光纤激光器概述
认识光纤激光器

Wp
Q
max min
ni nt n f max min
(a)
t (b)
t (c)
t (d ) t p t
ቤተ መጻሕፍቲ ባይዱ 调Q光纤激光器
R=100% A O M
Pump Systerm
Output Yb-DC fiber Coupler
透镜组端面泵浦耦合
优点:构造简朴、易于实现 缺陷:耦合占用了端面,无法 同其他光纤级联,降低了灵活 性;透镜组与光纤是分立旳, 稳定性低不易集成
优点:构造简朴紧凑、实现了 激光器旳全光纤化 缺陷:尾纤与光纤尺寸不同, 熔接对准困难,附加损耗大
端面直接熔接耦合
两种措施都只有两个端面用于 泵浦,限制了最大功率。
其他腔型构造
光纤圈反射器(光纤环形镜)包 括一种定向耦合器和由该耦合器 两输出端口连接在一起形成旳一 种光纤圈。 工作原理:耦合器耦合系数为0.5, 光波从端口1进入耦合器,耦合器 将二分之一旳功率耦合到端口3, 另二分之一耦合到端口4,即在光 纤圈顺时针方向和逆时针方向传 播旳输入光各二分之一。跨过耦 合器旳光波比直通旳光波相位滞 后π/2。在端口2处旳透射功率是任 意相位φ旳顺时针场和相位为φ-π 旳逆时针场旳叠加,恰好相互抵 消,透射输出为零,全部输入光 沿端口1返回。
光
纤
芯 光
泵
纤
浦 光
保 护
芯
保
激
激 光 内输包层 出
护 层
泵 浦
外
光包
层
光 输 出
层
单包层与双包层掺杂光纤旳构造
光纤芯:由掺稀土元素旳SiO2构成,它作为激光振荡旳通道,对 有关波长为单模;
光纤激光器行业标准

光纤激光器行业标准光纤激光器是一种利用光纤作为增益介质的激光器,具有高能量密度、高光束质量、稳定性好等特点,被广泛应用于通信、医疗、材料加工等领域。
为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。
本文将从光纤激光器的基本原理、技术特点、应用领域以及行业标准等方面进行介绍。
光纤激光器的基本原理是利用激光介质中的受激辐射原理,通过激发光纤中的掺杂离子或分子,使其产生受激辐射而放大光信号,最终形成激光。
相比于传统的气体激光器和固体激光器,光纤激光器具有体积小、重量轻、抗干扰能力强等优势,因此在通信领域得到了广泛的应用。
光纤激光器的技术特点主要包括高功率、高效率、窄线宽、单模输出等。
高功率是光纤激光器的重要特点之一,其功率可以达到数千瓦甚至更高。
高效率是指光纤激光器能够将电能转化为光能的效率,目前光纤激光器的电光转换效率已经超过了50%。
窄线宽和单模输出则保证了光纤激光器在光学通信和激光加工领域有着重要的应用。
光纤激光器在通信、医疗、材料加工等领域都有着广泛的应用。
在通信领域,光纤激光器被用于光纤通信系统中的光源,其稳定的输出特性和高效的能量转换使得其在长距离、高速传输中有着重要的地位。
在医疗领域,光纤激光器被应用于激光手术、激光治疗等领域,其精细的光束质量和可控的输出功率使得其成为医疗器械中不可或缺的部分。
在材料加工领域,光纤激光器被用于激光切割、激光焊接等工艺,其高能量密度和稳定性使得其在工业生产中有着广泛的应用前景。
为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。
光纤激光器的行业标准应包括产品的基本参数、性能要求、测试方法、质量控制等内容,以确保光纤激光器的质量和性能达到国家和行业的标准要求。
同时,行业标准还应包括光纤激光器在通信、医疗、材料加工等领域的应用规范,以保障其在不同领域的安全和可靠性。
总的来说,光纤激光器作为一种新型的激光器,具有独特的技术特点和广泛的应用前景。
制定光纤激光器的行业标准对于推动其产业发展、规范市场秩序、提高产品质量具有重要的意义,希望相关部门和企业能够加强合作,共同制定和执行光纤激光器的行业标准,推动光纤激光器产业的健康发展。
光纤激光器的介绍

光纤激光器的介绍光纤激光器的基本构成包括激光介质、激发源、光学谐振腔和输出光纤等。
其中,激发源通常是高功率半导体激光器或其他类型的激发源,通过注入高能量的光子来激发光纤介质。
介质选择不同的元素或化合物,可以获得不同波长的激光输出。
光学谐振腔的设计和构造非常关键,它可以提高激光的相干性和稳定性。
最后,通过输出光纤将激光束传输到需要的位置。
光纤激光器具有许多独特的优点。
首先,光纤激光器可以产生高质量的激光光束,具有较小的发散角度和高光束质量。
其次,光纤激光器具有高度可靠性和稳定性,可以长时间连续运行而不损坏。
此外,光纤激光器无需频繁调整或维护,使用寿命长,适合工业生产环境。
另外,由于光纤激光器的体积小、重量轻,可以方便地集成到各种设备和系统中,并且易于搬运和安装。
光纤激光器在通信领域有着重要的应用。
其高质量的光束和稳定的输出功率使其成为光纤通信系统中的理想光源。
在光纤通信系统中,光纤激光器可以用作发射光源,将信息传输到远距离。
在高容量光纤通信系统中,光纤激光器能够产生高功率的激光光束,实现远距离的信号传输。
光纤激光器在医疗领域也得到广泛应用。
它可以用于激光手术、皮肤美容、激光治疗等。
光纤激光器具有较小的光束尺寸和高能量密度,可以精确地用于医疗操作。
此外,光纤激光器输出的激光波长可以根据不同的医疗需求进行选择,包括可见光、红外线等。
光纤激光器在制造业中也有重要的应用。
它可以用于切割、焊接、打孔等工艺。
光纤激光器具有高功率、高精度和高可靠性的特点,可以实现快速、准确和稳定的制造过程。
在汽车制造、航空航天、电子制造等行业,光纤激光器已经取代了传统的切割和焊接设备,成为主流技术。
在科学研究领域,光纤激光器也发挥着重要作用。
由于光纤激光器输出的激光具有较小的发散角度和高亮度,它可以用于光谱分析、高精度测量以及光学实验等。
此外,光纤激光器还广泛用于激光雷达、光学透镜、光纤传感器等领域。
总之,光纤激光器作为一种先进的激光源具有广泛的应用前景。
什么是光纤激光器

什么是光纤激光器——激光英才网光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
光纤激光器的类型按照光纤材料的种类,光纤激光器可分为:1.晶体光纤激光器。
工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。
2.非线性光学型光纤激光器。
主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。
3.稀土类掺杂光纤激光器。
光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。
4.塑料光纤激光器。
向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。
光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势。
(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故。
(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低。
(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多。
(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。
(6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。
(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。
(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。
(9)不需热电制冷和水冷,只需简单的风冷。
(10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。
(11)高功率,目前商用化的光纤激光器是六千瓦。
《光纤激光器》课件

光纤激光器市场规模持续增长 应用领域不断扩展,如医疗、通信、军事等 技术不断进步,如高功率、高亮度、高稳定性等 市场竞争加剧,国内外企业竞争激烈
工业制造:广泛应用于切割、焊接、打标等领域 医疗领域:用于手术、诊断、治疗等 科研领域:用于科学研究、实验等 通信领域:用于光纤通信、光传输等 军事领域:用于激光武器、激光制导等 环保领域:用于污染治理、资源回收等
频率调制是指通过改变激光 器的频率来改变其输出功率
光纤激光器的调制特性包括频 率调制、相位调制和强度调制
相位调制是指通过改变激光 器的相位来改变其输出功率
强度调制是指通过改变激光 器的强度来改变其输出功率
光纤激光器具有较高的抗电磁 干扰能力
光纤激光器对环境温度和湿度 的变化不敏感
光纤激光器可以工作在恶劣的 环境中,如高温、高压、高湿 度等
特点:高效、稳定、长寿命
作用:产生激光
组成:由两个反射 镜和一个增益介质 组成
工作原理:通过反 射镜的反射和增益 介质的放大,形成 稳定的激光输出
特点:具有高稳定 性和高效率
光纤:传输激光信号 激光器:产生激光信号
光束整形器:调整激光束的形状和方向
光束传输系统:将激光信号传输到目标 位置
控制系统:控制激光器的输出功率和频 率
激光制导武器:利 用光纤激光器进行 精确制导,提高打 击精度
激光通信:利用光 纤激光器进行远距 离、高速率的通信 传输
激光雷达:利用光 纤激光器进行目标 探测和跟踪,提高 探测精度和距离
激光武器:利用光 纤激光器进行高能 激光武器研发,提 高武器威力和射程
激光手术:用于眼 科、皮肤科、耳鼻 喉科等手术
PART THREE
材料:稀土离子掺杂光纤
光纤激光器的原理及应用

光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。
本文将介绍光纤激光器的工作原理以及其在各个领域的应用。
工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。
下面将详细介绍光纤激光器的工作原理。
1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。
泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。
谐振腔用于产生激光的振荡和放大。
2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。
常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。
3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。
4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。
谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。
5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。
输出光纤一般具有高纯度、低损耗和稳定的特点。
应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。
工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。
•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。
•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。
医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。
•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。
光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。
它由光纤、泵浦光源、谐振腔和输出耦合器件组成。
1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。
它通常由二氧化硅或氟化物等材料制成。
2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。
泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。
3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。
谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。
4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。
它通过调节输出耦合器件的透射率,实现激光的输出。
二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。
其工作过程主要可以分为三个步骤:泵浦、光放大和激射。
1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。
2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。
3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。
激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。
光纤激光器的工作原理可以通过能级图来解释。
在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。
在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。
这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。
当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。
光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。
光纤激光器的理论与实验研究

光纤激光器的理论与实验研究光纤激光器是一种利用光纤作为工作介质的激光器。
相比于传统激光器,光纤激光器具有结构简单、体积小、功率稳定等优点,因此在光通信、医疗、工业加工等领域得到广泛应用。
本文将介绍光纤激光器的基本原理、结构和性能,并重点探讨了光纤激光器的实验研究进展和应用前景。
一、光纤激光器的基本原理和结构光纤激光器的工作原理基于三个部分:激光介质、激光刺激源和反射器。
光纤激光器与传统激光器最大的不同在于光纤作为激光介质。
激光刺激源可以是电流、光或热等刺激方式,可以通过电子激发将参数转化为光信号,进而在光纤内扩散并被反射器反射形成激光器。
光纤激光器的结构、形式比较多样,但它们一般包括:激光介质、激光刺激源、反射器、光纤耦合器、光学输出部分。
其中,激光介质是光纤,由于光纤的细长、柔性、低价格、可靠性高等特点,提高了光纤激光器的光学特性,比如波导效应,从而实现了实际应用的复杂化程度。
激光刺激源选择与否,一般根据不同应用场合有区别,在医疗领域如SOLED为主流光源,但在工业领域,高压氙或钠灯光源通常采用。
反射器是锥形反射器或圆柱形镜反射器,两者的反射作用都可达到100%。
光纤耦合器主要用于将激光器的输出与其他的光学设备相连,各种传感器、医疗领域、工业领域都可以使用。
光学输出部分是机械永久码和钛焦散镜的组合,多项光学组件共同完成激光输出成型。
二、光纤激光器的性能特点光纤激光器具有很多优点,比如小体积、低噪声、功率稳定等,这些特点使其在各个领域中受到了广泛应用。
(1)大功率输出光纤激光器可以产生1W-100kW持续功率输出,而且功率稳定,颜色较浅。
随着技术不断发展,光纤激光器在功率输出上的性能不断得到提升。
(2)宽波段光纤激光器可以产生宽波段光信号,从紫外线到红外线都可以实现输出,具有很高的信噪比和相干特性。
多种波长的信号可以在同一个光纤内同时传输和操控。
(3)高可靠性由于光纤激光器的光学部件与常规激光器的光学元件相比,具有比较好的机械结构和散热系统,因此在使用时也具有较高的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Term PaperEE/OPE 454/553 – LASERSFall 2010TitleFiber LaserSubmitted byLin YangToDr. J. D. Williams1. IntroductionIt has been more than 40 years since the first GaAs semiconductor lasers was created in 1962. Nowadays, semiconductor lasers have been widely used in laser communications, CD storage, and laser inspection.With increasing continuous power output of semiconductor laser, the applications of it was extended farther. The main application range of the semiconductor laser is high power diode pumped solid state lasers (DPSSL). This technique integrated the advantage of semiconductor laser and the advantage of solid laser. DPSSL converts high-energy photons with short wavelength to low-energy photons with longer wavelength. Thus, a portion of energy converts into heat without radiation transition. Emission and removal of the energy is becoming a significant technique for diode pumped solid lasers. In literature and application, there are a lot of alternative methods.One method is to configure laser media to have a very slender shape like optical fiber. There are several reasons for this method. Firstly, the guiding of light allows extremely long gain regions providing good cooling conditions. Secondly, fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber’s waveguide properties tend to reduce thermal distortion of the beam.The fiber laser in this context is the laser using an optical fiber as its active gain medium. In 1964, the first generation of glass laser in the world is fiber laser. It is toodifficult for common pump source such as gas discharge lamp to focus to the core of optical fiber since the core is so fine-grained. Therefore, there were no big achievements of fiber laser in the following 20 years. With the development of semiconductor laser pump technology and the needs of developing optical fiber communication, the flexibility of the erbium doped fiber amplifier (EDFA) was proved by British Southampton University and American Bell Laboratory in 1987. It amplifies optical signals by erbium-doped single-mode optical. EDFA is a significant component in optical fiber communication. The semiconductor laser must be single-mode for pumping it into the core of single-mode optical fiber (general diameter less than 10um), which makes single-mode EDFA difficult to achieve high power. The highest power output is no more than hundreds milliwatts.Putting the light pump into cladding was proposed in 1988 to enlarge the power output. The original design used a circle-shape inner cladding layer. However, the perfect symmetry of circle reduces the absorption efficiency of pump. Not until early 1990, the rectangle-shape inner cladding layer was invented. The laser conversion efficiency increased to 50 percent and power output reached 5 watts. The power of single-mode continuous laser output reached 110 watts in 1999 by using four 45 watts semiconductor lasers pumping in its both sides. In recent years, single optical fiber can produce thousands watts power output with the development of high power laser diode pump technology and double-clad fiber producing technique.2. Principles of Fiber LasersThe basic concept of fiber laser is using an optical fiber as the active gain medium of the laser, which is usually doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, and thulium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser. In addition, some lasers with a semiconductor gain medium (a semiconductor optical amplifier) and a fiber resonator have also been called fiber lasers (or semiconductor fiber lasers).2.1 Optical FiberOptical fiber is a glass fiber which is drawn into by SiO2 for matrix materials. It is widely applied in Optical Fiber Communication. The principle of its light transmitting is based on the principle of total internal reflection. A naked fiber generally consists of three parts. The core is silica glass with high refractive index (core diameter is generally 9-62.5μm); the middle is silica glass coating with low refractive index (core diameter is generally 125μm) and the most external is reinforced resin coating. Figure 1 shows this structure of a fiber.Figure 1: Structure of an optical fiberGenerally we have 2 types of optical fiber, single-mode optical fiber and multimode fiber.Single-mode optical fiber: the core is very fine (diameter is only 9±0.5μm) and only can transmit the light of a certain mode. Its dispersion between modes is very small and has the function of customize mode and mode-limit.Multimode fiber: the core is thicker (50±1μm) which can pass through a variety of modes of light, but its dispersion between modes is much larger and light transmitted is not pure.Types of fibers also can be classified by construction or functionalities.By construction, fiber can be classified as step index fiber, graded index fiber, PM fiber (polarization-maintaining fiber), photonic crystal fiber, and multi-core fiber. By functionalities fiber can be classified as passive fiber and active fiber. Figure 2 shows these different types of fibers.(a) (b)(c) (d)Figure 2: Cross-section of different types of fibers(a) Step index and graded index fiber; (b) multi-core fiber; (c) PMF; (d) PCFThe optical fiber used in high-power fiber laser is not common communication optical fiber, but a special optical fiber which is doped with various rare ions, structured more complexly and also resistant to high radiation - double-clad fiber. Figure 3 and 4 show the structures of Double-Clad Fiber with different shapes .Figure 3: Structure of Double-Clad Fiber (D shape)Figure 4: Different shapes of Double-Clad FiberComparing with common fiber, double-clad fiber has another coating outside its fiber core, and for pumping light it is multimode modulation. It can easily collect large amounts of photons in the fiber by absorbing high brightness and multi-mode pumped light, because it has larger diameter and light angle. Practice shows that the double-clad fiber with a D shape or rectangular shape cross-section has a coupling efficiency up to 95%. Thus this kind of double-clad fiber is widely used. As long aswe concerned about pulse optical fiber laser, a major topic is how to improve ability of a fiber of resistance of radiation. Currently around the world the monopoles capacity of fiber lasers can reach 20,000 W, but how can a hair size fiber bear such a high laser radiation? So some special ion must be considered to mix into fiber to prevent the fiber burning out. For instance even in nuclear fallouts circumstances, the cerium ions doped fiber will neither deform by high temperature nor lose its transmittance for dyeing. Table 1 shows most common laser-active rare-earth ions with the common hosts and important emission wavelengths:Table 1: Common used types of Rare-Earth-Doped FibersIon Common host glasses Important emissionwavelengths (μm) Neodymium(Nd3+) Silica, phosphate glasses 1.03-1.1, 0.9-0.95, 1.32-1.35 Ytterbium(Yb3+) Silica 1.0-1.1Erbium(Er3+) Silica, phosphate glasses,fluoride glasses1.5-1.6,2.7, 0.55Thulium(Tm3+) Silica, fluoride glasses 1.7-2.1, 1.45-1.53, 0.48, 0.8 Praseodymium(Pr3+) Silica, fluoride glasses 1.3, 0.635, 0.6, 0.52, 0.492.2 Principle of Fiber Laser2.2.1. Fiber Laser ConfigurationAs same as other common lasers, fiber lasers also consist of working materials, laser resonator and pumping source, as the figure shows below. Commonly fiber lasers are mostly developed on the basis of the fiber amplifier. It is made by using the REE doped fiber and a proper feedback system. The REE doped fiber works as thegain medium. There is a very slim fiber core in the fiber laser, which can form high-power density in the fiber and cause the population reversion under the action of outer light source and then output laser light. The working materials absorb different wave length pumplight and output a certain wave length laser by doped different ions (Er3+, Yb3+, Nd3+) into the fiber. The Yb3+ (or Er, Yb) doped fiber is wildly used in the recent high power laser systems because their obvious advantages such as, wider absorption spectrum, wider gain bandwidth and wider turning range.Figure 5: Simple fiber laser setup2.2.2. Fiber AmplifiersFiber amplifier is simply a doped strand of fiber (typically glass) with the required density of laser ions. As the figure shows below, the signals are amplified through interaction with the doping ions while pump laser are multiplexed into the doped fiber. Usually the pumping source is in kind of semiconductor laser diode.Figure 6: Simple Doped Fiber AmplifierHere only one type of laser amplifiers will be discussed according to the rare earth dopant type ---- Erbium (Er3+) Doped Fiber Amplifier (EDFA), which is the most common example. It can be efficiently pumped with a laser at a wavelength of 980 nm or 1,480 nm, and exhibits gain in the 1,550 nm regions. This laser amplifier is a three level-laser system (in order to have lasing action we need more than 2 energy levels to achieve the population inversion). Energy diagram for three-level system is shown in the figure below.Figure 7: A three-level laser energy diagramFigure 8: Energy diagram of an erbium-doped fiber laser An energy-level diagram for the erbium-doped fiber laser is shown in Figure 8. Optical pumping can be seen to occur from the ground state 4I15/2 to the 4I11/2 state at a wavelength of 0.98 um or directly to the 4I13/2 upper laser state at 1.48um. When the pumping occurs to the 4I11/2 level, rapid relaxation occurs to the upper laser levels. When pumping is direct to the upper laser state, rapid relaxation occurs to the lowest-lying levels of that state from which laser action is produced. The laser output then occurs in the region of 1.52-1.56 um. The lower level is similar to that of a dye laser in that it is part of the ground state within which the population is distributed according to the thermal. Consequently, the higher-lying levels of that state are not significantly populated and hence can serve as the lower level of a population inversion. The population then rapidly decays nonradiatively to the lower levels of that state.The transitions are taken place between the energy levels (4I13/2→4I15/2). It has a gain over a wavelength range centered near 1550 nm.Figure 9: Schematic setup of a simple erbium-doped fiber amplifier Two laser diodes (LDs) provide the pump power for the erbium-doped fiber. The pump light is injected via dichroic fiber couplers. The shape of the erbium gain spectrum depends both on the host glass and on the excitation level. Figure 2 shows data for a common type of glass, which is some variant of silica with additional dopants, for example, to avoid clustering of erbium ions.Figure 10: Gain and absorption (negative gain) of erbium (Er3+) ions in a phosphate glass for excitation levels from 0 to 100% in steps of 20%.3. Advantages and disadvantages of fiber laser3.1 The advantage of fiber lasers can be concluded as following six:∙Compact size : Because fibers can be bent and coiled and the light propagating in fibers is well shielded from the environment, for the same output powerfiber lasers are compact compared to rod or gas lasers with all-fiber setuplaser resonator, such as fiber Bragg gratings and fiber couplers ∙Light is already coupled into a flexible fiber: The fact that the light is already in a fiber allows it to be easily delivered to a movable focusing element. Thisis important for laser cutting, welding, and folding of metals and polymers.∙Fiber gain media allows wide wavelength tuning ranges and generates ultra pulses because fiber laser broadens laser transitions in glasses. In addition, it isnot necessary to stabilize the temperature of the pump diodes with broadspectral regions of fiber lasers due to fiber lasers’ good spectral regions withgood pump absorption∙High optical quality: The thermal distortion of the optical path is reduced or eliminated due to the fiber's waveguiding properties. Then the diffraction-limited, high-quality optical beam can be easily obtained whensingle-mode fibers are used, and sometimes also with slightly multimodefibers.∙High output power: Because fiber lasers can have very long active regions ,it can provide very high optical gain so that kilowatt levels of continuous outputpower can be supported because of the fiber's high surface area to volume ratio, which allows efficient cooling.∙Fiber lasers can be operated even on very “difficult” laser transitions such as upconversion lasers by guidance’s allowing high pump intensities to be applied over long lengths.3.2 Disadvantage:∙Alignment is important if the pump light has to be launched from free space into a single-mode core.∙Complicated temperature-dependent polarization evolution of most fibers not compatible with nonlinear polarization rotation mode locking.∙Nonlinear effects often limit the performance.∙Fiber is risky to be damaged at high powers.∙With limited gain and pump absorption per unit length, fiber is difficult to realize very short resonators.4. Some Variation and application of fiber laserThere are many different types of fiber laser; here we only discussed some of them.4.1 High-power Fiber LasersDue to a high surface-to-volume ratio and the guiding effect, which avoids thermo-optical problems even under conditions of significant heating, a single fiber can produce output powers of hundreds of watts, sometimes even several kilowatts from a single fiber.4.2 Upconversion Fiber lasersWhen operating on relatively “difficult” laser transitions, high pump intensities can be easily maintained over a long length. Thus, the gain efficiency achievable often makes it easy to operate even on low-gain transitions.In most cases, silica glass is not suitable for upconversion fiber lasers since the upconversion scheme requires relatively long lifetime of intermediate electronic levels. The lifetime is always very small in silica fibers due to the relatively large phonon energy of silica glass (→ multi-phonon transitions). Therefore, certain heavy-metal fluoride fibers such as ZBLAN (a fluorozirconate) are mostly used with low phonon energies.Most popular upconversion fiber lasers are based on thulium-doped fibers for blue light generation (Figure 11), praseodymium-doped lasers (possibly with ytterbium codoping) for red, orange, green or blue output, and green erbium-doped lasers.Figure 11: Level scheme of thulium(Tm3+) ions in ZBLAN fiber, showinghow excitation with an 1140-nm lasercan lead to blue fluorescence and laseremission.4.3 Narrow-linewidth Fiber LasersFiber lasers can be constructed to operate on a single longitudinal mode with a very narrow linewidth of a few kilohertz or even below 1 kHz. Laser resonator should be kept relative short to achieve long-term stable single-frequency operation without concerning temperature stability. Distributed-feedback laser (DFB laser) is a good example.4.4 Raman Fiber LasersA special type of fiber lasers is fiber Raman lasers. Its principal relies on Raman gain associated with the fiber nonlinearity. Such lasers use relatively long fibers which have increased nonlinearity, and typical pump powers of the order of 1 W. With several nested pairs of fiber Bragg gratings, the Raman conversion can be done in several steps by bridging hundreds of nanometers between the pump and output wavelength. For example, Raman fiber lasers can be pumped in the 1-μm region and generate 1.4-μm light as required for pumping 1.5-μm erbium-doped fiber amplifiers.4.5 Fiber Lasers with Semiconductor Optical AmplifiersThere are some lasers which have a semiconductor optical amplifier (SOA) as the gain medium in a resonator made of fibers. Even though the actual laser process does not occur in a fiber, they sometimes are still called fiber lasers. They typically emit relatively small optical powers of a few milliwatts or even less. Sometimes they exploit the very different properties of the semiconductor gain medium. Compared with a rare-earth-doped fiber, these lasers have much smaller saturation energy and upper-state lifetime. Rather than only generating coherent light, they can be used for information processing in optical fiber communications systems. For example, they can be used in the wavelength conversion of data channels based on cross-saturation effects.5. ConclusionThis paper reviewed the history of fiber laser, the basic principals of fiber laser, and some variance of fiber laser. This paper stated the different fiber material used as gain media, fiber-setting environment, and the advantage and disadvantage of fiber laser.6. References1. C. J. Koester and E. Snitzer, “Amplification in a fiber laser”, Appl. Opt. 3 (10),1182 (1964)2.Silfvast, W.T., 2004. Laser Fundamental, 2nd ed. Cambridge University Press,New York.3.Optics for Fiber Laser Applications by Emily Kubacki and Lynore M Abbott,CVI Laser, LLC. Technical Reference. Document #200504154.Snitzer, E.; "Proposed Fiber Cavities for Optical Masers," Journal of AppliedPhysics, vol.32, no.1, pp.36-39, Jan 19617.8.Popov, S. (2009). "7: Fiber laser overview and medical applications". InDuarte, F. J.. Tunable Laser Applications (2nd Ed.). New York: CRC.9.S. Bedo; W. Luthy, and H. P. Weber (1993). "The effective absorptioncoefficient in double-clad fibers". Optics Communications 99: 331–335.10.A. Liu; K. Ueda (1996). "The absorption characteristics of circular, offset, andrectangular double-clad fibers". Optics Communications 132: 511–518..11.Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption indouble-clad fiber amplifiers. 2: Broken circular symmetry". JOSAB 39 (6): 1259–1263.12.Kouznetsov, D.; Moloney, J.V. (2003). "Efficiency of pump absorption indouble-clad fiber amplifiers.3:Calculation of modes". JOSAB 19 (6): 1304–1309.13.Leproux, P.; S. Fevrier, V. Doya, P. Roy, and D. Pagnoux (2003). "Modelingand optimization of double-clad fiber amplifiers using chaotic propagation of pump". Optical Fiber Technology 7 (4): 324–339.14.D.Kouznetsov; J.Moloney (2004). "Boundary behaviour of modes of aDirichlet Laplacian". Journal of Modern Optics 51: 1362–3044.15.H. Zhang et al, “Induced solitons formed by cross polarization coupling in abirefringent cavity fiber laser”, Opt. Lett., 33, 2317–2319.(2008).16.D.Y. Tang et al, “Observation of high-order polarization-locked vector solitonsin a fiber laser”, Physical Review Letters, 101, 153904 (2008).17./index.html18.H. Zhang et al, “Coherent energy exchange between components of a vectorsoliton in fiber lasers”, Optics Express, 16,12618–12623 (2008).19.H. Zhang et al, “Multi-wavelength dissipative soliton operation of anerbium-doped fiber laser”, Optics Express, V ol. 17, Issue 2, pp.12692-1269720.L.M. Zhao et al, “Polarization rotation locking of vector solitons in a fiber ringlaser”, Optics Express, 16,10053–10058 (2008).21.Qiaoliang Bao, Han Zhang, Yu Wang, Zhenhua Ni, Yongli Yan, Ze Xiang Shen,Kian Ping Loh,and Ding Yuan Tang, Advanced Functional Materials,"Atomic layer graphene as saturable absorber for ultrafast pulsed lasers22.H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh. "Large energy modelocking of an erbium-doped fiber laser with atomic layer graphene" (free download pdf). Optics Express 17: P17630.23.Han Zhang,Qiaoliang Bao,Dingyuan Tang,Luming Zhao,and Kianping Loh."Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker". Applied Physics Letters 95: P141103.24./asia-materials/highlight.php?id=59425./spotlight/spotid=30x.php26.Zhang, H. et al.,. "Graphene mode locked, wavelength-tunable, dissipativesoliton fiber laser". Applied Physics Letters 96: 111112.27.Han Zhang, Dingyuan Tang, Luming Zhao and Wu Xuan,“Dark pulseemission of a fiber laser’’PHYSICAL REVIEW A 80, 045803 200928.K. Ueda; A. Liu (1998). "Future of High-Power Fiber Lasers". Laser Physics 8:774–781.29.K. Ueda (1999). "Scaling physics of disk-type fiber lasers for kW output".Lasers and Electro-Optics Society 2: 788–789.30.Ueda; Sekiguchi H., Matsuoka Y., Miyajima H. , H.Kan (1999). "Conceptualdesign of kW-class fiber-embedded disk and tube lasers". Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS '99. IEEE 2: 217–218.31.Hamamatsu Photonics K.K. Laser group (2006). "The Fiber Disk Laserexplained". Nature Photonics sample: 14–15.。