数学建模的初步认识

合集下载

数学建模的初步认识

数学建模的初步认识

数学建模的初步认识数学建模是一种运用数学方法和技巧来解决现实世界问题的过程。

它是数学和现实世界之间的桥梁,通过将现实世界中的问题抽象化为数学模型,再利用数学工具进行分析和求解,得出相关结论和解决方案。

数学建模已经成为许多领域的重要工具,包括工程、经济、生物学、环境科学等等。

在本文中,我们将对数学建模进行初步的认识,并探讨其在现实世界中的重要性和应用价值。

数学建模的过程可以分为几个关键步骤。

首先是问题的定义和分析,即对现实世界中的问题进行深入的调研和分析,了解问题的背景和相关信息。

然后是建立数学模型,即将问题抽象化为数学形式,包括数学方程、图论、概率论等。

接着是模型的求解与分析,即利用数学工具和技巧对模型进行求解和分析,得出相关结论和解决方案。

最后是模型的验证和优化,即对模型的结果进行验证和优化,确保其准确性和实用性。

这些步骤需要数学建模者具备深厚的数学功底和对现实世界问题的深刻理解,才能够进行有效的数学建模工作。

数学建模的重要性在于它可以帮助我们更好地理解和解决现实世界中复杂的问题。

许多现实世界中的问题都是非常复杂和多变的,很难用传统的方法和技巧来解决。

而数学建模可以将这些复杂的问题进行抽象化和形式化,通过数学工具和技巧进行求解和分析,得出相关结论和解决方案。

通过数学建模,我们可以对现实世界中的问题进行深入的分析和思考,找出其中的规律和关联,从而更好地解决这些问题。

数学建模的应用价值也非常广泛。

在工程领域,数学建模可以帮助工程师们设计和优化复杂的系统和结构,提高工程的效率和性能。

在经济领域,数学建模可以帮助经济学家们预测和分析市场的走势和波动,制定更好的经济政策和战略。

在生物学和医学领域,数学建模可以帮助科学家们研究和分析生物系统和疾病的规律,发现潜在的治疗方法和药物。

在环境科学领域,数学建模可以帮助科学家们预测和分析气候变化和环境污染的影响,制定更好的环境保护政策和措施。

数学建模是一种非常重要和有价值的工具。

数学建模的初步认识

数学建模的初步认识

数学建模的初步认识
数学建模是一种数学方法和技术,用于解决各种现实问题。

通过对实际问题的抽象和
建模,应用数学理论和方法来进行分析和求解。

数学建模现在已经广泛应用于物理、化学、生物学、经济学、金融等领域,成为了现代科学和工业发展的重要手段。

在数学建模中,首先需要认识到实际问题的特点和要求,进行定量和定性的描述,并
确定所需要的数据和信息。

其次是选择和应用数学模型,建立数学方程或模型,进行计算
和分析。

最后是对结果的解释和验证,对模型的精度和有效性进行评估。

数学建模依赖于数学知识和技能,其中包括微积分、线性代数、概率统计、优化理论
等方面。

同时,还需要了解和学习各种具体的数学模型和方法,如微分方程、差分方程、
动态系统、经济学模型等。

数学建模的方法和技术包括以下几个方面:
1.数学建模方法。

包括毒药模型、数据拟合、偏微分方程、动态系统等方法。

2.模型参数的确定。

该过程通常涉及模型的统计学分析和数据拟合。

3.数值计算。

采用计算机进行数值模拟和求解。

4.结果和模型的评估。

对模型进行精度和有效性的评估,以确定模型是否能够正确反
映实际问题,并对实际问题进行预测和仿真。

数学建模具有以下优点:
1.可以系统地分析和解决复杂问题,客观、科学、准确、可靠。

2.可以通过模型进行仿真和预测,了解问题的发展趋势,并制定相关政策和措施。

3.可以提高决策的科学性和精度,提高决策效率。

4.可以帮助学生和研究人员提高数学知识和技能,培养创新能力和实践能力。

对数学建模的认识

对数学建模的认识

对数学建模的认识数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。

关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。

数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。

一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济…,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进.应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1)比例分析法--建立变量之间函数关系的最基本最常用的方法.(2)代数方法--求解离散问题(离散的数据,符号,图形)的主要方法.(3)逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.(4)常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式.(5)偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.(1)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2)时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3)回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4)时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法,在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1)计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.①离散系统仿真--有一组状态变量.②连续系统仿真--有解析表达式或系统结构图.(2)因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3)人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型取决于是否考虑时间因素引起的变化.线性模型和非线性模型取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系,利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.。

数学建模的初步认识

数学建模的初步认识

数学建模的初步认识数学建模是一个抽象而又具体化的过程,它将实际问题通过数学方法进行抽象和归纳,从而建立数学模型,解决实际问题。

数学建模是数学的应用,也是数学与其他学科的交叉学科,它具有广泛的应用范围,在工程、物理、经济、生物等领域都有着重要的作用。

有人把数学建模称为“数学的艺术”,因为数学建模需要将实际问题转化为数学问题,这需要一定的抽象和思维能力。

数学建模也需要一定的实际问题理解和分析能力,因为只有对实际问题有深刻的理解,才能够准确地进行数学建模。

数学建模的基本流程一般包括以下几个环节:实际问题的分析和选择、数学模型的建立、模型的求解和分析、对模型结果的验证和应用。

下面我们将一一介绍这几个环节。

首先是实际问题的分析和选择。

在实际问题的分析中,需要对问题有一个深刻的理解,包括问题的背景、目标、以及影响因素。

同时也需要对问题的约束条件进行分析,这些约束条件可能来自于技术、经济、社会等方面。

在实际问题的选择中,需要根据实际情况和需求选择适合的数学方法和技术。

需要考虑问题的复杂度、数据的可获得性、模型的可行性等因素。

其次是数学模型的建立。

在实际问题的基础上,需要对问题进行抽象和简化,然后根据问题的特点选择适合的数学模型。

数学模型可以是各种数学形式,如代数方程、微分方程、统计模型等。

在模型的建立中,需要考虑模型的适用性、精确性和可行性,同时也需要考虑模型的可解性和解的稳定性。

接下来是模型的求解和分析。

在模型的求解中,需要选择适合的数学方法和技术进行求解。

这可能包括数值计算、仿真、优化等方法。

在模型的分析中,需要对求得的结果进行分析和检验,验证模型的有效性和可靠性。

这可能包括对结果的灵敏度分析、参数的优化、对比实际数据等方法。

最后是对模型结果的验证和应用。

在模型结果的验证中,需要对模型的结果进行对比实际数据,确定模型的有效性和可靠性。

在模型结果的应用中,需要将模型的结果转化为实际问题的解决方案,这可能包括对策、决策、控制等方面。

数学建模心得与体会[终稿]

数学建模心得与体会[终稿]

数学建模心得与体会数学建模心得与体会——陈保成自学校举行大学生首届数学建模比赛,我就积极参与,在比赛过程中我学的很多,也使我感觉自己所学知识有用,并体会了搞建模的艰辛,也意识到自己的知识匮乏,应该增深自己知识面。

与队友密切合作,培养了自己团队意识,并意识与他人合作重要性。

在通过学校选拔以后,接着就是‘痛苦’的培训。

在培训期间,正值高温期,有许多同学吃不下苦,而中途放弃了,现在想想都挺佩服自己的,不知是怎么坚持下来的。

既然在这样艰苦条件下都能坚持下来,以后还有什么坚持不下来呢!虽然培训是痛苦的,但也学到很多东西。

老师讲的内容都比较精彩生动,在课堂上,老师充分调动我们的积极性。

我们不仅学到了许多知识,也加强了动手能力和实践能力。

如在学习MATLAB过程中,通过自己动手操作,都能基本上掌握MATLAB,这对我来说,为了以后的后续课程打下基础。

还有图论、优化、聚类、统计等一些知识,增宽了我的知识面。

还有LINGO,SPSS 软件,如果没有参加建模的话,我也许一辈子都不会去接触这些东西。

这段时间的培训之后,会明显感觉自己的进步以及对问题的数学思维能力的加强,但个人认为要参加比赛,就要博览全书,仅仅把自己的知识局限于此是不够。

培训的过程是相当辛苦的,每天除了吃饭、睡觉,其余时间基本上都是在机房度过的,不断学习、练习,几天下来就会感觉相当疲劳,培训的过程也是对我们队员吃苦耐力的考验。

但是苦中有乐,每天大家过的都很充实,大家相互交流着想法,共同讨论,共同进步。

在参加全国赛的三天内,第一天,我们拿到题目,并结合自身的优点,选择题目,分析题目,指导老师给我们指导和建议,不过一天下来我们几乎毫无进展,我感觉很沮丧,多亏了队友的鼓励和帮助,我才能坚持下来。

第二天,我们又打起精神继续奋战接下来主要进行合理假设与参数说明,把题目转化成数学问题的形式,开始是肯定是建立初等模型,考虑的不全面,队友也有不同想法,这就需要队友相互交流,然后一起完善模型,这就体现团队重要性。

数学建模的初步认识

数学建模的初步认识

数学建模的初步认识
数学建模是将实际问题转化为数学模型的过程,运用数学知识分析问题并得出解决方案。

它是数学与实际之间的桥梁,具有广泛的应用领域,如自然科学、社会科学、经济学、金融学、工程学等。

数学建模具有三个基本要素:实际问题、数学模型和解决方案。

实际问题是指需要解
决的具体问题,数学模型是将实际问题转化为数学形式并建立的数学模型,解决方案则是
基于数学模型得出的解决方案。

数学建模的过程可以分为以下几个步骤:
1.问题的分析与理解:了解问题背景、要求及限制条件,对问题进行梳理和分析。

2.建立数学模型:根据问题实际情况,选择适当的数学工具、建立数学模型,可以是
代数模型、几何模型、统计模型等。

3.模型的求解:根据建立的数学模型,运用数学工具和方法进行求解。

4.模型的验证与优化:对求得的解进行验证,评价优缺点,并对模型进行优化,改进
模型的精度和效率。

5.方案的实施与评估:将模型的解决方案实施,对结果进行评估和反馈,不断完善模型。

数学建模具有许多优点。

首先,它可以提高对实际问题的认识和理解,从而更好地制
定解决方案。

其次,它可以将抽象概念转化为具体可计算的数学模型,便于运用数学知识
解决问题。

另外,数学建模可以提高分析问题和解决问题的能力,培养创造性思维和团队
合作能力,有利于培养学生的综合素质。

总之,数学建模是现代科学技术发展中不可缺少的部分,具有重要的应用和推广价值。

对于数学科学专业的学生,学习数学建模可以提高他们运用数学知识解决实际问题的能力,对于其他专业的学生,也可以通过学习数学建模来了解和应用数学在实际中的应用。

数学建模的初步认识

数学建模的初步认识

数学建模的初步认识数学建模是一种通过数学方法解决实际问题的过程,它是现实世界和数学之间的桥梁,可以帮助我们更好地理解和分析现实世界中的复杂问题。

数学建模涉及到许多数学工具和技巧,包括微积分、线性代数、概率统计等,同时也需要具备一定的实际问题分析能力和创造性思维。

在本文中,我们将对数学建模进行初步的认识,并探讨其在现实中的应用和意义。

一、数学建模的基本概念数学建模是一种将现实问题抽象化、数学化、定量化的过程。

通常情况下,数学建模可以分为三个基本步骤:建立模型、求解模型、验证模型。

建立模型是指将实际问题抽象成数学形式,通常包括确定问题的变量、建立数学关系式等;求解模型是指利用数学方法和技巧来解决建立的数学模型,通常包括求解方程、优化问题等;验证模型是指将模型的结果与实际数据进行比较,从而验证模型的有效性和可靠性。

通过这些步骤,我们可以利用数学方法来更好地分析和解决实际问题,提高问题的理解和解决能力。

二、数学建模的应用领域数学建模在现实生活中有着广泛的应用领域,涉及到经济、生态、气候、环境、医学等各个方面。

在经济领域,数学建模可以帮助企业进行市场预测、资源配置、成本优化等方面的决策;在生态领域,数学建模可以帮助研究人员预测生物种群的发展趋势、生态系统的稳定性等问题;在医学领域,数学建模可以帮助研究人员分析疾病传播规律、药物疗效等方面的问题。

通过数学建模,我们可以更好地理解和分析这些复杂问题,并为问题的解决提供科学的依据。

三、数学建模的意义和挑战数学建模在现实世界中有着重要的意义,它可以帮助我们更好地理解和解决各种复杂问题,为决策提供科学依据,促进科学技术的发展。

数学建模也面临着许多挑战,比如模型的建立是否合理、数据的准确性等问题,这些都需要我们具备相关的数学知识和实际问题分析能力来克服。

数学建模简介word文档-华南师范大学数学科学学院

数学建模简介word文档-华南师范大学数学科学学院

1.1 关于数学建模一、数学、数学模型、数学建模的定义二、数学建模过程流程图三、数学建模的特点和分类四、数学建模的应用和现代科学五、历年全国和美国大学生数学建模竞赛六、如何学好数学建模七、数学建模的例子:火炮的射击、椅子能在不平的地上放稳吗、人中预报问题一、数学、数学模型、数学建模的定义数学――是一门研究数量关系和空间变化关系的学科数学模型――对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

数学建模――构造数学模型的过程,利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解,得到定量的结果,以供人们作分析、预报、决策和控制。

例1:火炮的射击―――数学建模的大致全过程模型一:假设不考虑空气的阻力、重力影响――抛物运动模型二:假设不考虑重力影响,并且空气的阻力与速度成正比。

模型三:假设不考虑重力影响,并且空气的阻力与速度的平方成正比。

――适用于火炮的射击模型四:考虑重力影响,并且空气的阻力与速度的平方成正比。

―――适用于卫星的发射。

二、数学建模过程流程图众多的因素(主要和次要)--合理的假设――建立数学模型――用数学方法(或数学软件)求解模型――检验(得解与实际问题作比较)――修改完善模型。

上述数学建模过程可用流程图表述如下:三、数学建模的特点和分类数学建模是一个实践性很强的学科,它具有以下特点:1.应用领域广,如物理学、力学、工程学、生物学、医学、经济学、军事学、体育运动学等.而不少完全不同的实际问题,在一定的简化层次下,它们的模型是相同或相似的.这就要求我们培养广泛的兴趣,拓宽知识面,从而发展联想能力,通过对各种问题的分析、研究、比较,逐步达到触类旁通的境界.2.需要各种数学知识,应用已学到的数学方法和思想进行综合应用和分析,进行合理的抽象及简化的能力如微分方程、运筹学、概率统计、图论、层次分析、变分法等,去描述和解决实际问题.3.需要各种技术手段的配合,如查阅各种文献资料、使用计算机和各种数学软件包等.4.与求解数学题目的差别.求解数学题目往往有唯一正确的答案,而数学建模没有唯一正确的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模的初步认识
数学建模是一种将现实世界问题抽象为数学形式,运用数学理论和方法来解决问题的
技术。

它是数学与现实世界相结合的产物,可以帮助人们更好地理解和解决各种问题。


学建模可以应用于各个领域,如经济、环境、医学、工程等,它的应用领域非常广泛,对
于解决实际问题具有重要的意义。

在本文中,我们将初步认识数学建模,并探讨其在实际
应用中所具有的重要意义。

一、数学建模的基本概念
数学建模是一种通过数学方法解决现实问题的技术。

它的基本概念包括问题提出、问
题抽象、模型建立和模型求解四个步骤。

数学建模的过程始于对现实问题的提出,即确定
问题的研究对象和目标。

对问题进行抽象,将问题中的各种因素用数学语言进行描述,建
立数学模型。

根据建立的数学模型,运用数学理论和方法进行模型的求解,得到问题的解答。

对模型的解答进行验证和解释,得出对实际问题的结论,从而提出解决问题的建议。

这是数学建模的基本流程,也是数学建模能够解决实际问题的基础。

二、数学建模的应用领域
数学建模可以应用于各个领域,如经济、环境、医学、工程等。

在经济领域,数学建
模可以用来分析市场需求、预测经济发展趋势、评估投资风险等。

在环境领域,可以用来
研究气候变化、资源利用、环境保护等问题。

在医学领域,可以用来研究疾病传播、药物
作用机理、医疗资源配置等问题。

在工程领域,可以用来优化生产过程、改善产品设计、
提高效率等。

数学建模的应用领域非常广泛,它可以帮助人们更好地理解和解决各种问题,对于提高生产效率、改善生活质量具有重要的意义。

三、数学建模的意义和价值
数学建模对于解决实际问题具有重要的意义和价值。

数学建模可以帮助人们更好地理
解和把握问题的本质和规律性。

通过建立数学模型,可以对问题进行深入分析和研究,从
而找出问题的关键因素和解决办法。

数学建模可以帮助人们预测和优化问题的发展过程。

通过建立数学模型,可以对问题的发展趋势进行预测,并据此提出相应的优化措施,以达
到更好的解决效果。

数学建模可以为决策提供科学依据。

通过建立数学模型,可以对各种
决策方案进行评估和优化,帮助决策者做出更科学、更合理的决策。

数学建模可以为科学
研究和技术创新提供支撑。

通过建立数学模型,可以发现新的问题、提出新的方法,为科
学研究和技术创新提供新的思路和途径。

数学建模对于解决实际问题具有重要的意义和价值。

四、数学建模的发展趋势
随着科学技术的发展和实际问题的复杂性,数学建模的发展也面临着新的挑战和机遇。

一方面,随着数据科学的兴起和人工智能的发展,数学建模将更多地面临大规模、高维度、非线性的问题。

如何有效地处理这些问题,将成为数学建模的新的发展方向。

随着跨学科
研究的深入和交叉学科的融合,数学建模将更多地面临多学科交叉的问题。

如何有效地融
合不同学科的知识和方法,将成为数学建模的新的发展方向。

数学建模将面临着更多的挑
战和机遇,其发展将更加多元化和复杂化。

数学建模是一种通过数学方法解决现实问题的技术,它可以应用于各个领域,对于解
决实际问题具有重要的意义和价值。

随着科学技术的发展和实际问题的复杂性,数学建模
也面临着新的挑战和机遇。

我们需要更加关注数学建模的发展动态,加强对数学建模的研
究和应用,使其能够更好地为人类社会的发展和进步做出贡献。

【2000字】。

相关文档
最新文档