调Q光纤激光器结构示意图和MOPA光纤激光器结构示意图.

合集下载

激光器的基本技术激光调Q技术讲解课件

激光器的基本技术激光调Q技术讲解课件
的数字通信。
测量领域
利用激光的高亮度和相干性好 的特点,实现高精度的测量和 定位。
军事领域
利用激光的高亮度和方向性好 的特点,实现远距离的探测、 跟踪和瞄准。
工业领域
利用激光的高亮度和高能量密 度的特点,实现各种加工和制 造,如切割、焊接、打标等。
02
激光调Q技术介绍
调Q技术的定义
调Q技术
调Q技术是一种控制激光器输出 脉冲宽度的技术,通过调节激光 器的腔长或腔内损耗,使激光器 在脉冲状态下工作,从而获得短 脉冲和高峰值功率的激光输出。
当激光器处于低损耗状态时,腔内的光子数会逐渐增加,当腔内的光子数达到最 大值时,突然关闭腔的损耗,使腔内光子数突然剧增,导致激光器产生单脉冲输 出。
调Q技术的实现方式
机械方式
通过调节反射镜或光学元件的位 置来实现腔长或折射率的调节。
电学方式
通过改变腔内电场的分布来实现 折射率的调节。
调Q技术的优缺点
调Q技术的原理
调Q技术的原理是通过调节激光 器的腔长或腔内损耗,使激光器 在脉冲状态下工作。在脉冲状态 下,激光器的输出功率和光束质 量得到显著提高,从而获得短脉 冲和高峰值功率的激光输出。
调Q技术的分类
调Q技术可以分为被动调Q和主动 调Q两大类。被动调Q技术利用某 些材料的物理特性(如非线性折 射率变化)来实现腔内损耗的调 节;主动调Q技术则通过外部控 制电路或声光调制器等设备来实 现腔内损耗的调节。
等优点。
激光调Q技术在工业领域的应用
激光调Q技术在工业领域的应用也非常广泛,它可以用于加工各种材料,如金属、 非金属、复合材料等。
激光调Q技术还可以用于制造各种产品,如激光打印机、激光投影仪、激光传感器 等。

《光纤激光器》PPT课件 (2)

《光纤激光器》PPT课件 (2)
因此激光器的第三个要素就是要有一个功率源, 它所提供的能量至少要能够产生阈值反转密度。在 半导体激光器中这一功率源是以电能形式提供激发 功率的。
光纤激光器根本原理
光纤激光器和其他激光器一样,由能产生光子的增益介 质,使光子得到反响并在增益介质中进展谐振放大的光 学谐振腔和鼓励光跃迁的泵浦源三局部组成。
光纤激光器的开展
1985年英国南安普敦大学的研究组取得突出成绩。他 们用 MCVD方法制作成功单模光纤激光器 ,此后他们先后 报道了光纤激光器的调Q、锁模、单纵模输出以及光纤放 大方面的研究工作。英国通信研究实验室(BTRL )于 1987 年展示了用各种定向耦合器制作的精巧的光纤激光器装置, 同时在增益和激发态吸收等研究领域中也做了大量的根底 工作,在用氟化锆光纤激光器获得各种波长的激光输出谱线 方面做了开拓性的工作。世界上还有很多研究机构活泼在 这个研究领域 ,如德国汉堡技术大学 ,日本的 NTT、 三菱 , 美国的 贝尔实验室 ,斯坦福大学等。
共振腔还有另一个作用:在共振腔内形成的受激光一 局部通过共振腔端面发射出去成为受激光发射,另外一局 部被端面反射回来,在共振腔内继续激发出受激辐射。所 以,只要在共振腔内的激光材料始终保持粒子数反转条件, 就可以获得连续的受激光发射。
3.功率源
为了使激光器产生激光输出,必须使共振腔中 激光材料的增益到达阈值增益,也就是说要使粒子 数反转到达一·定的程度,称为阈值反转密度。
Er3+(4F13/2—4I15/2)有1.54 m发射谱线,与Nd激光 器一样,用0.514 m的激光泵浦,便可产生振荡,其荧 光光谱有1.534和1.549 m峰,寿命8—12ms。 Er激光 为三能级激光,因此用块状材料实现连续振荡比较困难, 但用纤维激光器,可实现空运连续振荡,阈值30mw左右。 插入衍射光栅,也可在1.53—1.55 m范围内实现波长可

《光纤激光器》课件

《光纤激光器》课件

光纤激光器市场规模持续增长 应用领域不断扩展,如医疗、通信、军事等 技术不断进步,如高功率、高亮度、高稳定性等 市场竞争加剧,国内外企业竞争激烈
工业制造:广泛应用于切割、焊接、打标等领域 医疗领域:用于手术、诊断、治疗等 科研领域:用于科学研究、实验等 通信领域:用于光纤通信、光传输等 军事领域:用于激光武器、激光制导等 环保领域:用于污染治理、资源回收等
频率调制是指通过改变激光 器的频率来改变其输出功率
光纤激光器的调制特性包括频 率调制、相位调制和强度调制
相位调制是指通过改变激光 器的相位来改变其输出功率
强度调制是指通过改变激光 器的强度来改变其输出功率
光纤激光器具有较高的抗电磁 干扰能力
光纤激光器对环境温度和湿度 的变化不敏感
光纤激光器可以工作在恶劣的 环境中,如高温、高压、高湿 度等
特点:高效、稳定、长寿命
作用:产生激光
组成:由两个反射 镜和一个增益介质 组成
工作原理:通过反 射镜的反射和增益 介质的放大,形成 稳定的激光输出
特点:具有高稳定 性和高效率
光纤:传输激光信号 激光器:产生激光信号
光束整形器:调整激光束的形状和方向
光束传输系统:将激光信号传输到目标 位置
控制系统:控制激光器的输出功率和频 率
激光制导武器:利 用光纤激光器进行 精确制导,提高打 击精度
激光通信:利用光 纤激光器进行远距 离、高速率的通信 传输
激光雷达:利用光 纤激光器进行目标 探测和跟踪,提高 探测精度和距离
激光武器:利用光 纤激光器进行高能 激光武器研发,提 高武器威力和射程
激光手术:用于眼 科、皮肤科、耳鼻 喉科等手术
PART THREE
材料:稀土离子掺杂光纤

调Q激光器分解课件

调Q激光器分解课件
21世纪
随着科技的不断发展,调Q激光 器的性能和应用范围不断拓展 ,成为现代科技领域的重要支 柱之一。
02
调Q激光器的结构与组件
增益介质
01
增益介质是调Q激光器的核心组 成部分,它为激光的产生提供能 量。常见的增益介质包括各种晶 体和玻璃。
02
增益介质的作用是将泵浦源提供 的能量转化为光能量,从而实现 激光的输出。
调Q激光器分解课件
目录
• 调Q激光器概述 • 调Q激光器的结构与组件 • 调Q激光器的特性与性能 • 调Q激光器的调试与优化 • 调Q激光器的未来发展与趋势
01
调Q激光器概述
调Q激光器的定义与工作原理
调Q激光器是一种特殊类型的激光器,通过调节光子能量和频率,实现高功率、 高重复频率的脉冲激光输出。其工作原理主要基于光子能量和频率的调节,通过 调节光子能量和频率,使得激光器在某一特定时刻产生高功率的脉冲输出。
新材料、新技术的研发与应用
新材料
随着科技的发展,新型材料如碳 纳米管、二维材料等将被应用于 调Q激光器的制造中,以提高其 性能和稳定性。
新技术
量子点、量子阱等新型结构将被 引入调Q激光器中,以实现更高 效的光电转换和调制。
调Q激光器的集成化与小型化
集成化
通过微纳加工和光子集成技术,将多 个调Q激光器集成在一个芯片上,实 现高密度、低能耗的光子系统。
Q开关
Q开关是调Q激光器中的一个关键元件,它控制激光的脉冲 宽度和重复频率。
Q开关的工作原理是通过改变谐振腔的品质因数(Q值) ,在增益介质中形成脉冲光。这使得激光器在短时间内产 生高功率、窄脉宽的激光脉冲。
03
调Q激光器的特性与性能
调Q激光器的输出特性

光纤激光器

光纤激光器

光纤激光器1、激光器基本结构激光器由三部分组成:泵浦源、增益介质、谐振腔。

图1 激光器基本结构示意图1.1 原子能级间受激吸收与受激辐射E 1E 2E 1E 2受激吸收E=E 1-E 2E1E 1E 2E 2E=E 1-E 2受激辐射E=E 1-E 2E=E 1-E 2图2 受激吸收与受激辐射示意图受激吸收为在能量为E 入射光子的作用下,处在低能级E 1的粒子吸收能量E 跃迁到高能级E 2的过程。

受激辐射为在入射的能量为E 的光子的作用下,处在高能级E 2的粒子受激发,跃迁到低能级E 1,同时辐射出与入射光子E 状态相同的光子的过程。

1.2 激光产生过程如图1,激光器由泵浦源、增益介质、谐振腔组成。

增益介质为主要产生激光的工作物质。

由于粒子处在低能级比处在高能级稳定,因此通常情况下,物质粒子按照玻尔兹曼分布规律分布,即高能级粒子比低能级粒子少。

泵浦源为增益介质提供能量,使增益介质中的低能级粒子吸收能量,受激吸收,向高能级跃迁,使高能级处粒子数高于低能级粒子数,这种分布规律称为粒子数反转分布,使增益介质中积累了大量能量。

当有高能级粒子向低能级自发跃迁并释放出光子时,大量高能级粒子在初始光子作用下受激辐射,释放出大量状态相同,即波长相同、能量相同、方向相同、偏振态的光子。

这种在泵浦源与增益介质共同作用下使初始光子通过受激辐射效应放大而产生的光即为激光。

对特定波长激光全反射的输入镜与对该波长激光部分反射的输出镜构成光学谐振腔。

谐振腔主要有两方面作用:一是提供轴向光波的光学正反馈;二是控制激光震荡模式特性。

由于输出镜具有部分反射率,它可以使通过增益介质放大的光一部分通过透镜射出腔外,获得我们需要的特定波长的激光,另一部分反射回谐振腔,再由于输入镜对激光具有全反率,从而使轴向光波在谐振腔中往返传播,多次通过激活介质,在腔内形成稳定的自激振荡。

由于谐振腔镜只对特定波长的光镀全反射膜和部分反射膜,因此只有特定波长的光能产生自激震荡。

MOPA光纤激光技术--文献综述解读

MOPA光纤激光技术--文献综述解读

通常由种子源、泵浦源、增益介质光纤、光隔离 器及耦合系统等部分组成
MOPA
MOPA技术简介
种子源
固体 光纤 半导体
激光器
激光器
激光器
种子源只提供较低功率能量的激光输出,但要求 种子光具备较好的光束质量、较窄的线宽以及较 高的稳定性
MOPA
MOPA技术简介
双包层光纤技术
双包层光纤结构和包层泵浦技术原理示意图
英国南安普敦大 2005 学 2007 美国 2008
国内外高功率MOPA光纤激光技术的发展和现状
国内 连续(单频)
2006年北京理工大学采用NPRO作为种子源,获 得了6.65w单频连续激光输出;2007年输出功率提 高到16.1w
MOPA
国内外高功率MOPA光纤激光技术的发展和现状
国内外脉冲MOPA系统实验情况一览
MOPA
国内外高功率MOPA光纤激光技术的发展和现状
国外 连续
研究单位
年份
实验结果 种子源:NPRO;采用三级放大;获得1kw连续 激光输出;斜率效率77% 种子源:NPRO;采用四路放大:获得1.98kw连 续激光输出;光束质量M2<2.0 MOPA
Jeam大学 2008 2009
国内外高功率MOPA光纤激光技术的发展和现状
MOPA技术简介
MOPA
Master Oscillator Power-Amplifier
主振荡-功率放大技术
采用性能优良的小功率激光器作为种子源, 种子激光注入单级或者多级光纤放大器系 统,最终实现高功率放大的激光技术。
MOPA
MOPA技术简介 典型MOPA光纤激光系统示意图
MOPA技术简介
MOPA光纤放大器关键环节和技术难点

光纤激光器.doc

光纤激光器.doc

光纤激光器1、激光器基本结构激光器由三部分组成:泵浦源、增益介质、谐振腔。

图1 激光器基本结构示意图1.1 原子能级间受激吸收与受激辐射E 1E 2E 1E 2受激吸收E=E 1-E 2E1E 1E 2E 2E=E 1-E 2受激辐射E=E 1-E 2E=E 1-E 2图2 受激吸收与受激辐射示意图受激吸收为在能量为E 入射光子的作用下,处在低能级E 1的粒子吸收能量E 跃迁到高能级E 2的过程。

受激辐射为在入射的能量为E 的光子的作用下,处在高能级E 2的粒子受激发,跃迁到低能级E1,同时辐射出与入射光子E状态相同的光子的过程。

1.2激光产生过程如图1,激光器由泵浦源、增益介质、谐振腔组成。

增益介质为主要产生激光的工作物质。

由于粒子处在低能级比处在高能级稳定,因此通常情况下,物质粒子按照玻尔兹曼分布规律分布,即高能级粒子比低能级粒子少。

泵浦源为增益介质提供能量,使增益介质中的低能级粒子吸收能量,受激吸收,向高能级跃迁,使高能级处粒子数高于低能级粒子数,这种分布规律称为粒子数反转分布,使增益介质中积累了大量能量。

当有高能级粒子向低能级自发跃迁并释放出光子时,大量高能级粒子在初始光子作用下受激辐射,释放出大量状态相同,即波长相同、能量相同、方向相同、偏振态的光子。

这种在泵浦源与增益介质共同作用下使初始光子通过受激辐射效应放大而产生的光即为激光。

对特定波长激光全反射的输入镜与对该波长激光部分反射的输出镜构成光学谐振腔。

谐振腔主要有两方面作用:一是提供轴向光波的光学正反馈;二是控制激光震荡模式特性。

由于输出镜具有部分反射率,它可以使通过增益介质放大的光一部分通过透镜射出腔外,获得我们需要的特定波长的激光,另一部分反射回谐振腔,再由于输入镜对激光具有全反率,从而使轴向光波在谐振腔中往返传播,多次通过激活介质,在腔内形成稳定的自激振荡。

由于谐振腔镜只对特定波长的光镀全反射膜和部分反射膜,因此只有特定波长的光能产生自激震荡。

光纤激光器简介PPT课件

光纤激光器简介PPT课件
光纤激光器:指用掺稀土元素玻璃光纤作为增益 介质的激光器,可在光纤放大器的基础上开发出来。 在泵浦光的作用下光纤内极易形成高功率密度,造成 激光工作物质的激光能级“粒子数反转”,当适当加 入正反馈回路(构成谐振腔)便可形成激光振荡输出。
光纤激光器的发展
激光器问世不 久,美国光学公司 ( American optical
输出激光
激光产生的条件:形成粒子数反转,提供光反馈,满足激光振荡的 阈值条件。
激光器一般由三部分组成:激光工作物质(掺杂光纤)、泵浦源 (半导体激光二极管)、光学谐振腔(线形腔、环形腔等)。
掺杂离子的能级结构
1. 三能级系统的能级结构
4I11/2 4I13/2
高能态
无辐射跃迁
亚稳态
980nm泵浦
1550nm
简单的光纤环形谐振腔结构
ISO PC
Doped fiber
WDM
pump output
环形腔光纤激光器结构图
波分复用(WDM)耦合器的两端连接在一起形成了环形腔,环内串接 着掺杂光纤;插入了隔离器(ISO:Isolator)以保证激光的单向运转。如果 掺杂光纤为非保偏的普通光纤,还需要使用偏振控制器(PC:Polarization Controller)。
pump laser PC
EDF 980/1550 nm
WDM
ISO
coupler
波长选 择器件
filter
output
环形腔掺铒光纤激光器结构图
3.其它腔型结构
光纤圈反射器(光纤环形镜),结 构如下图所示,包含一个定向耦合器和 该耦合器两输出端口连接在一起形成的 一个光纤圈。
工作原理:假设耦合器耦合系数为0.5, 若光波从端口1进入耦合器,耦合器将一 半光功率耦合到端口3,将另一半耦合到 端口4,即有一半输入光沿光纤圈顺时针 方向传播,另一半沿逆时针传播。当它 们再次在输入端相遇时经历了相同的相 移,干涉相长的结果使其完全反射回腔 内。实际中有部分光从2端口输出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q激光脉冲输出。

Q开关是被广泛采用的产生短脉冲的激光技术之一。

现状:
调Q光纤激光器在许多领域都有着广泛应用,大功率是调Q光纤激光器的一个发展方向。

全光纤化也是调Q光纤激光器发展的一个重要趋势,人们陆续研发出一些全光纤的Q开光来代替传统的声光与电光调制器,大大地降低了激光器的插入损失。

用于光纤激光器的调Q技术大致可以分为光纤型调;和非光纤型调Q两类。

非光纤型调Q有光调Q、电光调Q、机械转镜调Q和可饱和吸收体调Q等。

非光纤型调Q:
1.声光调Q激光器:
2.电光调Q激光器:
3.可饱和吸收体调Q激光器:
光纤型调Q装置
光纤型调Q装置有光纤迈克尔逊干涉仪调Q、光纤马赫
一曾特尔干涉仪调Q和光纤中的受激布里渊散射(SBS)调Q光纤激光器等。

下面介绍混合调Q和脉冲泵浦受激布里渊散射混合调Q光纤激光器。

混合调Q光纤激光器
如图所示
得到了峰值功率3.7KW,脉宽2m的脉冲激光输出。

实验中选用掺钕双包层光纤作增益介质,光纤长7.2m,纤芯直径5.1um,数值孔径0.12。

内包层为矩形结构,截面尺寸150um*75um。

泵源为800nm、3w激光二极管,有60%的泵光祸合到内包层中。

系统由一个全反镜和一个二向色镜构成驻波谐振腔。

在双包层光
纤的输出端接几米长的单模光纤,实现调Q ,得到纳秒量级的激光脉冲。

在腔内插人一声光调制器(AQM),使激光脉冲重复频率在6.6KHz-16.4KHZ范围内可调。

脉冲泵浦和受激布里渊散射混合调Q :
在线形腔双包层光纤激光器中,用脉冲泵浦和SBS混合调Q 。

如图所示
泵浦源为多模半导体激光器(LD),带有800um的输出
尾纤,数值孔径0.2,输出中心波长975.8nm ,
有连续和脉冲两种运转方式。

多模半导体激光器通过合适的光学藕合系统
泵浦掺Yb 的双包层光纤。

增益光纤纤芯直径为7um,作为泵浦光通道的内包层为一矩形结构(125*125um),外面涂一层硅橡胶作为外包层。

对于激光纤芯的数值孔径为0.11,,对于泵光内包层的数值孔径为0.5。

由于双包层光纤特殊的结构,不仅使得多模半导体激光器可以作为泵浦源,而且大大提高了泵浦效率。

二相色镜(976nm透过率89.9%,1064nm反射率99.5%)作为激光器的一个腔镜置于泵浦端。

双包层光纤的另一端接一段(几米)单模通信光纤。

利用单模光纤中的背向受激Brillouin散射提供腔反馈, 同时实现调Q。

实验得到重复频率可调(1KHz-10KHz)、
峰值功率大于10kw和脉宽小于2ns的激光脉冲。

发展:
在现代的光纤通信系统中高峰值功率、窄脉冲宽度的调; 光纤激光器起着举足轻重的作用, 特别是调; 光纤激光器的全光纤化更加速了现代光纤通信网的飞速发展。

另外附上MOPA光纤激光器结构示意图
调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q激光脉冲输出。

Q开关是被广泛采用的产生短脉冲的激光技术之一。

现状:
调Q光纤激光器在许多领域都有着广泛应用,大功率是调Q光纤激光器的一个发展方向。

全光纤化也是调Q光纤激光器发展的一个重要趋势,人们陆续研发出一些全光纤的Q开光来代替传统的声光与电光调制器,大大地降低了激光器的插入损失。

用于光纤激光器的调Q技术大致可以分为光纤型调;和非光纤型调Q两类。

非光纤型调Q有光调Q、电光调Q、机械转镜调Q和可饱和吸收体调Q等。

非光纤型调Q:
1.声光调Q激光器:
2.电光调Q激光器:
3.可饱和吸收体调Q激光器:
光纤型调Q装置
光纤型调Q装置有光纤迈克尔逊干涉仪调Q、光纤马赫
一曾特尔干涉仪调Q和光纤中的受激布里渊散射(SBS)调Q光纤激光器等。

下面介绍混合调Q和脉冲泵浦受激布里渊散射混合调Q光纤激光器。

混合调Q光纤激光器
如图所示
得到了峰值功率3.7KW,脉宽2m的脉冲激光输出。

实验中选用掺钕双包层光纤作增益介质,光纤长7.2m,纤芯直径5.1um,数值孔径0.12。

内包层为矩形结构,截面尺寸150um*75um。

泵源为800nm、3w激光二极管,有60%的泵光祸合到内包层中。

系统由一个全反镜和一个二向色镜构成驻波谐振腔。

在双包层光
纤的输出端接几米长的单模光纤,实现调Q ,得到纳秒量级的激光脉冲。

在腔内插人一声光调制器(AQM),使激光脉冲重复频率在6.6KHz-16.4KHZ范围内可调。

脉冲泵浦和受激布里渊散射混合调Q :
在线形腔双包层光纤激光器中,用脉冲泵浦和SBS混合调Q 。

如图所示
泵浦源为多模半导体激光器(LD),带有800um的输出
尾纤,数值孔径0.2,输出中心波长975.8nm ,
有连续和脉冲两种运转方式。

多模半导体激光器通过合适的光学藕合系统
泵浦掺Yb 的双包层光纤。

增益光纤纤芯直径为7um,作为泵浦光通道的内包层为一矩形结构(125*125um),外面涂一层硅橡胶作为外包层。

对于激光纤芯的数值孔径为0.11,,对于泵光内包层的数值孔径为0.5。

由于双包层光纤特殊的结构,不仅使得多模半导体激光器可以作为泵浦源,而且大大提高了泵浦效率。

二相色镜(976nm透过率89.9%,1064nm反射率99.5%)作为激光器的一个腔镜置于泵浦端。

双包层光纤的另一端接一段(几米)单模通信光纤。

利用单模光纤中的背向受激Brillouin散射提供腔反馈, 同时实现调Q。

实验得到重复频率可调(1KHz-10KHz)、
峰值功率大于10kw和脉宽小于2ns的激光脉冲。

发展:
在现代的光纤通信系统中高峰值功率、窄脉冲宽度的调; 光纤激光器起着举足轻重的作用, 特别是调; 光纤激光器的全光纤化更加速了现代光纤通信网的飞速发展。

另外附上MOPA光纤激光器结构示意图。

相关文档
最新文档