光纤激光器简介

合集下载

认识光纤激光器

认识光纤激光器
目前调Q技术能够实现峰值功率在兆 瓦级(106w)以上,脉宽为纳秒级(10-9s) 旳激光脉冲。
Wp
Q
max min
ni nt n f max min
(a)
t (b)
t (c)
t (d ) t p t
ቤተ መጻሕፍቲ ባይዱ 调Q光纤激光器
R=100% A O M
Pump Systerm
Output Yb-DC fiber Coupler
透镜组端面泵浦耦合
优点:构造简朴、易于实现 缺陷:耦合占用了端面,无法 同其他光纤级联,降低了灵活 性;透镜组与光纤是分立旳, 稳定性低不易集成
优点:构造简朴紧凑、实现了 激光器旳全光纤化 缺陷:尾纤与光纤尺寸不同, 熔接对准困难,附加损耗大
端面直接熔接耦合
两种措施都只有两个端面用于 泵浦,限制了最大功率。
其他腔型构造
光纤圈反射器(光纤环形镜)包 括一种定向耦合器和由该耦合器 两输出端口连接在一起形成旳一 种光纤圈。 工作原理:耦合器耦合系数为0.5, 光波从端口1进入耦合器,耦合器 将二分之一旳功率耦合到端口3, 另二分之一耦合到端口4,即在光 纤圈顺时针方向和逆时针方向传 播旳输入光各二分之一。跨过耦 合器旳光波比直通旳光波相位滞 后π/2。在端口2处旳透射功率是任 意相位φ旳顺时针场和相位为φ-π 旳逆时针场旳叠加,恰好相互抵 消,透射输出为零,全部输入光 沿端口1返回。


芯 光


浦 光
保 护



激 光 内输包层 出
护 层
泵 浦

光包

光 输 出

单包层与双包层掺杂光纤旳构造
光纤芯:由掺稀土元素旳SiO2构成,它作为激光振荡旳通道,对 有关波长为单模;

光纤激光器行业标准

光纤激光器行业标准

光纤激光器行业标准光纤激光器是一种利用光纤作为增益介质的激光器,具有高能量密度、高光束质量、稳定性好等特点,被广泛应用于通信、医疗、材料加工等领域。

为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。

本文将从光纤激光器的基本原理、技术特点、应用领域以及行业标准等方面进行介绍。

光纤激光器的基本原理是利用激光介质中的受激辐射原理,通过激发光纤中的掺杂离子或分子,使其产生受激辐射而放大光信号,最终形成激光。

相比于传统的气体激光器和固体激光器,光纤激光器具有体积小、重量轻、抗干扰能力强等优势,因此在通信领域得到了广泛的应用。

光纤激光器的技术特点主要包括高功率、高效率、窄线宽、单模输出等。

高功率是光纤激光器的重要特点之一,其功率可以达到数千瓦甚至更高。

高效率是指光纤激光器能够将电能转化为光能的效率,目前光纤激光器的电光转换效率已经超过了50%。

窄线宽和单模输出则保证了光纤激光器在光学通信和激光加工领域有着重要的应用。

光纤激光器在通信、医疗、材料加工等领域都有着广泛的应用。

在通信领域,光纤激光器被用于光纤通信系统中的光源,其稳定的输出特性和高效的能量转换使得其在长距离、高速传输中有着重要的地位。

在医疗领域,光纤激光器被应用于激光手术、激光治疗等领域,其精细的光束质量和可控的输出功率使得其成为医疗器械中不可或缺的部分。

在材料加工领域,光纤激光器被用于激光切割、激光焊接等工艺,其高能量密度和稳定性使得其在工业生产中有着广泛的应用前景。

为了规范光纤激光器的生产和应用,制定行业标准是非常必要的。

光纤激光器的行业标准应包括产品的基本参数、性能要求、测试方法、质量控制等内容,以确保光纤激光器的质量和性能达到国家和行业的标准要求。

同时,行业标准还应包括光纤激光器在通信、医疗、材料加工等领域的应用规范,以保障其在不同领域的安全和可靠性。

总的来说,光纤激光器作为一种新型的激光器,具有独特的技术特点和广泛的应用前景。

制定光纤激光器的行业标准对于推动其产业发展、规范市场秩序、提高产品质量具有重要的意义,希望相关部门和企业能够加强合作,共同制定和执行光纤激光器的行业标准,推动光纤激光器产业的健康发展。

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介一、IPG光纤激光器简介1.光纤激光器简介光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

2.光纤激光器的优势首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。

其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。

第三,光纤激光器体积小,重量轻,工作位置可移动。

第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。

第五,在工业应用上比传统激光器表现更优越。

它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。

第六,一器多机,即一个激光器通过光纤分光成多路多台工作。

第七,免维护,使用寿命长。

最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。

简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。

3.IPG简介全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。

IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。

高功率是IPG的优势。

全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。

在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。

光纤激光器的介绍

光纤激光器的介绍

光纤激光器的介绍光纤激光器的基本构成包括激光介质、激发源、光学谐振腔和输出光纤等。

其中,激发源通常是高功率半导体激光器或其他类型的激发源,通过注入高能量的光子来激发光纤介质。

介质选择不同的元素或化合物,可以获得不同波长的激光输出。

光学谐振腔的设计和构造非常关键,它可以提高激光的相干性和稳定性。

最后,通过输出光纤将激光束传输到需要的位置。

光纤激光器具有许多独特的优点。

首先,光纤激光器可以产生高质量的激光光束,具有较小的发散角度和高光束质量。

其次,光纤激光器具有高度可靠性和稳定性,可以长时间连续运行而不损坏。

此外,光纤激光器无需频繁调整或维护,使用寿命长,适合工业生产环境。

另外,由于光纤激光器的体积小、重量轻,可以方便地集成到各种设备和系统中,并且易于搬运和安装。

光纤激光器在通信领域有着重要的应用。

其高质量的光束和稳定的输出功率使其成为光纤通信系统中的理想光源。

在光纤通信系统中,光纤激光器可以用作发射光源,将信息传输到远距离。

在高容量光纤通信系统中,光纤激光器能够产生高功率的激光光束,实现远距离的信号传输。

光纤激光器在医疗领域也得到广泛应用。

它可以用于激光手术、皮肤美容、激光治疗等。

光纤激光器具有较小的光束尺寸和高能量密度,可以精确地用于医疗操作。

此外,光纤激光器输出的激光波长可以根据不同的医疗需求进行选择,包括可见光、红外线等。

光纤激光器在制造业中也有重要的应用。

它可以用于切割、焊接、打孔等工艺。

光纤激光器具有高功率、高精度和高可靠性的特点,可以实现快速、准确和稳定的制造过程。

在汽车制造、航空航天、电子制造等行业,光纤激光器已经取代了传统的切割和焊接设备,成为主流技术。

在科学研究领域,光纤激光器也发挥着重要作用。

由于光纤激光器输出的激光具有较小的发散角度和高亮度,它可以用于光谱分析、高精度测量以及光学实验等。

此外,光纤激光器还广泛用于激光雷达、光学透镜、光纤传感器等领域。

总之,光纤激光器作为一种先进的激光源具有广泛的应用前景。

什么是光纤激光器

什么是光纤激光器

什么是光纤激光器——激光英才网光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

光纤激光器的类型按照光纤材料的种类,光纤激光器可分为:1.晶体光纤激光器。

工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。

2.非线性光学型光纤激光器。

主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。

3.稀土类掺杂光纤激光器。

光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。

4.塑料光纤激光器。

向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。

光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势。

(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故。

(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低。

(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多。

(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。

(6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。

(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。

(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。

(9)不需热电制冷和水冷,只需简单的风冷。

(10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。

(11)高功率,目前商用化的光纤激光器是六千瓦。

光纤激光器的简介

光纤激光器的简介

光纤激光器目录光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。

编辑本段光纤激光器的类型按照光纤材料的种类,光纤激光器可分为:1晶体光纤激光器。

工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。

2非线性光学型光纤激光器。

主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。

3稀土类掺杂光纤激光器。

光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。

4塑料光纤激光器。

向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。

编辑本段光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势;(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故;(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低;(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多;(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。

(6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。

(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。

(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。

它由光纤、泵浦光源、谐振腔和输出耦合器件组成。

1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。

它通常由二氧化硅或氟化物等材料制成。

2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。

泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。

3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。

谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。

4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。

它通过调节输出耦合器件的透射率,实现激光的输出。

二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。

其工作过程主要可以分为三个步骤:泵浦、光放大和激射。

1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。

2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。

3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。

激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。

光纤激光器的工作原理可以通过能级图来解释。

在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。

在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。

当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。

光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。

光纤激光器名词解释

光纤激光器名词解释

光纤激光器名词解释
光纤激光器呀,听起来挺高科技的对不对?其实呢,它就是一种利用光纤来产生激光的设备。

你可能见过那些在科幻电影里的激光束,亮晶晶的,射出去笔直的一条线。

而光纤激光器呢,就是能制造出这种神奇光线的真实工具。

说到这,你可能会好奇,为啥要用光纤来做激光器呢?这是因为光纤有它的特别之处。

首先,光纤非常细,就像头发丝一样,但它却可以传输大量的信息和能量,而且损失还很小。

这就像是有一条超级高速公路,虽然看起来不宽,但是车跑得又快又稳,还不堵车。

所以,用光纤来做激光器,不仅能让激光更稳定、更强,还能让设备变得更小巧、更耐用。

光纤激光器的工作原理其实也挺有意思的。

它是通过将光信号在光纤中不断放大,直到达到足够的强度,从而发射出高能量的激光束。

这个过程就像是给一个小小的火苗不断地添柴加薪,最后变成了一股强大的火焰。

这样的激光束可以用来做很多事,比如精确切割材料、进行复杂的手术,甚至是通信中的数据传输。

它能够做到如此精准,是因为激光的波长可以被精确控制,这样就能针对不同的任务选择最适合的设置。

总之啊,光纤激光器是一个结合了现代光学和工程技术的杰作。

它不仅改变了我们对激光的理解,也在工业、医疗甚至日常生活中找到了自己的位置。

当你听到“光纤激光器”这个词的时候,不妨想象一下那根细细的光纤里藏着的巨大能量,以及它所能带来的无限可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章、激光基础第二章、激光器第三章、光纤的特性第四章、光纤激光器第五章、实验室激光器型号及操作安全第一章激光基础1.1什么是激光激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。

意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。

激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。

激光的四大特性:高亮度、高单色性、高方向性、高相干性。

具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。

由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。

1.2激光产生的基本理论1.2.1原子能级和辐射跃迁按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。

图1-1 原子能级图当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。

当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增图1-2 电子跃迁图加,从外界吸收能量。

反之,电子从较高能级跃迁到较低能级时,向外界发出能量。

在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。

发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。

1.2.2受激吸收、自发辐射、和受激辐射受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。

自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

两个能级之间的能量差越大,自发辐射过程所放出的光子频率就越高。

如同弹琴,如果用力拉紧琴弦,琴发出的音调频率就高,反之则低。

自发辐射光极为常见,普通光源的发光就包含受激吸收与自发辐射过程。

前一过程是粒子由于吸收外界能量而被激发至高能态;后一过程是高能态粒子自发地跃迁回低能态并同时辐射光子。

当外界不断地提供能量时,粒子就会不断地由受激吸收到自发辐射,再受激吸收,再自发辐射……如此循环不止地进行下去。

每循环一次,放出一个光子,光就这样产生了。

以电灯为例:接通电源后,电流流经灯泡中的发光物质——钨丝,钨丝被灼热,使钨原子跃迁至高能态,然后又自发跃迁回低能态并同时辐射出光子,于是灯泡就亮了。

受激辐射:处于高能级E2上的原子,受外来频率(满足hv=E2-E1)的光子的激励,从E2跃迁到E1,发出一个和外来光子完全相同的光子,称为受激辐射。

受激辐射和自发辐射有本质的区别:前者是受激产生,跃迁时产生的光子与外来光子在频率、相位、方向、和偏振方向上完全一致,吸收一个光子,放出两个光子,产生的光子相当于加强了外来光子,即光放大作用。

而自发辐射的光子频率不同,是杂乱无章的,完全不相干的。

光放大作用简单地说,就是输入是一个外来光子,而输出的则是性质与外来光子一模一样的两个光子,因为在输出的两个光子中,一个就是外来光子本身,而另一个则是在受激辐射过程中释放出来的,即是被外来光子“激”出来的。

一个光子激发一个粒子产生受激辐射,得到两个完全相同的光子,这就是光的“放大”。

这两个光子再去激发两个粒子产生受激辐射,就可以得到完全相同的4个光子,4、8、16……如此链锁反应,完全相同的光子数目便会越来越多,可见受激辐射过程也就是光放大的过程。

在受激辐射过程中产生并被放大了的光,便是激光。

1.2.3粒子反转分布从光的放大作用可以看出,要想实现放大,则必须输入外来光子(即种子光,后面要讲的泵浦光),并且要有可供受激辐射的处在高能级的原子。

在平衡状态下,粒子(原子、分子等)在各能级的分布满足玻尔兹曼公式,即能级的能量愈高,上面的粒子数越少。

这时如果给粒子系统提供一个外来能量,使低能级上的粒子吸收能量跃迁至高能级上,使高能级上的粒子数多于低能级上的粒子数,这个过程即称为粒子集居数反转。

只有在两个形成了粒子数反转的能级之间,受激辐射的分量才能大于受激吸收,光才能得到放大。

1.2.4激光产生的三要素:激励源,工作介质,谐振腔一、激励源要想把处于低能态的粒子送到高能态去,就得借助外力工具来实现。

这个过程类似于把水位很低的河水或井水抽运到水塔上的蓄水池里,必须要有足够功率的水泵作功才成。

同理,要实现粒子数反转,首先必须消耗一定的能量把大量粒子从低能级“搬运”到高能级,这种过程在激光理论上叫做泵浦或激励。

由于其作用原理和水泵抽水相类似,所以把能使大量的粒子从低能态抽运到高能态的激励装置通称之为“光泵”。

“光泵”只是在解释粒子数反转时借用的一种形象的说法。

实际上粒子都是甘居低能态的,而且很顽固,并不是象水一样很容易地就被泵抽运走了。

即使费了很大劲把一部分抽运到了高能态,但它们很快就又自发地跃回低能态了。

怎么办呢,那就需要加大能量不停顿地来轰击。

就是说,激励不仅要快,而且要强有力。

激励作用总是通过消耗一定的能量来实现的,产生受激辐射所需要的最小激励能量定义为激光器的阈值。

阈值是描述激光器整体性能的一个重要参数。

二、工作介质在大千世界里,各种各样的物质都是由分子、原子、电子等微观粒子组成的,如果有了强大的激励是不是都能在物质中实现粒子数反转而产生激光呢?不是的,激励只是一个外部条件,激光的产生还取决于合适的工作物质,也称之为激光器的工作介质,这才是激光产生的内因。

前面我们所讲到的都是以二能级系统为例来讨论的,也就是说工作物质只有高、低两个能级。

实际上目前所有已实现的激光辐射都是三能级或四能级系统。

下图是红宝石激光器的铬离子(Cr3+)的简化能级图,这是一个典型的三能级系统。

图中所示的E1,E2,E3中,E2是亚稳态级。

外界激发作用将会把粒子从E1抽运到E3,被抽运到E3的粒子很快通过无辐射跃迁转移到E2,因为E3的寿命只有10-9秒,即10亿分之一秒,不允许粒子久留,所以此过程很快。

但E2的亚稳态,寿命较长,约为10-3秒,即千分之一秒,允许粒子久留。

随着E1上的粒子不断地被抽运到E3,又很快转移到E2,既然E2允许粒子久留,那么从E2到E1的自发辐射跃迁几率就很小,于是粒子就在E2上积聚起来,从而实现E2对E1两能级间的粒子数反转。

这个系统便能对诱发光子能量hV=E2—E1的光进行光放大。

显然,E2能级好象一个水塔上的蓄水池,能够贮存大量的粒子,只有亚稳态级才具有这种能力,但并不是所有的发光物质都具有亚稳态结构,这就是有些物质可以“激”出激光来,而有些物质却“激”不出来的道理。

所以,具备亚稳态能级结构是对产生激光的工作物质的起码要求。

三、谐振腔合适的工作物质有了,实现粒子数反转的激励源有了,这下子该“激”出激光了吧!还不行,因为人们在实验中发现这样虽然可以产生受激辐射,但非常微弱,根本形不成可供人们使用的激光。

这很自然的使人们想到了采用放大的办法来解决这个问题,于是出现了光学谐振腔。

即利用两个面对面的反射镜,使放大了的光在镜间来回被反射,反复通过镜间的介质不断再放大,即反馈放大。

两个反射镜可以是平面,也可以是球面。

其中一个要求是反射率为100%的全反射镜,图1-3谐振腔示意图另一个是部分反射镜。

比如,反射率为95%时,5%的光透射出去供人应用,从而构成光学谐振腔。

因为其侧面是敞开的,所以,又称作“开放腔”。

当把激光介质置于两反射镜之间后,即可构成激光振荡器。

当外界强光激励置于两镜间的激光介质时,就在亚稳态级与稳态级之间实现了粒子数反转。

处于亚稳态级的粒子当自发地跃迁到低能级时将自发辐射光子,但这种发射是无规律的,射向四面八方,其中一部分可以诱发激发态上的粒子产生受激辐射。

从图上可以看出,凡非腔轴方向的自发辐射,尽管它也可以诱发激发态上的粒子产生光放大,但因介质体积有限,腔侧面又是敞开的,终将逸出腔外。

所以,产生激光的作用不大。

唯独沿腔轴方向的自发辐射才起作用。

每当它碰到镜面时,便被反射沿原路折回,又重新通过介质不断诱发激发态上的粒子产生受激辐射光放大。

由于受激辐射光在腔镜间往返运行,介质被反复利用,腔轴方向受激辐射光就越来越强。

其中一部分从部分反射镜端射出,这就是激光;而其余部分留在腔内继续反馈放大以维持不断的向外辐射激光。

激光产生的流程图如下所示:图1-4 激光产生流程图第二章激光器2.1激光器的历史激光器的发展史应该追溯到1917年,爱因斯坦提出光的受激辐射的概念,预见到受激辐射光放大器诞生,也就是激光产生的可能性。

20世纪50年代美国科学家汤斯及前苏联科学家普罗科霍罗夫等人分别独立发明了一种低噪声微波放大器,即一种在微波波段的受激辐射放大器Maser(Microwave amplification by stimulated emission of radiation )。

1958年美国科学家汤斯和肖洛提出在一定条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器Laser(Light amplification by stimulated emission of radiation)。

1960年7月美国的梅曼宣布制成了第一台红宝石激光器。

图2-1 梅曼的第一台红宝石激光器1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,称其为“光学量子放大器”。

随后我国科学家钱学森建议统一翻译成“激光”或“激光器”。

图2-2我国激光器发展历史图2-3我国第一台激光器2.2激光器的分类激光的历史于1960年应用3能级固体激光器的红宝石激光器的振动而拉开了帷幕。

对气体激光器、半导体激光器、染料激光、光纤激光器等新激光材料、介质的研究逐渐活跃地展开。

现在,在工业用激光器中,二氧化碳激光器、准分子激光器、Nd:YAG激光器、光纤激光器等已被广泛应用。

本节将按照增益介质的不同对激光器进行分类,对各种代表性的激光增益介质、泵浦方法、振荡形态、振荡波长进行描述。

与激光器的特征有关的项目和种类见表:图2-4 激光器分类图(a)液体激光器液体激光器是以液体作为介质的激光器。

最被广泛应用的液体激光器的介质是染料分子溶于有机溶剂中的有机染料,实用化的液体激光器基本上是以有机染料为介质的染料激光器。

(b)气体激光器气体激光器是利用气体分子作为激光介质的激光器,一般泵浦方法是对封入到玻璃管(或陶瓷管)内的气体放电。

因为放电,被加速的电子将能量转移到气体激光介质的原子(或离子和分子),原子被泵浦到激发态能级而形成反转分布。

根据激光介质的气体种类的不同,又可以细分为HeNe激光器、惰性气体激光器、准分子激光器、二氧化碳激光器。

相关文档
最新文档