HJ-1-A、B卫星介绍
HJ星参数

HJ星:
环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于2008年9月6日上午11点25分成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。
在HJ-1-A卫星和HJ-1-B卫星上均装载的两台CCD相机设计原理完全相同,以星下点对称放置,平分视场、并行观测,联合完成对地刈幅宽度为700公里、地面像元分辨率为30米、4个谱段的推扫成像。
此外,在HJ-1-A卫星装载有一台超光谱成像仪,完成对地刈宽为50公里、地面像元分辨率为100米、110~128个光谱谱段的推扫成像,具有±30°侧视能力和星上定标功能。
在HJ-1-B卫星上还装载有一台红外相机,完成对地幅宽为720公里、地面像元分辨率为150米/300米、近短中长4个光谱谱段的成像。
各载荷的主要参数如表1所示。
HJ-1-A卫星和HJ-1-B卫星的轨道完全相同,相位相差180°。
两台CCD相机组网后重访周期仅为2天。
其轨道参数如表2所示。
表2 HJ-1-A、B卫星轨道参数。
HJ定标系数

2009年HJ-1A/B星绝对辐射定标系数1、HJ-1A/B星绝对辐射定标系数见表1、表2、表3和表4
表1 HJ-1A/B星CCD相机定标系数
表2 HJ-1B星IRS相机Band5、Band6定标系数
表3 HJ-1B星IRS相机Band8定标系数
表4 HJ-1A 星HSI (增益2)相机定标系数
2、使用绝对定标系数时注意传感器的增益状态,HJ-1A-CCD1、HJ-1B-CCD1、HJ-1B-IRS 在增益状态1下的定标系数和HJ-1A-CCD2、HJ-1B-CCD1??、HJ-1B-CCD2、HI-1A-HSI 在增益状态2下为场地定标获取,传感器其余增益状态的定标系数是通过实验室定标系数得到的增益1和增益2定标系数转换关系所得。
利用绝对定标系数将CCD 图像DN 值转换为辐亮度图像的公式为:
0DN
L L A
=
+ 式中A 为绝对定标系数增益,0L 为绝对定标系数偏移量,转换后辐亮度单位为W ⋅m -2⋅sr -1⋅μm -1。
对于IRS-Band5、IRS-Band6近红外波段图像和HSI 图像,由于没有偏移量,其辐亮度图像的公式为:
对于IRS-Band8热红外波段图像,其辐亮度图像的公式为:
DN b
L g
-=
,其中g 为绝对定标系数增益,b 为偏移量 注:对于HJ-1B 星IRS 相机Band7中红外波段绝对定标系数后续给出。
HJ卫星主要技术指标

4主要技术指标
4.1 轨道
表1-轨道主要技术指标
4.3 有效载荷
4.3.1宽覆盖多光谱可见光相机
HJ-1-A,HJ-1-B星上均装载有宽覆盖多光谱可见光相机,主要技术指标如表3。
表3-覆盖多光谱可见光相机主要技术指标
4.3.2超光谱成像仪
超光谱成像仪装载在HJ-1-A卫星上,主要技术指标见表4。
观
测模式:星下点垂直观测、左右侧摆倾斜观测。
表4-超光谱成像仪主要技术指标
4.3.3红外相机
观测模式:星下点垂直观测。
红外相机装载在HJ-1-B卫星上,主要指标见表5。
表5-红外相机主要技术指标
4.3.5 S-波段合成孔径雷达
S-波段合成孔径雷达装载在HJ-1-C卫星上,主要指标见表7。
表7-S-波段合成孔径雷达主要技术指标
4.6 工作模式
表9-有效载荷工作模式主要技术指标
4.7卫星寿命
卫星寿命:≥3年
HJ-1-A 卫星Ka通信试验寿命:≥1年。
中国环境一号星分解

表1 资源一号卫星传感器参数
传感器名称 传感器类型 可见/近红外波段
短波红外波段 热红外波段 辐射量化 扫描带宽
每波段象元数 空间分辨率(星下点)
具有侧视功能? 视场角
CCD相机 推扫式
1:0.45~0.52微米 2:0.52~0.59微米 3:0.63~0.69微米 4:0.77~0.89微米 5:0.51~0.73微米
CCD相机(CCD)
CCD相机在星下点的空间分辨率为19.5米,扫描幅宽为113公里。
它在可见、近红外光谱范围内有4个波段和1个全色波段。具有侧视功
能,侧视范围为±32°。相机带有内定标系统。
红外多光谱扫描仪(IRMSS)
。。红外多光谱扫描仪(IRMSS)有1个全色波段、2个短波红外波 段和1个热红外波段,扫描幅宽为119.5公里。可见光、短波红外波段 的空间分辨率为78米,热红外波段的空间分辨率为156米。IRMSS带 有内定标系统和太阳定标系统。
环境一号卫星的主要应用目标是什 么?
环境一号卫星数据将主要应用于灾害和环境的监测和预报方面,具体如 下:
1) 灾害监测与预报 洪涝灾害监测 旱灾监测 台风和暴潮监测 地震、滑坡和泥石流监测 森林、草原火灾监测 农作物病虫害监测 海洋灾害监测 灾害损失评估 灾害紧急救助辅助决策 灾后救助与恢复重建评估
100
(110-128个谱
段)
360(单 — 台), 700 (二台)
4
120
50
±30° 4
CCD相机
1
2
3
4
红外多光谱相 5 机
6
7
8
0.43-0.52 0.52-0.60 0.63-0.69 0.76-0.90 0.75-1.10 1.55-1.75 3.50-3.90 10.5-12.5
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演

基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊是重要的淡水资源和生态环境,叶绿素a是湖泊水体中重要的生物地球化学指标之一,对湖泊水质和生态环境拥有重要的指示作用。
监测湖泊叶绿素a浓度可以有效评估湖泊的营养状态和生态环境,为湖泊管理和保护提供重要的科学依据。
遥感技术已经成为湖泊水质监测的重要手段,可以在较大范围内快速获取湖泊的叶绿素a浓度分布信息。
本文旨在利用HJ-1A/B卫星CCD数据反演湖泊叶绿素a浓度,并分析其时空变化规律,为湖泊水质监测和管理提供科学依据。
一、HJ-1A/B卫星CCD数据HJ-1A/B是我国自主研制的一对环境监测卫星,搭载有CCD等多种传感器,能够获取高分辨率的遥感影像数据。
CCD传感器具有高空间分辨率和较高的动态范围,适用于湖泊水质参数反演。
本文选取HJ-1A/B卫星CCD数据作为研究数据源,利用其多光谱信息反演湖泊叶绿素a浓度。
二、叶绿素a浓度反演方法1. 反演模型本文采用经验模型和统计模型相结合的方法进行叶绿素a浓度反演。
首先利用地面采样数据和遥感影像数据建立经验模型,然后利用统计模型对经验模型进行优化,得到湖泊叶绿素a浓度的空间分布图。
2. 数据预处理对HJ-1A/B卫星CCD数据进行预处理,包括大气校正、辐射定标、噪声去除等步骤,以提高数据的质量和可用性。
3. 特征参数提取从HJ-1A/B卫星CCD数据中提取反演叶绿素a浓度所需的特征参数,包括叶绿素吸收峰位置、叶绿素荧光峰位置、水体颜色指数等。
4. 建立经验模型利用地面采样数据和遥感影像数据建立叶绿素a浓度与特征参数之间的经验关系模型,包括线性模型、非线性模型等。
5. 统计模型优化利用统计方法对经验模型进行优化,修正模型参数,提高模型的适用性和精度。
6. 反演叶绿素a浓度利用经过优化的模型对湖泊遥感影像数据进行反演,得到叶绿素a浓度的空间分布图。
三、叶绿素a浓度反演结果分析利用上述方法对某湖泊的HJ-1A/B卫星CCD数据进行处理和分析,得到湖泊叶绿素a浓度的空间分布图。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演

基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度是湖泊水质的重要指标,对于湖泊的生态环境和水体健康状态评估具有重要意义。
传统的湖泊叶绿素a浓度测定方法需要采集水样进行实验室分析,费时费力,且无法实时监测。
而遥感技术能够通过卫星遥感数据获取湖泊叶绿素a浓度分布情况,具有快速、准确、全面的优势。
HJ-1A星和HJ-1B星是我国自主研发的一对小型环境遥感卫星,搭载了多种传感器,包括HJ-1A星携带的环境监测成像仪(CCD)传感器。
该传感器工作在可见光波段,具有较高的空间分辨率和时间分辨率,适合用于湖泊叶绿素a浓度的反演。
湖泊叶绿素a浓度反演的基本原理是利用湖泊水体对太阳辐射的吸收和散射特性,推算出水体中叶绿素a的浓度。
HJ-1ACCD数据可以提供湖泊水体的表观反射率,进而反演出叶绿素a浓度的空间分布。
具体而言,湖泊叶绿素a浓度反演主要包括以下几个步骤:1. 数据预处理:包括大气校正、水体辐射校正等。
大气校正是将HJ-1ACCD数据中的大气影响去除,获得水体的表观反射率。
水体辐射校正是排除湖泊水体中各种非叶绿素色素的干扰,提取出叶绿素a对辐射的贡献。
2. 模型建立:根据已有的湖泊叶绿素a浓度测量数据和HJ-1ACCD数据,建立叶绿素a 浓度与表观反射率之间的关系模型。
常用的模型有线性回归模型、非线性回归模型等。
3. 反演计算:利用建立的模型,将水体的表观反射率代入模型进行计算,得到湖泊叶绿素a浓度的估计值。
根据需要可以进行插值和平滑处理,得到叶绿素a浓度的空间分布图像。
4. 验证和误差分析:将反演结果与实测数据进行对比,评估反演方法的准确性和可靠性。
分析误差来源,进一步优化反演方法和模型。
湖泊叶绿素a浓度反演基于HJ-1ACCD数据可提供湖泊水体叶绿素a浓度的空间分布情况,帮助提前发现和监测水体富营养化、蓝藻水华等问题,为湖泊水质管理和保护提供科学依据。
该方法还能够实现湖泊水质的实时监测和预警,为及时采取应对措施提供技术支持。
环境减灾卫星在我国生态环境中的应用

★专题1 环境减灾卫星运行情况环境与灾害监测预报小卫星星座包括2颗光学卫星环境减灾一号A、B(HJ -1A/B)卫星和1颗雷达卫星环境减灾一号C(HJ -1C)卫星,可以实现对生态环境与灾害的大范围、全天候、全天时的动态监测,光学卫星可实现30m 空间分辨率每2天对国土进行全覆盖观测,红外探测在中等分辨率下每4天对国土进行全覆盖观测,超光谱探测在中等分辨率下每4天对国土进行重复观测。
HJ -1A/B 于2008年9月6日成功发射,设计寿命3年,于2009年4月在轨交付使用,至今已经在轨运行10年,超期服役7年,围绕地球运转53819圈。
HJ -1C 于2012年11月19日成功发射,设计寿命3年,围绕地球运转32178圈。
卫星运行期间,为我国生态环境监测和环境遥感科研等工作提供了大量遥感数据。
2 环境减灾卫星数据接收情况环境减灾卫星配置了宽覆盖CCD 相机、红外多光谱扫描仪(IRS)、高光谱成像仪(HIS)、合成孔径雷达(SAR)等四种遥感器,组成了一个具有中高空间分辨率、高时间分辨率、高光谱分辨率和宽覆盖的比较完备的对地观测遥感系列。
截至2018年8月16日,生态环境部卫星环境应用中心已累计提供CCD 数据493930景,数据量154251.451GB;HIS 数据690429景,数据量32361.713GB;IRS 数据67365景,数据量4451.179GB;SAR 数据112011景,数据量10189.572GB。
环境减灾卫星Application of HJ -1 in China's Ecological Environment王桥1、2 杨一鹏1、2 赵少华1、2 刘思含1、2(1生态环境部卫星环境应用中心 2国家环境保护卫星遥感重点实验室)环境与灾害监测预报小卫星星座A、B 卫星(简称HJ -1A/B)于2008年9月成功发射。
卫星在轨运行10年,为我国生态环境遥感监测提供了重要数据支撑,有力支撑了国家生态环境保护重点工作。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演

基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊是地球上重要的自然水体,叶绿素a是湖泊中浮游植物的主要色素,它不仅影响水体的颜色和透明度,还对湖泊水生态环境和生态系统的健康状况有着重要的影响。
因此,准确地反演湖泊叶绿素a浓度对于湖泊水质管理、生态环境保护和资源科学研究具有重要意义。
利用遥感技术从卫星获取的遥感数据可以有效地反演湖泊叶绿素a浓度。
我国自主研制的环境卫星HJ-1A/B是一对小型遥感卫星,其中HJ-1A/B卫星上搭载的环境监测传感器(CCD)能够获取高空间分辨率的多光谱遥感数据,广泛应用于陆地和水体等环境领域。
本文将介绍利用HJ-1A/B卫星CCD数据实现湖泊叶绿素a浓度反演的方法和一些常见的问题。
1. 数据获取和处理本文以鄱阳湖为例,利用HJ-1A/B CCD数据进行湖泊叶绿素a浓度反演。
首先,需要获取CCD 反射率数据,并进行预处理,去除大气、表面反射率等非水体效应,得到反演所需的水体反射率数据。
本文采用的是2009年9月16日的HJ-1A CCD数据,波段范围为520~900 nm,空间分辨率为30 m。
2. 预处理湖泊叶绿素a浓度反演需要先进行一些预处理,以确保反演精度和可靠性。
具体包括以下几个方面:(1)数据质量和去云处理CCD数据的质量直接影响到反演精度和可靠性,需要对数据进行质量评估,并对有云和阴影部分进行剔除和插值处理。
(2)水体反射率计算通过分别提取不同波段的反射率值,计算出不同光谱波段下的水体反射率。
需要对CCD数据进行大气校正,去除地表反射率,提取水体反射率,并进行合并处理,得到不同波段下的水体反射率数据。
(3)计算蓝绿波段比值利用HJ-1A CCD波段520~590 nm之间的数据计算蓝绿波段比值(Blue-Green Ratio, BGR),BGR=(R532-R491)/(R532+R491)。
蓝绿波段比值可有效地估算水中叶绿素a的浓度,对湖泊叶绿素a浓度反演具有重要的参考作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于2008年9月6日上午11点25分成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。
在HJ-1-A卫星和HJ-1-B卫星上均装载的两台CCD相机设计原理完全相同,以星下点对称放置,平分视场、并行观测,联合完成对地刈幅宽度为700公里、地面像元分辨率为30米、4个谱段的推扫成像。
此外,在HJ-1-A卫星装载有一台超光谱成像仪,完成对地刈宽为50公里、地面像元分辨率为100米、110~128个光谱谱段的推扫成像,具有±30°侧视能力和星上定标功能。
在HJ-1-B卫星上还装载有一台红外相机,完成对地幅宽为720公里、地面像元分辨率为150米/300米、近短中长4个光谱谱段的成像。
各载荷的主要参数如表1所示。
表1 HJ-1-A、B卫星主要载荷参数
HJ-1-A卫星和HJ-1-B卫星的轨道完全相同,相位相差180°。
两台CCD相机组网后重访周期仅为2天。
其轨道参数如表2所示。