2020-2021数学北师大版第一册教师用书:第8章 一、数学建模简介含解析
北师大版高中数学必修第一册第八章《数学建模活动(一)》PPT课件

[建立模型] 此问题需要分是否可以原路调头的情况来讨论. (1)每条线路都有往返双向线; (2)设4条路分别为A,B,C,D; (3)以A为起始, ①如允许原路调头,则有A→A,A→B,A→C,A→D, ②如不允许原路调头,则有A→B,A→C,A→D.
[求解模型] 第一步:始线路条数;第二步:终线路条数. ①如允许原路调头:则N=4×4=16(种)可能; ②如不允许原路调头:则N=4×3=12(种)可能. [检验结果] 如果允许汽车原路调头,那么在此交通路口共有16种不同的行车情况, 如果不允许汽车原路调头,那么在此交通路口共有12种不同的行车情况.
(3)求解模型 这个过程是求解数学问题.值得注意的是,如果目标是求值,一般不容易求得精 确值,这就要根据需要求近似解. (4)检验结果 用实际现象或数据检验求得的解是否符合实际.如果不符合实际情况,就要重新 建模.数学建模的过程可用如图的框图表示.
【例1】 [提出问题] 在小傅家门口有一个十字型的交通路口(如图所示),小傅就想了,警察叔叔需要指 挥多少种情况的汽车运行线路?
第八章 数学建模活动(一)
[数学文化]——了解数学文化的发展与应用 1.数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所 大学也在80年代初将数学建模引入课堂.经过30多年的发展现在绝大多数 本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为 培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途 径.大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事 数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美 国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的 比例.可以说数学建模竞赛是在美国诞生,在中国开花、结果的.
2020-2021学年新教材数学北师大版(2019)必修第一册练测评:8数学建模活动(一)含解析

第八章数学建模活动(一) §1走近数学建模§2数学建模的主要步骤必备知识基础练进阶训练第一层知识点一建立数学模型1.主要是为了保持体温.研究表明,消耗的能量E与通过心脏的血液量Q成正比;并且根据生物学常识知道,动物的体重与体积成正比.血流量Q 是单位时间流过的血量,脉博率f是单位时间心跳的次数;还有一些生物学假设,例如,心脏每次收缩挤压出来的血量q与心脏大小成正比,动物心脏的大小与这个动物体积的大小成正比.动物名体重/g脉搏率/(心跳次数·min-1)鼠25670大鼠200420豚鼠300300兔 2 000205小狗 5 000120大狗30 00085羊50 00070马45000038建立脉搏率与体重的关系,讨论你模型中的假设,并用上表中的数据检验模型.知识点二数学建模的主要步骤2.种纸卷,如图,两种纸具有同样的材质和厚度,纸卷的高度和单价也一样,若预购买这种卫生纸,但不知道哪种纸卷更合算,如果没有带尺子,用什么办法可以确定合算的纸卷?为什么?知识点三数学建模的主要过程3.在意外发生的时候,建筑物内的人员是否能尽快的疏散撤离是人们普遍关心的有关人身安全保障的最大问题.根据学校情况,选一角度并提出问题,完成开题报告.关键能力综合练进阶训练第二层1.下图中的两个图形,哪一个图形能一笔画成,哪个不能?为什么?2.在一摩天大楼里有三根电线从底层控制室通向顶楼,但由于三根电线各处的转弯不同而有长短,因此三根电线的长度均未知.现在工人师傅为了在顶楼安装电气设备,需要知道这三根电线的电阻,如何测量出这三根电线的电阻?3.你是否注意到北方城镇的有些建筑物的窗户是双层的,即窗户上装两层玻璃且中间留有一定空隙,如左图所示,两层厚度为d的玻璃夹着一层厚度为l的空气.据说这样做是为了保暖,即减少室内向室外的热量流失.我们要建立一个模型来描述热量通过窗户的传导(即流失)过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗(如右图,玻璃厚度为2d)的热量传导进行对比,对双层玻璃窗能够减少多少热量损失给出定量分析结果.模型假设:(1)热量的传播过程只有传导,没有对流.即假定窗户的密封性能很好,两层玻璃之间的空气是不流动的.(2)室内温度T1和室外温度T2保持不变,热传导过程已处于稳定状态,即沿热传导方向,单位时间通过单位面积的热量是常数.(3)玻璃材料均匀,热传导系数是常数.在上述假设下热传导过程遵从下面的物理定律:厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,与d成反比,即Q=k ΔTd,(*)k为热传导系数.从有关资料可知,常用玻璃的热传导系数k1=4×10-3~8×10-3 J/cm·s·kW·h,不流通、干燥空气的热传导系数k2=2.5×10-4 J/cm·s·kW·h.4.针对“北京市区道路交通流量随时间变化规律”这一选题进行分析、思考,完成其开题报告.学科素养升级练进阶训练第1.在商场中,我们经常可以看到同一种商品会有多种大小不同的型号,其价格也各不相同.对比型号和价格,我们很容易发现:当商品的“量”增加时,价格也会增加;但是价格的增加与“量”的增加是不成比例的,也就是说你买的商品的“量”越多,商品的平均价格越低,有人认为这是商家的营销策略,买得越多越划算,这样顾客往往倾向于购买大包装的商品.大包装的商品真的是薄利多销吗?就这一问题通过调查、分析、研究,完成选题,开题报告.第八章数学建模活动(一)§1走近数学建模§2数学建模的主要步骤§3数学建模活动的主要过程必备知识基础练1.解析:建模过程如下:(1)因为动物体温通过身体表面散发热量,表面积越大,散发的热量越多,保持体温需要的能量也就越大,所以动物体内消耗的能量E 与身体的表面积S 成正比,可以表示为E =p 1S .又因为动物体内消耗的能量E 与通过心脏的血流量Q 成正比,可以表示为E =p 2Q .因此得到Q =pS ,其中p 1,p 2和p 均为正的比例系数.另一方面,因为体积V 与体重W 成正比,可以表示为V =r 1W ;又因为表面积S 大约与体积V 的23次方成正比,可以表示为S =r 2V 23,因此得到S =rW 23,其中r 1,r 2,r 为正的比例系数.所以可以构建血流量与体重关系的数学模型Q =k 1W 23,其中k 1为正的比例系数.(2)根据脉搏率的定义f =Qq ,再根据生物学假设q =cW (c 为正的比例系数),最后得到f =Q q =k 1W 23cW ,也就是f =kW -13,其中k 为正的待定系数.脉搏率与体重关系的数学模型说明,恒温动物体重越大,脉搏率越低;脉搏率与体重的13次方成反比,表中的数据基本上反映了这个反比例的关系.右图是以ln W 和ln f 为坐标的散点图.可以看出,数据取对数之后基本满足线性关系,因此得到体重和脉搏率的对数线性模型,可以把这个模型表达为ln f =ln k -ln W3.2.解析:合算就是纸的量多,因为纸卷的高度和单价一样,我们只要比较两种纸卷截面的面积,取较大的就合算,为此可以各取一个纸卷,令无芯纸卷截面的圆心压在有芯纸卷截面的芯(即小圆)上,如右图,然后看无芯纸卷截面上与有芯纸卷截面的芯相切的直径端点,若端点在有芯纸卷截面的大圆上,则两种纸卷的量相等;若在其内则买有芯纸卷合算;若在其外则买无芯纸卷合算.证明:设有芯纸卷截面的内、外半径分别为r,R,大圆内与小圆相切的弦长为d,无芯纸卷截面的直径为D,于是,⎝⎛⎭⎪⎫d22=R2-r2,当D=d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22=π⎝⎛⎭⎪⎫D22=S无芯,当D>d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22<π⎝⎛⎭⎪⎫D22=S无芯.当D<d时,S有芯=π(R2-r2)=π⎝⎛⎭⎪⎫d22>π⎝⎛⎭⎪⎫D22=S无芯.要解决的问题在教学楼一楼有一排四间教室,学生可以沿教室外走廊一直走到尽头的出口,试分析学生撤离所用时间选题的原因及意义建立数学模型给出最佳撤离方案,同时就教学楼设计给出合理化建议建模问题的可行性分析教师可在教学楼内组织学生进行多次演习,只需测量几个简单的参数.基本模型、解决问题的大体思路和步骤做出合理假设,列出有关的参数.队列中人与人之间的距离将为常数,记为d,队列行进的速度也是常数v,令第i个教室中的人数为n i+1人,第i个教室的门口到前一个教室的门口的距离为L i,教室门的宽度为D.疏散时教室内第一个人到达教室门口所用的时间忽略不计.T1,2=⎩⎪⎨⎪⎧(L1+L2+D+n2d)/v(n1+1)d≤L2+D[L1+(n1+n2+1)d]/v(n1+1)d>L2+D预期结果和结果呈现方式建立一个来描述建筑物内人员疏散的最合适的模型,一份有求解过程的文字报告参考文献《数学模型与数学建模》北京师范大学数学科学学院其他说明关键能力综合练1.解析:(1)标点:标出双数点和单数点.(2)判断:第一个只有两个单数点,所以可以一笔画,第二个有4个单数点,所以不能一笔画,2.解析:不妨用a,b,c及a′,b′,c′分别表示三根电线的底端和顶端,并用aa′,bb′,cc′分别表示三根电线,假设x,y,z 分别是aa′,bb′,cc′的电阻,这是三个未知数,电表不能直接测量出这三个未知数.然而我们可以把a′和b′连接起来,在a和b处测量得电阻x+y为l;然后将b′和c′连接起来,在b和c处测量得y+z为m,连接a′和c′可测得x+z为n,这样得三元一次方程组⎩⎪⎨⎪⎧x+y=ly+z=mx+z=n.由三元一次线性方程组解出x,y,z即得三根电线的电阻.3.解析:记双层窗内层玻璃的外侧温度是T a,外层玻璃的内侧温度是T b,如图,玻璃的热传导系数为k1,空气的热传导系数为k2,由(*)式单位时间单位面积的热量传导(即热量流失)为Q1=k1T1-T ad=k2T a-T bl=k1T b-T2d,消去T a,T b,可得Q1=k1(T1-T2)d(s+2),s=h k1k2,h=ld,对于厚度为2d的单层玻璃窗,容易写出其热量传导为Q2=k1T1-T22d.二者之比为Q1Q2=2s+2,显然Q1<Q2.为了得到更具体的结果,我们需要k1和k2的数据.16≤k1k2≤32.在分析双层玻璃窗比单层玻璃窗可减少多少热量损失时,我们作最保守的估计,即取k1k2=16,可得Q1Q2=18h+1,h=ld,比值Q1Q2反映了双层玻璃窗在减少热量损失上的功效,它只与h=ld有关,我们给出Q1Q2-h的曲线,当h增加时,Q1Q2迅速下降,而当h超过一定值(比如h>4)后Q1Q2下降变缓,可见h不必选择过大.要解决的问题随着北京城市的不断发展,交通成了饱受关注的话题,那么北京市区主要道路交通流量随时间变化有什么样的规律?学科素养升级练主要过程 成本×(1+利润率),所以有y ∝P .而商品的成本主要分为生产成本和包装成本两部分,分别设为P 1和P 2,即有y ∝(P 1+P 2).商品的生产成本P 1与商品的质量x 成比例,即P 1∝x ;而商品的包装成本P 2与商品的表面积S 成比例,即P 2∝S ,而S ∝V 23,V ∝x (这里V指商品的体积),故有P 2∝x 23.从而我们可以假设y =ax +bx 23. 下面我们用实际数据来检验这一函数表达式的准确性,因为在函数中有两个待定系数,所以我们只需要代入两组(x ,y )值即可求出a ,b 的值. 将(65,14)和(90,17.6)代入y =ax +bx 23中,可得⎩⎪⎨⎪⎧65a +6523b =1490a +9023b =17.6,解得a ≈0.0225,b ≈0.7756,所以y =0.0225x +0.7756x 23结果检验将x =120代入,得y =21.57,与实际价格21.60元相差0.03;再将x =180代入,得y =28.77,与实际价格28.30元相差0.47元.因此,我们推导出来的函数表达式还是比较准确的.这一步得到单位质量价格y ′=0.0225+0.7756x -13,由几何画板做出y ′-x 的关系图为可以看出随牙膏质量的增加,单位质量价格的减小量。
高中数学第八章数学建模活动一课时分层作业含解析北师大版第一册

课时分层作业(四十七) 数学建模活动(一)(建议用时:40分钟)1.A、B两城相距100 km,在两地之间距A城x km处D地建一核电站给A、B两城供电,为保证城市安全.核电站与城市距离不得少于10 km。
已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0。
25.若A城供电量为20亿度/月,B城为10亿度/月.(1)求x的范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电费用最小.[解](1)x的取值范围为[10,90];(2)y=0。
25×20x2+0。
25×10(100-x)2=5x2+错误!(100-x)2(10≤x≤90);(3)由y=5x2+错误!(100-x)2=错误!x2-500x+25 000=错误!错误!错误!+错误!.则当x=1003km时,y最小.故当核电站建在距A城错误!km时,才能使供电费用最小.2.某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y(t)与月序数x之间的关系.对此模拟函数可选用二次函数y=f(x)=ax2+bx+c(a,b,c均为待定系数,x∈N*)或函数y=g(x)=pq x +r(p,q,r均为待定系数,x∈N*),现在已知该厂这种新产品在第四个月的月产量为137t,则选用这两个函数中的哪一个作为模拟函数较好?[解]根据题意可列方程组错误!解得错误!所以y=f(x)=-5x2+35x+70. ①同理y=g(x)=-80×0.5x+140。
②再将x=4分别代入①与②式得f(4)=-5×42+35×4+70=130(t),g(4)=-80×0。
54+140=135(t).与f(4)相比,g(4)在数值上更为接近第四个月的实际月产量,所以②式作为模拟函数比①式更好,故选用函数y=g(x)=pq x+r作为模拟函数较好.3.经市场调查,某商品在过去100天内的销售量和价格均为时间t(天)的函数,且日销售量近似地满足g(t)=-错误!t+错误! (1≤t≤100,t∈N)。
2024-2025年北师大版数学必修第一册8.1-3数学建模活动(一)(带答案)

§1走近数学建模§2数学建模的主要步骤§3数学建模活动的主要过程必备知识基础练知识点一建立数学模型1.生物学家认为,睡眠中的恒温动物依然会消耗体内能量,主要是为了保持体温.研究表明,消耗的能量E与通过心脏的血液量Q成正比;并且根据生物学常识知道,动物的体重与体积成正比.血流量Q是单位时间流过的血量,脉博率f是单位时间心跳的次数;还有一些生物学假设,例如,心脏每次收缩挤压出来的血量q与心脏大小成正比,动物心脏的大小与这个动物体积的大小成正比.下表给出一些动物体重与脉搏率对应的数据.系,讨论你模型中的假设,并用上表中的数据检验模型.知识点二数学建模的主要步骤2.超市卖某一品牌的卫生纸,这种卫生纸分“有芯”和“无芯”两种纸卷,如图,两种纸具有同样的材质和厚度,纸卷的高度和单价也一样,若预购买这种卫生纸,但不知道哪种纸卷更合算,如果没有带尺子,用什么办法可以确定合算的纸卷?为什么?知识点三数学建模的主要过程3.在意外发生的时候,建筑物内的人员是否能尽快的疏散撤离是人们普遍关心的有关人身安全保障的最大问题.根据学校情况,选一角度并提出问题,完成开题报告.关键能力综合练1.甲、乙两个快递员去送信,两人同时出发以同样的速度走遍所有的街道,甲从A点出发,乙从B点出发,最后都回到邮局(C点).如果要选择最短的线路,谁先回到邮局?2.国际象棋中马的行走方式为“日”字形的对角线,如图甲中虚线所示.问能否以一马的跳步完全覆盖图乙的“棋盘”,使接触每个方格恰好一次?(允许从任一方格出发)核心素养升级练1.在商场中,我们经常可以看到同一种商品会有多种大小不同的型号,其价格也各不相同.对比型号和价格,我们很容易发现:当商品的“量”增加时,价格也会增加;但是价格的增加与“量”的增加是不成比例的,也就是说你买的商品的“量”越多,商品的平均价格越低,有人认为这是商家的营销策略,买得越多越划算,这样顾客往往倾向于购买大包装的商品.大包装的商品真的是薄利多销吗?就这一问题通过调查、分析、研究,完成选题,开题报告.§1走近数学建模§2数学建模的主要步骤§3 数学建模活动的主要过程必备知识基础练1.解析:建模过程如下:(1)因为动物体温通过身体表面散发热量,表面积越大,散发的热量越多,保持体温需要的能量也就越大,所以动物体内消耗的能量E 与身体的表面积S 成正比,可以表示为E =p 1S .又因为动物体内消耗的能量E 与通过心脏的血流量Q 成正比,可以表示为E =p 2Q .因此得到Q =pS ,其中p 1,p 2和p 均为正的比例系数.另一方面,因为体积V 与体重W 成正比,可以表示为V =r 1W ;又因为表面积S 大约与体积V 的23次方成正比,可以表示为S =r 2V 23,因此得到S =rW 23 ,其中r 1,r 2,r 为正的比例系数.所以可以构建血流量与体重关系的数学模型Q =k 1W 23,其中k 1为正的比例系数.(2)根据脉搏率的定义f =Qq,再根据生物学假设q =cW (c 为正的比例系数),最后得到f=Q q =k 1W 23cW,也就是f =kW -13 ,其中k 为正的待定系数. 脉搏率与体重关系的数学模型说明,恒温动物体重越大,脉搏率越低;脉搏率与体重的13次方成反比,表中的数据基本上反映了这个反比例的关系.下图是以ln W 和ln f 为坐标的散点图.可以看出,数据取对数之后基本满足线性关系,因此得到体重和脉搏率的对数线性模型,可以把这个模型表达为ln f =ln k -ln W3.2.解析:合算就是纸的量多,因为纸卷的高度和单价一样,我们只要比较两种纸卷截面的面积,取较大的就合算,为此可以各取一个纸卷,令无芯纸卷截面的圆心压在有芯纸卷截面的芯(即小圆)上,如右图,然后看无芯纸卷截面上与有芯纸卷截面的芯相切的直径端点,若端点在有芯纸卷截面的大圆上,则两种纸卷的量相等;若在其内则买有芯纸卷合算;若在其外则买无芯纸卷合算.证明:设有芯纸卷截面的内、外半径分别为r ,R ,大圆内与小圆相切的弦长为d ,无芯纸卷截面的直径为D ,于是,(d2)2=R 2-r 2,当D =d 时,S 有芯=π(R 2-r 2)=π(d 2 )2=π(D 2 )2=S 无芯,当D >d 时,S 有芯=π(R 2-r 2)=π(d 2 )2<π(D 2 )2=S 无芯. 当D <d 时,S 有芯=π(R 2-r 2)=π(d2 )2>π(D2 )2=S 无芯. 3.解析: 要解决的问题在教学楼一楼有一排四间教室,学生可以沿教室外走廊一直走到尽头的出口,试分析学生撤离所用时间选题的原因及意义 建立数学模型给出最佳撤离方案,同时就教学楼设计给出合理化建议 建模问题的可行性分析教师可在教学楼内组织学生进行多次演习,只需测量几个简单的参数. 基本模型、解决问题的大体思路和步骤做出合理假设,列出有关的参数.队列中人与人之间的距离将为常数,记为d ,队列行进的速度也是常数v ,令第i 个教室中的人数为n i +1人,第i 个教室的门口到前一个教室的门口的距离为L i ,教室门的宽度为D .疏散时教室内第一个人到达教室门口所用的时间忽略不计.T 1,2=⎩⎪⎨⎪⎧(L 1+L 2+D +n 2d )/v ,(n 1+1)d ≤L 2+D ,[L 1+(n 1+n 2+1)d ]/v ,(n 1+1)d >L 2+D预期结果和结果呈现方式 建立一个来描述建筑物内人员疏散的最合适的模型,一份有求解过程的文字报告参考文献 《数学模型与数学建模》 北京师范大学数学科学学院其他说明关键能力综合练1.解析:由题图看出,只有A,C两个奇点,根据一笔画定理,甲从A出发,可以不重复地一次走完所有街道,而乙从B出发走完所有街道回到C点必须重复一段街道,故甲先回到邮局.2.解析:问题是要确定题图乙是否有一条哈密尔顿路.把图重画,使顶点的布置更清楚.删去次数为2的顶点a(棋盘的角)以及4个顶点b以获得两个回路(见图丙);以c与d分别标记此两回路的顶点.再把此两回路画成不相交的,见图丁.每个顶点b邻接于一顶点c与一顶点d.删去4个顶点b产生一个具有6个分支的图:两个不同的回路(分别以c与d为顶点)以及4个标号为a的顶点,于是可知原图中一条依次经过全部顶点的路线应是不存在的,即没有哈密尔顿路.所以,题图乙的棋盘不能像问题规定的那样为一马所跳遍.核心素养升级练1.解析:要解决的问题到商场买牙膏,从划算的角度讲,同一品牌的牙膏我们是买小包装的好,还是大包装的好呢?解决问题的方法同一品牌的牙膏形状是相似的,通过比例建立价格与质量的函数关系相关问题分析及其假设我们设商品的价格为y(元),质量为x(g),看能否找出y与x的函数关系式:y=f(x).为了方便叙述,我们引入“∝”这一符号,当y与x成比例,即y=kx(k为常数)时,记作y∝x建模求解的主要过程设商品的成本为P(元),一般来说,商品价格=商品成本×(1+利润率),所以有y∝P.而商品的成本主要分为生产成本和包装成本两部分,分别设为P1和P2,即有y∝(P1+P2).商品的生产成本P1与商品的质量x成比例,即P1∝x;而商品的包装成本P2与商品的表面积S成比例,即P2∝S,将x =120代入,得y =21.57,与实际价格21.60元相差0.03;再将x =180代入,得y =28.77,与实际价格28.30元相差0.47元.因此,我们推导出来的函数表达式还是比较准确的. 这一步得到单位质量价格y ′=0.0225+0.7756x-13,由几何画板做出y ′-x 的关系图为可以看出随牙膏质量的增加,单位质量价格的减小量在减少,因此不能盲目的认为越大的包装越便宜全组共同制定研究计划商讨确定数学模型。
高中数学第8章数学建模活动一二建立函数模型解决实际问题实例学案含解析北师大版第一册

二、建立函数模型解决实际问题实例建立函数模型解决实际问题【例1】据气象中心观察和预测:发生于沿海M地的台风一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即t(h)内台风所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场台风是否会侵袭到N城,如果会,在台风发生后多长时间它将侵袭到N城?如果不会,请说明理由.[思路点拨](1)由图求出直线OA的方程,把t=4代入可得s的值;(2)由图分析可知s是关于t的分段函数,分三段求出即可;(3)利用(2)中所得的函数的值域求解.[解](1)由图象可知,直线OA的方程是v=3t,直线BC 的方程是v=-2t+70.当t=4时,v=12,所以s=错误!×4×12=24.(2)当0≤t≤10时,s=12×t×3t=错误!t2;当10〈t≤20时,s=错误!×10×30+(t-10)×30=30t-150;当20<t≤35时,s=150+300+错误!×(t-20)×(-2t+70+30)=-t2+70t-550。
综上可知,s随t变化的规律是s=错误!(3)当t∈[0,10]时,s max=错误!×102=150〈650,当t∈(10,20]时,s max=30×20-150=450<650,当t∈(20,35]时,令-t2+70t-550=650,解得t=30或t=40(舍去),即在台风发生30小时后将侵袭到N城.1.解函数应用题的一般步骤第一步:审题-—弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:解模--求解数学模型,得到数学结论;第四步:还原-—将用数学方法得到的结论还原为实际问题的意义;第五步:反思-—对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.2.把实际问题数学模型化一定要过好三关(1)事理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口;(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系;(3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.错误!1.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R (x)万美元,且R(x)=错误!(1)写出年利润W(万美元)关于年产量x(万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.[解](1)当0<x≤40时,W=xR(x)-(16x+40)=-6x2+384x -40,当x>40时,W=xR(x)-(16x+40)=-错误!-16x+7 360。
北师大版高中数学课件必修第1册第八章 数学建模活动(一)

§3 数学建模活动的主要过程
刷基础
解析
(1)由 17 时测得的平均行车速度为 3 km/h,n=-2(|17-12|-5)2+100=100,
600 ,n≤9,
n+10
代入 v= 3n32+ 00k0,n≥10n∈N+,可得1303002+ 00k=3,解得 k=1 000.
600n 600
600×9
§3 数学建模活动的主要过程
刷能力
解析
2.无标准答案,可以借助网络等资源查询相关资料,得到解决问题的思路.
≈0.69,无理数 e=2.718 28…)
§3 数学建模活动的主要过程
刷基础
解析
(1)∵ω=2,m0=160,mk=40,∴v=ωlnm0=2×ln160=2ln 4=4ln 2≈2.8,
mk
40
∴该单级火箭的最大理想速度为 2.8 千米/秒.
(2)∵m0≤10,ω=2,∴vmax=ωlnm0=2ln 10,
数学 BS 必修第一册
§1
§1 走近数学建模
§2
§2 数学建模的主要步骤
§3
§3 数学建模活动的主要过程
§3 数学建模活动的主要过程
刷基础
1.2021 年 12 月 9 日 15 时 40 分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,
某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,
§3 数学建模活动的主要过程
刷能力
解析
k
k
(1)设 y1= (k≠0),y2=mx(m≠0),其中 x>0,当 x=9 时,y1= =2,y2=9m=7.2,解得 k=20,
高一数学北师大必修第一册课件第8章3数学建模活动的主要过程

[结题] 1.模型优点: A.该模型可以有效的减少土地污染体积; B.该模型不需要耗费大量的人力、物力. 2.模型缺点: A.该模型没有考虑渗滤液处理区等方面的限制条件; B.该模型只能用于填埋场形状为圆形的填埋场.
3.我们了解到填埋是我国目前最重要的垃圾处理方式.而填埋造 成的环境污染主要体现在对周围土地的污染.因此我们想在不影响填 埋数量的情况下,通过改变填埋场形状来减少对土地的污染.在此模 型中,我们采用了枚举法,通过比较不同的形状带来的污染,最后得 出结论:在一定的条件下,圆形较好.最后,我们通过调查问卷和数 据抓取的方式,得到订外卖的主体为服务业的年轻人.
原先并不涉足外卖的餐馆都经营了外卖快餐.外卖有好有坏,它既方 便了我们的生活,但同时也制造了大量的垃圾,这些垃圾造成了生态 环境的破坏,海洋动物的死亡,也已经威胁到了我们的生活.本文就 此问题,展开对外卖垃圾该如何处理的分析与讨论.
[开题] 从具体的处理方式考虑.通过资料我们了解到填埋是我国 最重要的垃圾处理方式.而填埋对环境的影响则大多体现在填埋场对 周围土地的污染.因此,我们想要在不减少填埋场地所能填埋垃圾的 数量的情况下,减少对土地的污染,而填埋数量与填埋场的体积有 关.目前,填埋场的深度基本已达最大.因此我们通过改变填埋场的
设此圆柱体的半径为 R,高为 L,
S1=2πRL,
①
由题意,我们需要将包装面积与商品重量联系在一起,故我们将
牙膏体积 V 近似为圆柱体积的一半,
则 V=12πR2L,
②
设牙膏密度为 ρ,则 V=Wρ ,
③
一般地,为了美观,牙膏的半径与长度有一定比例关系,在这里:
设 R=k2L(k2 为大于 0 的常数),
π3+c2·π= 43e2+ec
北师版高中数学必修第一册精品课件 第8章 数学建模活动(一) 3 数学建模活动的主要过程

(3)每个养鸡场出产鸡的只数满足数列:
an=1+(n-1)×0.2=0.2n+0.8(1≤n≤6,n∈N+);
养鸡场个数满足数列:bn=30-4(n-1)=-4n+34(1≤n≤6,n∈N+),
全县每年出产鸡的总只数满足
Sn=an·bn=-0.8n2+3.6n+27.2(1≤n≤6,n∈N+),
养老院的合理布局、传染病的传播机理),生活方面的问题(如
乘车路线的规划,营养餐的配置).
4.建模选题的来源有哪些?
提示:来源之一:阅读已有的研究论文,用同样的方法研究类似
的问题.
来源之二:研究已有的论文,换个视角,增加问题的复杂性,进
一步研究相关的问题.
来源之三:用数学的眼光观察世界,发现研究新的问题.
ab(1+10x)
ab(1-x)×
a(1-x) b(1+10x)
(1+10x)
降价后 a
(+)(-)-(+)-
数量关系式为
≥30%,
化简得-70x2+13x-0.6≥0,
解得≤x≤,即 ≤t≤10.
答:降价至多 10 个百分点.
骤,可能遇到的困难和对策.
第二,参会人员对开题报告进行讨论,中肯地提出意见和建议,
共同完善研究设计.
四、建模做题
【问题思考】
1.建模做题是什么?
提示:建模做题是研究者(研究小组),建立数学模型、用数学
解决实际问题的实践活动.
2.建模做题应注意哪些问题?
提示:建模做题是一项小课题研究,往往是团队式的研究,要发
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年新教材数学北师大版必修第一册教师用书:第8章一、数学建模简介含解析
学习目标核心素养
1.了解数学建模的意义;2.了解数学建模的基本过程.(重点)
3.能够运用已有函数模型或建立函数模型解决实际问题.(重点,难点)1。
经历数学建模的全过程,培养数学抽象、数据分析的数学素养.
2.通过数学建模解决实际应用问题,提升数学运算、逻辑推理和直观想象的数学素养.
一、数学建模简介
1.数学建模的概念
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程,也是推动数学发展的动力.
2.数学建模一般步骤
3.数学建模活动的主要过程
(1)选题:就是选定研究的问题.
(2)开题:就是进一步明确研究的问题和设计解决问题的方案.
(3)做题:是研究者(研究小组)建立数学模型、用数学解决实际问题的实践活动.
(4)结题:是研究小组向老师和同学们报告研究成果、进行答辩的过程,一般来讲,结题会是结题的基本形式.
攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。