 数据采集。
精品课件
数据采集系统的主要性能指标
1.系统分辨率:数据采集系统可以分辨的输入信号的 最小变化量。通常用最低有效位值(LSB)占系统 满刻度信号的百分比表示,或用系统可分辨的实际 电压数值来表示。有时也用信号满刻度值可以划分 的级数来表示。
位数 级数 1 LSB(满度值的百分数) 1 LSB(10V满度)
可写出 I 的表达式
I 2 Id n 14 Id n 22 n I 1d 12 Ind 0
精品课件
混频偏差
采样率过低的结果是还原信号的频率看上去与原始信 号不同。这种信号畸变叫做混叠(alias)。出现的 混频偏差(alias frequency)是输入信号的频率和 最靠近的采样率整数倍的差的绝对值。
采样频率fs是100HZ
精品课件
信号调理
信号调理能够在信号、传感器、DAQ板卡和PC机之间提供接 口。通常的信号调理类型包括:放大、隔离、滤波、激励、线 性化等。
精品课件
多通道数据采集系统的几种结构形式
单通道共享A/D转换器
各通道有各自独立的采样保持器,但公用一个A/D 转换器。通过多路开关分,对各路信号分时进行 A/D转换。能够实现多路信号的同步采集,但采集 速度稍慢。
精品课件
多通道共享采样保持器与A/D转换器
各通道公用一个采样保持器和A/D转换器。工作时 ,通过多路开关将各路信号分时切换,输入到公用 的采样保持器中,实现多路信号的分时采集,而非 同步采集。并且采集速度最慢。优点是节省硬件成 本,适于对采集速度要求不高的应用场合。
某一时刻系统所能采集到的信号的不同频率分量幅值
之比的最大值,即幅值最大频率分量的幅值Afmax与 幅度最小频率分量的幅值Afmin之比的分贝数。瞬时
动态范围:
I 20lg Af max A 精品课件 f min
数据采集系统的主要性能指标
5.非线性失真(谐波失真):给系统输入一个频率为f 的正弦波时,其输出中出现很多频率为kf(k为正整
放大器
使用测量放大器的原因:弱信号、强干扰;动态范围宽,共模 干扰电压大。
✓ 目的:检测叠加在高共模电压上的微弱信号。 ✓ 要求:高输入阻抗、共模抑制能力强、失调及漂移小、噪声低
、闭环增益稳定性高。 分类: 技术指标: ✓ 放大倍数:AU、AUS、Ai、Ais ✓ 输入阻抗:Ri=U0/Ii ✓ 输出阻抗 ✓ 通频带
8
256
0.391%
39.1mV
12 4096
0.0244%
2.44 mV
16 65536
0.0015%
0.15 mV
20 1048576
0.000095%
9.53 uV
24 16777216
0.0000060%
0.60 uV
表1.1 系统的分辨率(满度值为10 V)
精品课件
数据采集系统的主要性能指标
精品课件
数据采集系统的主要性能指标
4.动态范围:某个物理量的变化范围。信号的动态范围 是指信号的最大幅值和最小幅值之比的分贝数。采集 系统的动态范围通常定义为所允许输入的最大幅值 Vimax与最小幅值Vimin之比的分贝数,动态范围:
Ii
20lgVimax Vimin
➢ 瞬时动态范围:对大动态范围信号的高精度采集时,
d0 d1 d2
dn-2 dn-1
R
I
2n 2R
2R// 2R=R
S0 S1 S2
I II
2n2n-1 2nFra bibliotek22R 2R 2R
RRR
R+R=2R
所以流入节点A的电流
Iout1
A Iout2
Sn-2 Sn-1
II
22
21
2R 2R
R
R A I VREF
I VREF R
所以流入相邻左侧节点的电流依次减半。
热电偶
放大、线性化、冷端补偿
电阻温度检测
电流激励、线性化。3或4线设置
共模或高压 应变片
隔离放大器(光隔) 电流激励、线性化。3或4线设置
DAQ设备
信号中有高频噪声
负载需要交流开关 或大电流
低通滤波器
SPDT继电器 什么态继电器
精品课件
倒T型电阻解码网络 D/A转换器
倒T型电阻网络是集成DA转换器中采用最多的一种。从节点A 向左看,每个节点等效电阻均为2R。
传感器。 ➢ 分析测量中的噪声规律和信号规律,通过各种手段从噪声中提
取信号。 对传感器的基本要求是:测量范围宽,线性好,灵敏度高,噪
声低,谱段宽,响应快,寿命长,便于匹配,均衡稳定。用于 弱信号检测的传感器,首要要求是高灵敏度、低噪声。
• 填空:16*1=16 判断6*1=6 简答 6*6=36
• 分析10+10+10+1精2品课=件 12分
数)的新的频率分量的现象,称为非线性失真。谐波 失真系数用来衡量系统产生非线性失真的程度,它通 常用下式表示:
H A22 A32 ... 10% 0 A12 A22 A32 ...
➢ A1为基波振幅,Ak为第k次谐波的振幅。
精品课件
微弱信号检测方法
提高信号检测灵敏度或降低可检测下限的基本方法: ➢ 从传感器及放大器入手:降低固有噪声水平、研制新的低噪声
相关文档
最新文档