卫星姿态控制
卫星姿态控制-短篇介绍

主讲:FREYA 组员:XIAO BENJE
1.什么是姿态控制? 2.姿态控制的分类
3.姿态控制的功能
4.姿态敏感器、控制器及执行机构的 作用?
1.什么是姿态控制?
卫星的运动,可分解成围绕地球质量中心的坐标 系统及和其自身质量中心的卫星机身运动。其中,对 其质量中心的卫星本体的运动是由姿态的演变来控制 的。 理论上来讲,该卫星的姿态是通过对局部坐标系统 和卫星固定的坐标系统之间各轴的旋转角度来共同控 制的。保持卫星姿态的稳定是卫星完成功能的基础。 该分系统的准确性和可靠性决定了其他大部分分系统 的性能。
@your name
主动姿态控制 又称为三轴姿态控制。目前,卫星基本 上都采用三轴姿态稳定方式来控制,因为 它适用于各轨道上运行的、具有各种指向 要求的卫星,也可用于卫星的返回、交会、 对接及变轨等过程。
3.姿态控制的功能
姿态控制决定了卫星运动的轨道位置,保 持准确的卫星位置和通信天线指向; 在转移轨道和静止轨道运行时,控制卫星 的飞行动作,保持轨道运动的稳定性。 保持地球微小振动的稳定性; 通过遥测、跟踪和指令分系统和地面控制 , 决定自旋轴和重新取向控制
下图给出了卫星姿态坐标图情况:
4.姿态敏感器、控制器及执行机构的作用
姿态敏感器——敏感测量卫星的姿态变化; 姿态控制器——将姿态敏感器送来的卫星姿态 角变化值的信号,经过一系列的比较、处理, 产生控制信号输送到姿态执行机构; 姿态执行机构——根据姿态控制器送来的控制 信号产生力矩,使卫星姿态恢复到正态控制: 是用天然扭矩的影响来维持所需的姿态。如利用重力梯度,它是利用 卫星绕地球飞行时,卫星上离地球距离不同的部位受到的引力不等而产生 的力矩来稳定的。例如,在卫星上装一个伸杆,卫星进入轨道后,让它向 上伸出,伸出去后其顶端就比卫星的其它部分离地球远,因而所受的引力 较小,而它的另一端离地球近,所受的引力较大,这样所形成的引力之差 对卫星的质心形成一个恢复力矩——这个力矩可使它恢复到原来姿态。该 种控制方式简单、实用,但控制精度较低。
卫星姿态控制实现方式

卫星姿态控制实现方式嘿,朋友们!今天咱就来聊聊卫星姿态控制实现方式这个神奇的事儿。
你想啊,卫星在那遥远的太空里,就像一个孤独的舞者,得时刻保持着优美的姿态呢。
那它是怎么做到的呢?这就好比咱人走路,得知道怎么迈腿、怎么保持平衡吧。
卫星也有它的“小窍门”。
首先呢,有一种方式叫自旋稳定。
这就好像一个不停旋转的陀螺,转起来就稳稳当当的啦。
卫星让自己快速地旋转起来,这样就能在太空中保持稳定的姿态啦。
这是不是很有意思?就像一个会自转的小星球一样。
还有啊,三轴稳定也是很常用的办法呢。
想象一下卫星有三个轴,就像一个立体的坐标系,通过各种神奇的装置和算法,来精确地控制每个轴的转动和稳定。
这可比咱平时走直线难得多啦!它得随时应对各种情况,就像咱在复杂的路况中开车一样,得时刻注意着方向。
然后呢,还有一种叫重力梯度稳定的方式。
这就好像卫星被太空里的某种神秘力量拉着,让它乖乖地保持一定的姿态。
是不是很神奇呀?卫星姿态控制就像是一场精彩的表演,各种手段和方法相互配合。
这可不是随随便便就能搞定的事儿,得靠科学家们的智慧和努力呀。
你说要是卫星的姿态控制没做好,那会咋样呢?哎呀,那可就糟糕啦,它就没办法好好工作啦,就像一个人走路东倒西歪的,还怎么能完成任务呢?所以啊,这卫星姿态控制可真是太重要啦!咱平时在地球上,可能觉得这事儿离我们很远,但其实卫星的作用可大着呢。
从天气预报到通信,从导航到科学研究,都离不开这些在太空中“跳舞”的小家伙们。
而它们能好好工作,全靠这神奇的姿态控制呀。
所以说呀,卫星姿态控制实现方式真的是太有趣、太重要啦!这背后凝聚着无数科学家的心血和智慧。
咱可得好好感谢他们,让我们的生活变得更加便利和精彩呀!这就是卫星姿态控制的奇妙世界,是不是让你大开眼界啦?。
卫星姿态控制与稳定技术研究

卫星姿态控制与稳定技术研究随着科技的不断发展,人类对于太空的探索也日益深入。
卫星作为太空探索的重要工具,其中姿态控制与稳定技术扮演着至关重要的角色。
本文将对卫星姿态控制与稳定技术进行研究与探讨。
一、卫星姿态控制技术的概述卫星姿态控制技术是指通过对卫星的定位、导航和控制系统进行精确控制,使卫星能够保持所期望的姿态状态。
姿态控制技术在卫星的轨道保持、对地观测、通信和数据传输等多个方面起到重要作用。
卫星姿态控制技术可以分为主动姿态控制和被动姿态控制两大类。
主动姿态控制是通过控制卫星的推力系统、陀螺仪系统和反应轮系统等来实现的,具备快速而准确的反应能力。
被动姿态控制则是通过利用卫星自身的动力学特性来维持稳定姿态。
二、卫星姿态稳定技术的原理卫星姿态稳定技术是为了保持卫星在空间中的稳定状态而设计的技术手段。
姿态稳定技术能够有效地防止卫星因外界扰动而产生的摆动,确保卫星能够执行所需的任务。
卫星姿态稳定技术主要有被动稳定和主动稳定两种方式。
被动稳定是利用卫星的构型和重心位置设计,使其自然趋向于最稳定的姿态。
而主动稳定则通过在卫星上设置一系列的姿态调整装置,以实现对卫星姿态的实时控制。
三、卫星姿态控制与稳定技术的应用卫星姿态控制与稳定技术在卫星应用中扮演着重要的角色。
以下是几个典型的应用案例:1. 卫星通信:通信卫星需要保持稳定的姿态,以确保地面与卫星之间的通信信号传输质量。
姿态控制技术能够帮助卫星保持稳定的指向性,提高通信的稳定性和可靠性。
2. 对地观测:地球观测卫星需要保持稳定的姿态,以获取高质量的观测数据。
姿态控制技术可以帮助卫星对地观测目标进行精确定位和跟踪,提高观测数据的准确性。
3. 空间科学研究:卫星用于开展天文观测和空间物理实验时,需要保持稳定的姿态,以避免观测误差和数据损失。
姿态控制技术的应用可以提供准确的观测数据,支持空间科学研究的发展。
四、卫星姿态控制与稳定技术研究的挑战与发展趋势在卫星姿态控制与稳定技术的研究过程中,面临着一些挑战,也有着一些发展趋势。
卫星姿态稳定系统的建模与控制

卫星姿态稳定系统的建模与控制卫星姿态稳定是指通过控制卫星的姿态(即旋转角度和轴向),使其保持稳定状态,以确保卫星能够正确地完成各项任务。
由于卫星在太空中受到各种外部扰动力,如引力、太阳辐射压力和空气阻力等,因此需要设计一套卫星姿态稳定系统,来实现准确的定位和导航功能。
卫星姿态稳定系统主要由三个部分组成:传感器、控制器和执行器。
传感器用于测量和监测卫星的姿态状态,主要包括陀螺仪、加速度计和磁强计等;控制器根据传感器的信号进行计算和判断,决定执行器的输出信号;执行器根据控制信号对卫星进行控制,以实现姿态调整和稳定。
首先,卫星姿态的建模是设计卫星姿态稳定系统的基础。
建模过程主要分为动力学建模和姿态动力学建模两个方面。
动力学建模是描述卫星在太空中受到的外部扰动力和惯性力作用下的运动规律,通常采用牛顿力学定律和质点模型进行建模。
姿态动力学建模则是描述卫星在稳定状态下的姿态运动规律,通常采用旋转刚体模型和欧拉动力学方程进行建模。
通过建立准确的卫星姿态动力学模型,能够为后续的控制器设计和系统优化提供理论基础。
其次,控制器的设计是卫星姿态稳定系统的核心部分。
常用的控制器设计方法有PID控制器、模糊控制器和自适应控制器等。
PID控制器是一种经典的控制器设计方法,通过对误差、偏差和积分值进行比例、积分和微分的加权计算,生成控制信号来调整卫星的姿态。
模糊控制器则是一种基于模糊逻辑推理的控制器设计方法,能够处理复杂的非线性控制问题。
自适应控制器则是根据系统的状态变化和外部环境的变化来自适应地调整控制参数,以实现更好的控制效果。
以上三种控制器设计方法各有优缺点,需要根据实际情况选择合适的控制器设计方法。
最后,执行器的选型和控制算法的实现是卫星姿态稳定系统的重要组成部分。
常用的执行器包括反作用轮、磁力矩杆和姿态控制喷气装置等。
反作用轮通过调整转速和转向来产生控制力矩,磁力矩杆通过改变磁力矩的大小和方向来产生控制力矩,姿态控制喷气装置则通过喷气推力来改变卫星的姿态。
卫星姿态轨道控制原理

卫星姿态轨道控制原理今天来聊聊卫星姿态轨道控制原理的话题。
你看啊,咱们平时放风筝的时候,如果想让风筝飞得又高又稳,还得摆出各种有趣的姿势,就得不断地拉扯风筝线调整它的方向,在太空中的卫星其实也有点类似的情况呢。
卫星在天上可不是随意飘荡的,就像汽车得沿着马路跑一样,卫星也要按照规定的轨道运行,这个轨道决定了卫星在空间的位置。
要保持卫星在既定轨道运行,就得克服许多外界干扰因素,比如地球的不均匀引力啦,其他天体的引力影响啦,还有太阳光压等。
这就需要进行轨道控制。
打个比方,轨道控制就像是让卫星在太空高速路上稳稳行驶。
卫星自身带有动力系统或者可以通过利用地球的引力等进行轨道机动。
比如说,通过在卫星上安装不同类型的推进器。
当需要改变轨道高度或者轨道平面时,推进器点火工作,像汽车踩油门加速或者转弯似的,改变卫星的速度向量,从而实现轨道的调整。
再来说说卫星姿态控制。
咱们都知道,卫星上的很多设备都有特定的指向要求的。
比如通信卫星得保证天线对准地球特定区域。
卫星姿态控制就是控制卫星在太空中的朝向。
你可以把卫星想象成一艘在太空中航行的小船,姿态控制系统就像船上的舵,时刻调整小船的船头方向。
卫星可以通过动量轮、磁力矩器等设备来实现姿态控制。
像动量轮,它通过高速旋转来存储角动量,然后根据需要改变角动量的方向来调整卫星的姿态,就像用船上的重物调整平衡进而改变船的方向一样。
说到这里,你可能会问卫星姿态和轨道控制这两者之间有没有相互影响呢?这个问题很有意思,其实它们是密切相关的。
不准确的轨道控制会导致卫星受到不同的力的作用,从而间接影响到姿态;反过来,卫星姿态没控制好,也会影响到用于轨道控制的推进装置的工作效果等。
我在学习这个原理的过程中,一开始也特别困惑像引力助推这种比较复杂的轨道控制方法。
引力助推就好像卫星在太空中搭顺风车,路过行星的时候利用行星的引力和相对运动给自己加速或者改变轨道方向,但具体怎么一回事真的费了我好大劲儿才理解呢。
卫星姿态控制系统设计报告

卫星姿态控制系统设计报告一、概述卫星姿态控制是指通过控制卫星的姿态,使其在轨道上保持稳定和精确的方向和位置。
本文将设计一种卫星姿态控制系统,该系统旨在实现对卫星姿态的精确控制,提高卫星任务的执行效率和准确性。
二、系统架构卫星姿态控制系统主要由以下几个部分组成:1. 姿态传感器:用于感知卫星当前的姿态状态,如陀螺仪、加速度计等。
2. 姿态控制器:根据姿态传感器的反馈信号,计算并控制卫星的姿态调整,保持期望的姿态目标。
3. 执行器:负责执行姿态控制器计算得到的控制指令,如推力器、反动轮等。
4. 数据处理与通信模块:处理传感器和执行器的数据,并与地面控制中心进行通信,接收姿态目标和发送卫星状态信息。
三、系统设计1. 姿态传感器选择根据卫星姿态控制的要求,选择适合的姿态传感器进行姿态状态的感知。
常用的姿态传感器有陀螺仪、加速度计、磁强计等。
根据卫星需要实现的精度和稳定性要求,综合考虑成本和性能因素,确定最佳的姿态传感器组合。
2. 姿态控制器设计姿态控制器是卫星姿态控制系统的核心部分,根据姿态传感器提供的姿态状态信息,计算出控制指令以调整卫星的姿态。
姿态控制器的设计主要包括以下几个关键步骤:- 卫星姿态描述和数学模型的建立;- 设计姿态控制算法,如PID控制器、模糊控制器等;- 姿态控制算法的参数调整和优化。
3. 执行器选择根据卫星姿态控制系统的需求和任务特点,选择合适的执行器。
根据不同的执行任务,常用的执行器有推力器、反动轮、电动机等。
根据执行器的特性和系统需求,确定最佳的执行器组合。
4. 数据处理与通信模块卫星姿态控制系统需要实时处理传感器数据,并与地面控制中心进行通信,传输姿态目标和卫星状态信息。
数据处理与通信模块需要具备以下功能:- 传感器数据采集和预处理;- 数据处理算法的实现,如滤波、解算等;- 与地面控制中心进行数据交互和通信。
四、系统测试与优化完成卫星姿态控制系统的设计后,需要进行系统测试和性能优化。
基于的卫星姿态控制(实用模板)

-
1 引言
2 PID控制算法
3 基于PID的卫星姿态控制系统
4 实验验证
5 结论
6 未来展望
引言
其中,PID(比例-积分-微分)控 制算法是一种经典的控制算法, 具有简单、稳定、可靠等优点,
被广泛应用于各种航天器姿态 控制系统中
随着航天技术的快速发展,卫星 姿态控制已经成为卫星任务成功
考虑能源效率
未来展望
随着对卫星能源效率的要求不断提高,如何 在保证姿态控制性能的同时,降低系统的能 源消耗也是一个重要的研究方向。可以通过 优化控制算法、选用低功耗的硬件设备、实 施功率管理策略等方式来提高卫星姿态控制 系统的能源效率
综上所述,未来的卫星姿态控制系统将在 多个方面进行拓展和改进,以适应日益复 杂的航天任务需求和更高的性能要求。基 于PID的卫星姿态控制系统仍将发挥重要 作用,但也需要不断地进行创新和优化
然而,随着航天技术的不断 发展和挑战,基于PID的卫 星姿态控制系统也需要不断 地进行改进和优化
未来展望
先进的控制策略
虽然PID控制算法是一种经典的控制算法 ,但是在某些复杂的航天任务中,简单的 PID控制算法可能无法满足要求。因此, 需要研究和发展更先进的控制策略,例如 自适应控制、鲁棒控制、神经网络等,以 进一步提高卫星姿态控制的性能和稳定性
实验验证
实验验证
为了验证基于PID的卫星姿态控制系统的性 能,可以进行模拟实验和实际飞行实验。 模拟实验可以在地面的仿真环境中模拟卫 星的姿态运动和干扰情况,以检验控制算 法的有效性和可靠性。实际飞行实验可以 通过将控制系统应用于真实的卫星系统中 来进行验证,以检验控制算法在实际飞行
环境中的表现和应用效果
卫星发射过程中如何控制航天器的姿态

卫星发射过程中如何控制航天器的姿态在卫星发射的浩瀚征程中,控制航天器的姿态是至关重要的一环。
这就好比一个舞者在舞台上,需要精确地控制自己的身体姿态,才能展现出优美的舞蹈动作;航天器在太空中的运行也是如此,只有精准地控制姿态,才能顺利完成各项任务。
那么,什么是航天器的姿态呢?简单来说,就是航天器在空间中的指向和旋转状态。
比如,卫星的太阳能电池板要始终朝向太阳,通信天线要对准地球,这都需要对卫星的姿态进行精确控制。
在卫星发射的初期阶段,火箭发动机的推力是影响航天器姿态的一个重要因素。
为了抵消火箭发动机推力带来的干扰,通常会采用推力矢量控制技术。
这就好比开车时,通过调整方向盘来改变车辆的行驶方向。
在火箭上,通过改变发动机喷管的方向或者调节喷管的流量,来改变推力的方向和大小,从而实现对航天器姿态的初步控制。
当航天器与火箭分离后,就进入了自主控制姿态的阶段。
这时候,会有一系列的姿态敏感器发挥作用。
常见的姿态敏感器有太阳敏感器、地球敏感器、星敏感器等。
太阳敏感器就像是一个专门寻找太阳的“小眼睛”,它通过检测太阳光线的入射角度来确定航天器相对于太阳的姿态。
地球敏感器则是专注于感知地球的位置和形状,从而帮助航天器确定自己相对于地球的姿态。
而星敏感器则更加高级,它能够通过观测恒星的位置来精确确定航天器在太空中的姿态。
有了这些“眼睛”感知姿态信息,接下来就需要“大脑”来处理这些信息并做出控制决策。
这个“大脑”就是航天器上的姿态控制系统。
姿态控制系统通常由控制器、执行机构和控制算法组成。
控制器就像是指挥官,它接收来自姿态敏感器的信息,经过一系列的计算和分析,制定出控制策略。
执行机构则是听从指挥官命令的“士兵”,负责将控制指令转化为实际的动作。
常见的执行机构有动量轮、磁力矩器、推进器等。
动量轮是一种通过改变自身的转速来产生控制力矩的装置。
当需要调整航天器的姿态时,动量轮会加速或减速旋转,从而产生反作用力矩,使航天器的姿态发生改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6.14a)
U (1 h)1或 sgn(UU ) 0 (6.14b) U 1或 sgn(UU ) 0
系统框图见图6.10。图中k为微分系数,θ c为给定 的姿态角。
当θ c=0时,系统由初始条件逐渐向里收敛,最后停留在 一个稳定振荡上面,即为极限环(见图6.11)。显然该控 制系统也是稳定的,有阻尼存在,且阻尼的大小取决于 超前网络参数k的大小。过渡过程的最大角度超调发生在 点“2”处,从分析式(6.12)得知,发生在处,其大小可 以表示为
对于一般的n维控制任务,由上述分析方法可以证明 以下结论:
(1)n维任务的最小结构要求推力器数目m为
m=n+1
(2)n 维任务如果要求冗余度为 R ,则最小冗余结构 的推力器数目m为
m=n+1+2R
6.3.2 推力器系统的操作 航天器推力器系统的正确操作包含许多方面的正确 选择。其中有: (1)任务字 (2)指令矢量 (3)档次字 (4)推力器组合 (5)组合体
最小冗余结构可用作图法确定。以图6.17所示的二 维控制任务为例,图6.18为各种推力器配置方案的推力 矢量图。图中的每一个矢量代表配置的一个推力器的推 力矢量或力矩矢量。
过矢量的交点作任一直线aa’,把二维控制平面分为 两半。如果每一个半平面内至少含i个推力或力矩矢量,则 系统有冗余度R=I-1。依此方法可以判定,图6.18所示中由 左至右4种推力器配置方案的冗余度分别为R=1,l,2,2。
从该理想化的极限环工作状态可知,在死区负极限 ( R )和正极限( R )之间存在一个常值角速度 R ,见 式(6.18)。尽量减小这个常值角速度有利于节省工质消耗 量。 若推力器的推力为F,相对航天器质心的力臂为l,比 冲(比推力)为 I sp ,推力器的最小脉宽为△t,则容易证 明航天器继电控制的理想平均工质消耗量为
1 2 0 0t At 2
0 , 0 为初始姿态角度和初始姿态角速度。 式中, 若消去式(6.9a)和(6.9b)中的时间变量t,就得到相 轨迹方程,即 1 2 2 (6.10) 0 0
2A
这个式子说明:相平 面上的相轨迹是由一簇其轴 线与横轴平行的抛物线组成。 当时,相轨迹为直线,图6.6
M c M cxi M cy j M cz k
(6.2)
若本体坐标系为主轴坐标系,则航天器在控制力矩 的作用下,它的姿态动力学方程式为
I xx I z I y yz M cx M dx I y y I x I z xz M cy M dy I zz I y I x yx M cz M dz
第六章
航天器主动姿态稳定系统
为了保证航天器在轨道坐标系中相对于平衡点的稳 定性,除了采用上一章叙述的各种被动稳定方案以外, 也可以利用控制系统实现对航天器姿态的主动稳定控制。 与被动稳定方案比较,主 动姿态稳定的优点是可以 保证更高的精确度和快速 性,缺点是结构复杂化, 降低了可靠性,且增加了 能源消耗,因此适用于高 精度要求和大扰动力矩的 情形。 主动姿态稳定系统包括了喷气三轴稳定系统、以 飞轮为主的三轴稳定系统和磁力矩器轴稳定系统。
2
(6.21)
(6.22)
推力器和敏感器的选择必须保证极限环参数均小于 航天器姿态控制精度要求,即 R c R c
c 和 c 分别为航天器姿态控制的角度和角速度精 式中, 度要求。
6.3
航天器的喷气推力器系统
对于大型航天器来说,由于动力学模型维数较高, 因此需要完成更高维的控制任务。 为了兼顾这几方面的要求,往往将 航天器的姿态控制与轨道控制任务 相结合,把相当数量的推力器组成 一个多推力器系统。在设计这样一 个复杂的执行机构系统结构时,如何保证推力器的数目 与分布安装位置既要达到可靠性要求,又要消耗最少的 工质或燃料是一个重要问题。同时在这种情况下,如何 通过计算机完成系统操作任务,即最佳地分配推力器的 工作和工作时间长短,以满足姿态控制或轨道控制任务, 又是另一个重要问题。
考虑三轴稳定航天器姿态角偏差很小的情况,此时3个通 道的姿态运动可以视作独立无耦合,且
z y x 于是航天器的欧拉动力学方程式(6.3)可简化为
I x M cx M dx
I y M cy M dy
(6.6a) (6.6b) (6.6c)
I z M cz M dz
ta ton toff
.
.
由于 t off = 41 / 1 和
.
t on = 41 / A,所以有
(6.13)
1 1 t a = 4( + ) 1 A
从相平面图6.9所示看到,极限环宽度由喷嘴推力器 不灵敏区(即死区)决定,而极限环高度由姿态角速度敏 感器(例如速率陀螺)不灵敏度决定。具有角速度和角度 反馈的继电型控制系统是稳定的,从相平面图得知,系 统是有阻尼的。阻尼大小由角速度反馈系数决定。
m 0
d 1 d k
02
(6.15)
2A
当 时,发生滑行现象,如图6.11中所示点 “4”以后的轨迹线状态。
d 1 当 d k 时,发生穿越现象,相轨迹如图6.12所示。
4.极限环工作方式 在没有外力矩作用在航天器上的情下,M dy 0 , 将图6.11和图6.12所示的极限环放大至如图6.13所示。
3.含超前校正网络的死区迟滞继电控制律 同时考虑推力器力或力矩输出特性中的死区和迟滞 特性,即图6.4所示中,u0≠uc≠ 0。此时uc对应推力器 的死区角度偏差 ,u0 对应 (1 + h)1 ,这里h为迟滞系 1 数。于是根据式(6.4),控制律可列写为
U (1 ks)(c )
M 当 >1 , 1时 u , 0 当 1 , 1 时 (6.11) M 当 <- , 时
1
1
在一般情况下,控制系统将抑制运动受到的初始扰 动,这种扰动出现于相平面中的点 1( 0 , 0 ) ,如图 6.9所示,然后使航天器进入极限环模式(自振荡)。
m
Fl t
2
4 I y gI sp l1
(6.20)
可见,选择小力矩、小脉宽、大比冲和大死区的推 力器能使工质消耗速度减至最小。
考虑到节省喷气系统中的燃料,采用单侧极限环工作 方式(见图6.14)是一种有效的手段。
这种单边极限环使姿态限制在以下范围内:
R R
M dy t I y R M dy 16 I y
(6.4b)
推力器实际上是一种继电系统,推力器的控制力矩 变化分为三档:正开、关闭、负开,具体属于哪一档取 决于航天器的姿态和控制律。这也就决定了推力器控制 系统的非线性输出和断续工作形式。 继电系统的稳定状态是极限环自振荡。在这种系统 的设计中,重要的是选择自振荡频率和振幅,即极限环 参数,使它们最佳地满足精度和能量消耗的要求。 喷气控制最适合于抵消具有常值分量的扰动力矩, 即非周期性扰动力矩,例如气动扰动力矩。这种情况正 是低轨道航天器扰动力矩所具有的特点。
6.1
喷气推力姿态稳定原理
喷气姿态稳定系统的运行基本上根据质量排出反作
用喷气产生控制力矩的原理进行。图6.1表示一个典型的 喷气三轴姿态稳定控制系统
由于一个喷嘴只能产生一个方
向的推力,因此系统的每个通道起
码要有两个喷嘴。为了避免反作用 喷气推力对航天器的轨道运动产生 影响,一般地在同一方向都装上两 个喷嘴,如图6.2所示,此时控制
6.4
飞轮姿态稳定原理
飞轮三轴姿态稳定系统的工作原理就是动量矩定理, 即航天器的总动量矩矢量对 时间的导数等于作用在航天
表示了这些相轨迹族。
2.基于位置和速度反馈的死区继电控制律 进一步地,在反馈控制系统中引人角速度反馈,并考 虑推力器力或力矩输出特性中的死区特性,即在图 6.4 所示 中令 u0 uc 0 ,此时 u0 uc 对应的位置(角度)偏差为 1 , 如图 6.7 所示。相应的采用角度和角速度敏感器的继电型控 制系统结构框图见图 6.8 。这里姿态角度敏感器可以采用红 外地平仪,角速度敏感器可以是速率陀螺。控制规律如下:
三通道具有相同的简便形式,为此下面仅以俯仰通道为例 进行讨论。
1.基于位置反馈的继电控制律 为了便于由浅入深的分析,首先将图6.4所示的推力 器推力或力矩输出特性简化为单纯的继电型特性,即 令 u u 0,则航天器俯仰通道动力学方程和基于位置 0 c (只有角度而无角速度)反馈的继电控制律可列写为
6.3.1
推力器系统的结构
“阿波罗”登月舱的推力器系统,可完成三轴姿态 控制与三轴质心控制,同样,要求控制某些轴的姿态或 质心运动时,不要影响其他轴的姿态与质心的运动。
“阿波罗”登月舱
Байду номын сангаас
宇航员在月球上
系统冗余度R是指系统仍能完成控制任务,允许推 力器失效的最大数目。 系统冗余度R的值是衡量系统可靠性的重要指标。 R的值越大系统越可靠,但随着R值增大,推力器数目 也随之增加。 称用最少的推力器数目构成给定的冗余度R的结构 为最小冗余结构。特别称R=O的最小冗余结构为最小结 构。最小结构是完成控制任务所需的最少推力器数目。
I y u M dy
M 0 u M 0 该式说明只要姿态有偏差 0
,喷嘴立即产生恒定的推力力矩M,
(6.7a)
(6.7b)
如图6.5所示。
暂时令 M dy 0 ,把式(6.7)代入式(6.6b)得 M def (6.8) A Iy 式中 A M I y ,式(6.8)的解为 0 At (6.9a) (6.9b)