IPG高功率光纤激光器结构图.
IPG光纤激光器接口描述

YLP 系列掺镱光纤激光“B ”型及“B2”型实用简介及注意事项(您的设备是那种机型, 请注意查看随机说明!两种机型的接口略有不同!):♦ 激光的内部结构示意图Master Oscillator(MO):主振荡器Booster(BS)/Power amplifier :功率放大器MO control :主振荡器控制Booster control :功率放大器控制Power level :功率调节Modulation :调制(激光开关信号)Emergency Stop :急停信号 MO ON/OFF :主震荡器开/关 Synchronization :同步频率输入 Delivery fiber :传导光纤 Output head :激光输出头♦ 推荐激光电气连接示意图注意: 绿/黄线请接机壳, 不要悬空!♦电气连接注意事项:1.主电源(直流24伏)必须具备充足的功率(参考激光器相关参数中的最大电流消耗值)并能够具备在250微秒的短暂时间内可以提供超过50%的峰值电流。
通常的型号,电流消耗小于8安培,而峰值电流小于12安培即可。
电源必须保证正常使用时和峰值期间保持稳定的电压(所需要的稳定度请参阅相关的激光电气参数要求)。
电源的过压或不足及上电过程的杂波都会导致激光运行的不稳定。
2.连接主电源及激光器的导线必须使用合理的长度及面积,以保证不会产生太大的压降(特别是对峰值电流消耗而言)。
3.主电源24伏应当使用“悬浮”输出。
其负极应当仅与激光电源的蓝线连接。
错误的连接可能生成回路电流(上图画叉红线所示)4.激光接地(DB25针的10-15,24)和激光电源24伏的负极(蓝线)在激光模块内部被连接在一起。
在模块以外不允许将任何端口连接在一起!5.在模块内部共地端是通过一个470欧姆的电阻及并联的47纳法的电容与外壳相连接的。
这样的设计会中和地和机壳之间的电位。
6.控制卡的接地端可以在设计中同大地相连接。
如果没有的话,而控制卡电子线路具有“悬浮”地,不可以同24伏电源的负极及地线连接(蓝线和黄绿线),参考上图中的红虚线。
IPG高功率光纤激光器结构图

IPG高功率光纤
+
+
+
+ = xxx kW 激光器模块组
UART
InterBus
主
控
Eithernet
制
器
43 kW
MCU P=500W MCU P=500W
MCU P=500W MCU P=500W 电源
合束器
光闸
Length 200 m 10 kW 10 kW
IPG高功率光纤激光器配备外部光闸进行激光加工
IPG高功率光纤激光器结构图
IPG光纤激光器泵浦源—单芯结半导体模块
- 超高的功率 - 超高的亮度 - 极高的效率 - 无冷却运行
IPG光纤激光器模块组
+
LDM#
LDM#
LDM#
有源光纤
+ห้องสมุดไป่ตู้
LDM#
LDM#
LDM#
LDM#
LDM#
LDM#
-
光纤模组
全光纤激光模块组
LDM#
LDM#
LDM#
-
体积小巧,高度集成的全光纤设计 并联单芯结二极管激光模块组合 侧面泵浦 坚固的机械结构,耐冲击稳定性及强 超高的温度稳定性
Feeding Fiber Length up to 200m
Process Fiber Length up to 200m
• 远距离的光传输 • 安装简易 • 节省费用 • 操作安全
IPG高功率光纤激光器内部水循环系统
光纤激光器原理与结构

与固体、气体激光器相比:能量转 换效率高、结构紧凑、可靠性高、适合 批量生产;
与半导体激光器相比:单色 性好,调制时产生的啁啾和畸变小,与 光纤耦合损耗小。
1.双包层 光纤激光器 双包层掺杂光纤的构形如下图所示
下面介绍几种不同几何结构的双包层光 纤,其结构如下图所示:
保护层 外包层 内包层 纤芯
圆形内包层双包层 光纤横剖面
D型内包层双包层 光纤横剖面
偏心型内包层 双包层光纤横剖面
保护层 外包层 内包层 纤芯
星型内包层 双包层光纤横剖面
正方形内包层 双包层光纤横剖面
长方形内包层 双包层光纤横剖面
圆形、偏心、D形、矩形内包层的双包层光纤吸收效率比较
1987年YABLONOVITCH和JOHN最早提出了光子晶体 (Photonics crystal)概念,1992年RUSELL等人得出了光子 晶体光纤(PCF)概念,在石英光纤中沿轴向均匀排列着 空气孔,从横截面上看二维的周期结构,孔的中间存在着 一个缺陷,光就被限制在这个缺陷中传播。通过控制PCF 的空气孔的排列和大小,可以实现不同的光传输出特性。
内包层 光纤芯
保护层 泵浦光 外包层
激光输出
双包层掺杂光纤由纤芯、内包层、外包层 和保护层四个层次组成。内包层的作用:一是 包绕纤芯,将激光辐射限制在纤芯内;二是将 泵浦光耦合到内包层,使之在内包层和外包层 之间来回反射,多次穿过单模纤芯被其吸收。
在双包层结构中,泵浦光的吸收率和内包 层的几何形状和纤芯在包层结构中的位置有关。 此外,泵浦光被掺杂稀土离子的吸收率正比于 内包层和外包层的面积比。
20160727 IPG光纤激光器内部培训资料

IPG光纤激光器安全互锁
光纤内部有一条安全回路,在光纤意外折断时,激光会将导线烧断,随之安全回路断开,
停止出光。
光纤头在没有插入加工头时,回路也无法闭合,无法出光。
在光纤头内部和激光加工头内部都串联了温度开关,当光纤头冷却水供应出现问题,或
光纤端面和光学头镜面污染,引起吸热升温后,温度开关会断开。
激光器柜门安装有门开关,开门时会断开安全回路。
激光器底板安装有漏水传感器,如果出现漏水,安全回路断开。
IPG光纤激光器的安全设施
钥匙管理、上锁、警示标识、警示灯和急停按钮
激光屏蔽:建立激光加工房,挡光屏,幕布,测试柜
IPG高功率应用实验室
IPG高功率应用实验室安全房,安全房带有互锁系统,互锁系统集成了门开关、出光警示
子不稳定,会落回内层,期间产生1070nm的光子,光子在光纤内被
两个反射器件持续反射增强,形成激光输出。
掺杂Yb稀土离子的双包层光纤泵浦示意图
激光原理
光纤激光器激光模块产生原理图
IPG光纤激光器采用双向泵浦结构,可以将多个LD泵浦
模块耦合到一根光纤中,大大提高了激光输出功率。
常见激光器外观
激光器前门内部构造
真皮直至到达皮下组织。
非光束伤害
激光器设备供电电压为三相交流电400V AC,如果操作不当或者没
有正确接地,会有触电的危险。
激光器在进行激光加工时,会产生有害粉尘和有毒气体,员工长
时间在工作区域内工作,如果没有采取防护措施,会导致呼吸道
和肺部疾病。
在对激光器进行维护和维修时,部分部件重量大,边角锋利,容
的的区域黄斑区,此区域被破坏后,人眼视野的中心区总会有一个黑点,无法恢
复。
由于红外光的不可见性,及时少量激光摄入人眼,人眼也无法及时作出闭眼反应,
光纤激光器

光纤激光器1、激光器基本结构激光器由三部分组成:泵浦源、增益介质、谐振腔。
图1 激光器基本结构示意图1.1 原子能级间受激吸收与受激辐射E 1E 2E 1E 2受激吸收E=E 1-E 2E1E 1E 2E 2E=E 1-E 2受激辐射E=E 1-E 2E=E 1-E 2图2 受激吸收与受激辐射示意图受激吸收为在能量为E 入射光子的作用下,处在低能级E 1的粒子吸收能量E 跃迁到高能级E 2的过程。
受激辐射为在入射的能量为E 的光子的作用下,处在高能级E 2的粒子受激发,跃迁到低能级E 1,同时辐射出与入射光子E 状态相同的光子的过程。
1.2 激光产生过程如图1,激光器由泵浦源、增益介质、谐振腔组成。
增益介质为主要产生激光的工作物质。
由于粒子处在低能级比处在高能级稳定,因此通常情况下,物质粒子按照玻尔兹曼分布规律分布,即高能级粒子比低能级粒子少。
泵浦源为增益介质提供能量,使增益介质中的低能级粒子吸收能量,受激吸收,向高能级跃迁,使高能级处粒子数高于低能级粒子数,这种分布规律称为粒子数反转分布,使增益介质中积累了大量能量。
当有高能级粒子向低能级自发跃迁并释放出光子时,大量高能级粒子在初始光子作用下受激辐射,释放出大量状态相同,即波长相同、能量相同、方向相同、偏振态的光子。
这种在泵浦源与增益介质共同作用下使初始光子通过受激辐射效应放大而产生的光即为激光。
对特定波长激光全反射的输入镜与对该波长激光部分反射的输出镜构成光学谐振腔。
谐振腔主要有两方面作用:一是提供轴向光波的光学正反馈;二是控制激光震荡模式特性。
由于输出镜具有部分反射率,它可以使通过增益介质放大的光一部分通过透镜射出腔外,获得我们需要的特定波长的激光,另一部分反射回谐振腔,再由于输入镜对激光具有全反率,从而使轴向光波在谐振腔中往返传播,多次通过激活介质,在腔内形成稳定的自激振荡。
由于谐振腔镜只对特定波长的光镀全反射膜和部分反射膜,因此只有特定波长的光能产生自激震荡。
QBH 准直系统

上图为IPG 中高功率光纤激光器输出端,OBH 接口输出(有水冷和不带水冷的两种)。
OBH 接口是中高功率激光的常用输出国际标准型号之一,QBH 输出为具有一定发散角的发散光,同时QBH 本身还具有一些电气特性,所以常用与带QBH 接口的准直系统配套使用,按照说明步骤把QBH 插入相应准直系统即可。
图示为准直单元(Collimator )。
此准直单元可以与各激光器生产厂家的QBH 接口输出的激光器匹配。
选用:
经准直单元出来的光为平行光,选用时只需要告诉我们你希望得到准直后的光斑直径是多少就OK 了,或者是聚焦后的光斑直径也可以。
图示为IPG 公司的QBH 接口和准直系统的连接。
图示为D50系列准直单元配置成的激光焊接头。
一些常用规格的准直单元,我们公司都有备货,同时可以提供给客户免费试用,满意后再购买。
光纤激光器.doc

光纤激光器1、激光器基本结构激光器由三部分组成:泵浦源、增益介质、谐振腔。
图1 激光器基本结构示意图1.1 原子能级间受激吸收与受激辐射E 1E 2E 1E 2受激吸收E=E 1-E 2E1E 1E 2E 2E=E 1-E 2受激辐射E=E 1-E 2E=E 1-E 2图2 受激吸收与受激辐射示意图受激吸收为在能量为E 入射光子的作用下,处在低能级E 1的粒子吸收能量E 跃迁到高能级E 2的过程。
受激辐射为在入射的能量为E 的光子的作用下,处在高能级E 2的粒子受激发,跃迁到低能级E1,同时辐射出与入射光子E状态相同的光子的过程。
1.2激光产生过程如图1,激光器由泵浦源、增益介质、谐振腔组成。
增益介质为主要产生激光的工作物质。
由于粒子处在低能级比处在高能级稳定,因此通常情况下,物质粒子按照玻尔兹曼分布规律分布,即高能级粒子比低能级粒子少。
泵浦源为增益介质提供能量,使增益介质中的低能级粒子吸收能量,受激吸收,向高能级跃迁,使高能级处粒子数高于低能级粒子数,这种分布规律称为粒子数反转分布,使增益介质中积累了大量能量。
当有高能级粒子向低能级自发跃迁并释放出光子时,大量高能级粒子在初始光子作用下受激辐射,释放出大量状态相同,即波长相同、能量相同、方向相同、偏振态的光子。
这种在泵浦源与增益介质共同作用下使初始光子通过受激辐射效应放大而产生的光即为激光。
对特定波长激光全反射的输入镜与对该波长激光部分反射的输出镜构成光学谐振腔。
谐振腔主要有两方面作用:一是提供轴向光波的光学正反馈;二是控制激光震荡模式特性。
由于输出镜具有部分反射率,它可以使通过增益介质放大的光一部分通过透镜射出腔外,获得我们需要的特定波长的激光,另一部分反射回谐振腔,再由于输入镜对激光具有全反率,从而使轴向光波在谐振腔中往返传播,多次通过激活介质,在腔内形成稳定的自激振荡。
由于谐振腔镜只对特定波长的光镀全反射膜和部分反射膜,因此只有特定波长的光能产生自激震荡。
IPG高功率光纤激光器培训手册20141228_图文

IPG高功率光纤激光器培训手册PHOTONICSPHOTONIC目录1激光安全(11.1激光等级定义(11.2IPG光纤激光器等级(21.3激光伤害机理(21・4防护眼镜(31.5电气伤害(31.6机械伤害(41.7气体粉尘伤害(41.8安全建议(42设备描述(52.1功能原理(52.2激光原理(62.3激光器构造(72.3.1常见激光器外观(72.3.2激光器前门内部(82.3.3激光器后门内部(92.3.4激光器侧门内部(102.3.5控制部件(112.4安全电路(11 2.4.1安全互锁继电器K6(12242急停安全继电器K7(132.5接口定义(142.5.1XP 1 硬线接口(142.5.2XP2 安全接口(172.5.3XP3水冷机控制接口(192.5.4XP4模拟量控制接口(202.5.5XP 9/10/11/12 -光闸通道安全接口(20 2.5.6现场总线接口(213激光软件(303.1与激光器建立连接(303.2激光器IP地址复位(313.3软件指示灯概述(323.4 启动L ASERN ET 软件(333.5L ASER N ET 软件界面(343.6L ASER N ET 属性页面(353.6.1状态页面(35362警报页面(373.6.3预警页面(41364控制页面(43 3.6.3预警页面(413.7.4程序命令详解(613.6.5事件页面(453.6.6日志文件页面(463.6.7光闸页面(493.6.8电源页面模拟量(513.6.9 电源页面 CAN-Bus (523.6.10水冷机页面Riedel (533.6.11水冷机页面IPG (543.6.13选项页面-QCW 准连续(56 3.6.14现场总线页面Fieldbus (57 3.6.15模块页面(583.7程序(59 3.7.1LaserNet 程序编辑器(593.7.2激光程序命令列表(603.7.3激光程序结构(603.7.5例程讲解(624安装(644.1安装准备(644.2安装位置(644.3安装(644.3.1拆箱(644.3.2卸货(654.4电气连接(674.5水路连接,流量(67 5拆卸(695.1关闭激光器(69 5.2排水(695.3拆除电线(695.4拆卸光学器件(69 5.5安全包装(696光纤操作(706.1—般光纤操作(71 6.2光纤包装(716.3动态补偿器(72 6.4放置光纤(736.5清洁光纤头(746.6拆除光纤(766.7安装光纤(777操作(797.1开机流程(797.2关机流程(797.3开/关主电源(797.3.1开始按钮(807.3.2使用XP2接口外部启动(807.3.3激光软件LaserNet (807.3.4硬线接口(807.3.5现场总线接口(807.4本地模式(807.5使用激光程序的本地模式(817.6硬线接口远程模式(81761硬线命令响应时间表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
+
+
+
= xxx kW
IPG高功率光纤 激光器模块组
MCU MCU UART InterBus Eithernet
P=500W
合束器
P=500W
Length 200 m 10 kW
主 控 制 器
MCU MCU
P=500W
P=500W
光闸
10 kW
43 kW
电源
ቤተ መጻሕፍቲ ባይዱ
IPG高功率光纤激光器配备外部光闸进行激光加工
IPG高功率光纤激光器结构图
IPG光纤激光器泵浦源—单芯结半导体模块
-
超高的功率 超高的亮度 极高的效率 无冷却运行
IPG光纤激光器模块组
+
LDM# LDM# LDM#
有源光纤
+
LDM# LDM# LDM#
LDM# LDM# LDM#
LDM#
光纤模组
LDM# LDM#
-
-
全光纤激光模块组
体积小巧,高度集成的全光纤设计 并联单芯结二极管激光模块组合 侧面泵浦 坚固的机械结构,耐冲击稳定性及强 超高的温度稳定性
• 远距离的光传输
Feeding Fiber Length up to 200m
• 安装简易
• 节省费用
• 操作安全
Process Fiber Length up to 200m
IPG高功率光纤激光器内部水循环系统