2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (文科) (A卷) word版

合集下载

高中_2009年广东省高考文科数学试题A卷

高中_2009年广东省高考文科数学试题A卷

2021年普通高等学校招生全国统一考试(广东A 卷)数学〔文科〕本试卷共4页,总分值150分,考试时间120分钟。

祝考试顺利考前须知:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2. 选择题每题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试完毕,请将本试题卷和答题卡一并上交。

参考公式:锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。

一、选择题:本大题共10小题,每题5分,总分值50分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.全集U=R ,那么正确表示集合M={—1,0,1}和N={x 20x x +=关系的韦恩〔Venn 〕图是2.以下n 的取值中,使i n =1(i 是虚数单位)的是A .n=2 B. n=3 C. n=4 D. n=53.平面向量a =(x,1),b =(—x,x 2 ),那么向量a+bA .平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线4、假设函数()y f x =是函数()20y a ≠=a>,且a 1的反函数,且(2)1f =,那么()f x = A .2log x B .12x C . 12log x D .22x - 5、等比数列{}n a 的公比为正数,且23952a a a •=,2a =1,那么1a =A .12B .22C . 2D .26、给定以下四个命题:①假设一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;②假设一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

2009广东高考数学试卷及答案

2009广东高考数学试卷及答案

2009年普通高等学校招生全国统一考试(广东卷)数学(理科)解析一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.巳知全集U R =,集合{212}M x x =-£-£和{21,1,2,}N x x k k ==-=×××的关系的韦恩(V e n n )图如图1所示,则阴影部分所示的集合的元素共有2.设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =3.若函数()y f x =是函数xy a =(0a >且1a ¹)的反函数,其图像经过点(,)a a ,则()f x =4.已知等比数列{}n a 满足0,1,2,n a n >=×××,且25252(3)nn a a n -×=³,则当1n ³时,2123221l o g l o g l o g n a a a-++×××=5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;6.一质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成60°角,且1F ,2F 的大小分别为2和4,则3F 的大小为7.2010年广州亚运会组委会要从小张、年广州亚运会组委会要从小张、小赵、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有.A 36种 .B 12种 .C 18种 .D 48种28.已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为n 甲和n 乙(如图2所示).那么对于图中给定的0t 和1t ,下列判断中一定正确的是.A 在1t 时刻,甲车在乙车前面.B 1t 时刻后,甲车在乙车后面.C 在0t 时刻,两车的位置相同二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2009年高考试题与答案(全国卷1数学文)

2009年高考试题与答案(全国卷1数学文)

2009年高考试题与答案(全国卷1数学文)2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效......3.第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题(1)sin 585°的值为 (A) 22-(B)22(C)32- (D) 32 (2)设集合A={4,5,7,9},B={3,4,7,8,9},全集=A B ,则集合C u (A B )中的元素共有(A) 3个(B ) 4个(C )5个(D )6个(3)不等式111x x +?-的解集为(A ){}}{011x x x x (B ){}01x x ??(C ) }{10x x -?? (D )}{0x x ? (4)已知tan a =4,cot β=13,则tan(a+β)= (A)711 (B)711- (C) 713 (D) 713-(5)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于(A )3 (B )2 (C )5(D )6(6)已知函数()f x 的反函数为()()10g x x =+2lgx >,则(1)(1)f +g =(A )0 (B )1 (C )2 (D )4(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种(B )180种(C )300种(D )345种(8)设非零向量a b c 、、满足a b c ==,a +b =c ,则a b ,=(A )150° (B )120° (C )60° (D )30° (9)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A)34 (B) 54 (C) 74(D)34(10) 如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为(A)6π (B) 4π (C) 3π(D)2π (11)已知二面角l αβ--为600 ,动点P 、Q 分别在面,αβ内,P 到β的距离为3,Q 到α的距离为23,则P 、Q 两点之间距离的最小值为(A )2 (B )2 (C )23 (D )4(12)已知椭圆22:12x C y +=的右焦点为F,右准线l ,点A l ∈,线段AF 交C 于点B 。

2009年广东省高考数学试卷(文科)答案与解析

2009年广东省高考数学试卷(文科)答案与解析

2009年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•广东)已知全集U=R,则正确表示集合M={﹣1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【专题】集合.【分析】先化简集合N,得N={﹣1,0},再看集合M,可发现集合N是M的真子集,对照韦恩(Venn)图即可选出答案.【解答】解:.由N={x|x2+x=0},得N={﹣1,0}.∵M={﹣1,0,1},∴N⊂M,故选B.【点评】本小题主要考查V enn图表达集合的关系及运算、一元二次方程的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.2.(5分)(2009•广东)下列n的取值中,使i n=1(i是虚数单位)的是()A.n=2 B.n=3 C.n=4 D.n=5【考点】虚数单位i及其性质.【专题】数系的扩充和复数.【分析】要使的虚数单位的n次方等于1,则n只能是4的整数倍,在本题所给的选项中,只有数字4符合题意,得到结果.【解答】解:∵要使i n;=1,则n必须是4的整数倍,在下列的选项中只有C符合题意,故选C【点评】本题考查虚数单位及性质,是一个基础题,题目若出现一定是一个必得分题目,不要忽视对这种简单问题的解答.3.(5分)(2009•广东)已知平面向量=(x,1),=(﹣x,x2),则向量+()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线【考点】平面向量的坐标运算.【专题】平面向量及应用.【分析】先做出两个向量的和,横标和纵标都用含x的代数式表示,结果和的横标为零,得到和向量与纵轴平行,要熟悉几种特殊的向量坐标特点,比如:与横轴平行的向量、与纵轴平行的向量.【解答】解:+=(0,1+x2),1+x2≠0,故+平行于y轴.故选C【点评】本题要求从坐标判断向量的特点,即用到向量的方向又用到向量的大小,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.4.(5分)(2009•广东)若函数y=f(x)是函数y=a x﹣a(a>0,且a≠1)的反函数,且f()=1,则函数y=()A.log2x B.C.D.2x﹣2【考点】反函数.【专题】函数的性质及应用.【分析】由f()=1可得f﹣1(1)=,即a1﹣a =,解出a的值,即得函数y的解析式.【解答】解:∵f()=1,∴f﹣1(1)=,由题意知a1﹣a =,∴a=2,y=a x﹣a(a>0,且a≠1)y=2x﹣2,故选D.【点评】本题考查反函数的定义和反函数的求法,函数与反函数的关系.5.(5分)(2009•广东)已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=() A.B.C.D.2【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】设等比数列的公比为q,根据等比数列的通项公式把a3•a9=2a25化简得到关于q的方程,由此数列的公比为正数求出q的值,然后根据等比数列的性质,由等比q的值和a2=1即可求出a1的值.【解答】解:设公比为q,由已知得a1q2•a1q8=2(a1q4)2,即q2=2,又因为等比数列{a n}的公比为正数,所以q=,故a1=.故选B.【点评】此题考查学生灵活运用等比数列的性质及等比数列的通项公式化简求值,是一道中档题.6.(5分)(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④【考点】平面与平面垂直的判定;平面与平面平行的判定.【专题】空间位置关系与距离;简易逻辑.【分析】从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.【解答】解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.【点评】本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.7.(5分)(2009•广东)已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c.若a=c=+,且∠A=75°,则b=()A.2 B.4+2C.4﹣2D.﹣【考点】正弦定理.【专题】解三角形.【分析】先根据三角形内角和求得B的值,进而利用正弦定理和a的值以及sin75°的值,求得b.【解答】解:如图所示.在△ABC中,由正弦定理得:=4,∴b=2.故选A【点评】本题主要考查了正弦定理的应用.正弦定理常用与已知三角形的两角与一边,解三角形;已知三角形的两边和其中一边所对的角,解三角形;运用a:b:c=sinA:sinB:sinC解决角之间的转换关系.8.(5分)(2009•广东)函数f(x)=(x﹣3)e x的单调递增区间是()A.(﹣∞,2) B.(0,3)C.(1,4)D.(2,+∞)【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】若求解函数f(x)的单调递增区间,利用导数研究函数的单调性的性质,对f(x)求导,令f′(x)>0,解出x的取值区间,要考虑f(x)的定义域.【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,求f(x)的单调递增区间,令f′(x)>0,解得x>2,故选D.【点评】本题主要考查利用导数研究函数的单调性的这一性质,值得注意的是,要在定义域内求解单调区间.9.(5分)(2009•广东)函数y=2cos2(x﹣)﹣1是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【考点】三角函数的周期性及其求法;函数奇偶性的判断.【专题】三角函数的图像与性质.【分析】利用二倍角公式化简为一个角的一个三角函数的形式,求出周期,判定奇偶性.【解答】解:由y=2cos2(x﹣)﹣1=cos(2x﹣)=sin2x,∴T=π,且y=sin2x奇函数,即函数y=2cos2(x﹣)﹣1是奇函数.故选A.【点评】本题考查三角函数的周期性及其求法,函数奇偶性的判断,是基础题.10.(5分)(2009•广东)广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的距离(单位:百公里)见表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A B C D EA 0 5 4 5 6B 5 0 7 6 2C 4 7 0 9 8.6D 5 6 9 0 5E 6 2 8.6 5 0A.20。

2009年高考广东数学(文)A卷试题及参考答案

2009年高考广东数学(文)A卷试题及参考答案

2008年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分) 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S=42R π如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A)·P(B) 球的体和只公式 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率 V =243R π()(1)(0,1,2,k k n kn n P k C P p k n -=-= 其中R 表示球的半径一、选择题 1.已知集合{}30,31x M xN x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.M NC.()R M N ðD.()R M N ð 2.135(21)lim(21)n n n n →∞++++-+ 等于( )A.14 B.12C.1D.2 3.圆221x y +=与直线2y kx =+没有公共点的充要条件是( ) A.(2,2)k ∈- B.(,2)(2,)k ∈-∞-+∞ C.(3,3)k ∈- D.(,3)(3,)k ∈-∞-+∞4.复数11212i i +-+-的虚部是( ) A.15i B.15 C.15i - D.15-5.已知,,O A B 是平面上的三个点,直线AB 上有一点C ,满足2AC CB +=0 ,则OC等于( ) A.2OA OB - B.2OA OB -+ C.2133OA OB - D.1233OA OB -+6.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围是[0,]4π,则点P 横坐标的取值范围是( )A.1[1,]2--B.[1,0]-C.[0,1]D.1[,1]27.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则a 等于( ) A.(1,1)-- B.(1,1)- C.(1,1) D.(1,1)-9.生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲丙两工人中安排1人,则不同的安排方案有( )A.24种B.36种C.48种D.72种10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) A.172B.3C.5D.9211.在正方体1111ABCD A BC D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条 12.设()f x 是连续的偶函数,且当0x >时()f x 是单调函数,则满足3()()4x f x f x +=+的所有x 之和为( ) A.3- B.3 C.8- D.8第Ⅰ卷(选择题共60分)二、填空题13.函数1,0,0x x x y e x +<⎧=⎨⎩…的反函数是____________________.14.在体积为43π的球的表面上有,,A B C 三点,1,2,,AB BC A C ==两点的球面距离为33π,则球心到平面ABC 的距离为______________.15.已知231(1)()nx x x x+++的展开式中没有常数项,*,28n N n ∈剟,则n =______.16.已知()s i n()(0),()()363f x x f f πππωω=+>=,且()f x 在区间(,)63ππ有最小值,无最大值,则ω=__________.三、解答题17.在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.⑴若ABC △的面积等于3,求,a b ;⑵若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030⑴根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.如图,在棱长为1的正方体ABCD A B C D ''''-中,(01)AP BQ b b ==<<,截面PQEF A D '∥,截面PQGH AD '∥.⑴证明:平面PQEF 和平面PQGH 互相垂直; ⑵证明:截面PQEF 和截面PQGH 面积之和是 定值,并求出这个值;⑶若D E '与平面PQEF 所成的角为45,求D E '与平面PQGH 所成角的正弦值.20.在直角坐标系xOy 中,点P 到两点(0,3),(0,3)-的距离之和为4,设点P 的轨迹为C ,直线1y kx =+与C 交于,A B 两点.⑴写出C 的方程;⑵若OA OB ⊥,求k 的值;⑶若点A 在第一象限,证明:当0k >时,恒有OA OB >.21.在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++ . ABCDA 'B 'C 'D 'PQE FGH22.设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、 解答指出了每题要考查的主要知识和能力,并给出了一种或几种解决供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算,每小题5分,共60分. (1)D (2)B (3)C (4)B (5)A (6)A (7)C (8)A (9)B (10)A (11)D (12)C(18)本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分。

2009年普通高等学校招生全国统一考试数学(文科)考试大纲的说明(广东卷)

2009年普通高等学校招生全国统一考试数学(文科)考试大纲的说明(广东卷)

2009年普通高等学校招生全国统一考试数学(文科)考试大纲的说明(广东卷)Ⅰ.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的基本原则,适当体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养、发挥数学作为主要基础学科的作用,考察考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能。

Ⅱ.考试内容与要求一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。

各部分知识的整体要求以及其定位参照《课程标准》相应模块的有关说明。

对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关问题中识别和认识它。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道之所见的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测,想象,比较,判别,初步应用等。

(3)掌握:要求能对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

这一层次涉及的主要行为动词有:描述,说明,表达,推测,想象,比较,判别,初步应用等。

2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能以及应用意识和创新意识。

(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地解释揭示问题的本质。

2009年普通高等学校招生全国统一考试全卷解析(广东卷)

2009年普通高等学校招生全国统一考试全卷解析(广东卷)

2009年普通高等学校招生全国统一考试(广东卷)英语I 听力(共两节。

满分35分)第一节听力理解(5段共15小题;每小题2分,满分30分)每段播放两遍。

各段后有几个小题,各段播放前每小题有5秒钟的阅题时间。

请根据各段播放内容及其相关小题,在5秒钟内从题中所给的A、B、C项中,选出最佳选项,并在答题卡上将该项涂黑。

听第一段对话,回答第1—3题。

1. Why doesn't the man choose Japanese: food?A. He doesn't like Japanese food.B. He ate Japanese food last night.C. He thinks Japanese food is expensive.2. What does the man really want to eat?A. Buffet.B. Fast food.C. Chinese food.3. Where will the man probably eat?A. In a steak house.B. In the shopping center.C. Outside the shopping center.听第二段对话,回答第4。

6题。

4. Why is the man proud of his daughter?A. Because she's going to college.B. Because she's going to leave home.C. Because she'll save money on food.5. What does the man remind his daughter to do?A. Take some food.B. Register for food.C. Eat instant noodles.6. What is the man surprised to hear?A. His daughter decides to change her major.B. His daughter has a discussion with her Mom.C. Business administration is a great major.听第三段独白,回答第7~9题。

2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (理科) (B卷)word版

2009年普通高等学校招生全国统一考试(广东卷)数学试题及详细解答 (理科) (B卷)word版

绝密★启用前 试卷类型:B2009年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式13V sh =,其中S 是锥体的底面积,h 是锥体的高 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.巳知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=L 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 A .3个 B.2个 C.1个 D.无穷个1.解:}31|{≤≤-=x x M ,},5,3,1{Λ=N ,所以 }3,1{=N M I 故,选B2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =A.8 B.6 C.4 D.22. 解:因为12-=i ,i i -=3, 14=i ,所以满足1=ni 的最小正整数n 的值是4。

故,选C3.若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点,)a a ,则()f x =A.2log x B.12log x C.12x D.2x 3.解:由函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,可知x x f a log )(=,又其图像经过点,)a a ,即a a a=log ,所以a=21, x x f 21log )(=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年普通高等学校招生全国统一考试(广东卷)数学试题及其详细解答(文科)本试卷共4页,21小题,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上、将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R ,则正确表示集合M={—1,0,1}和N={x 20x x +=关系的韦恩(V enn )图是A .B .C .D .1.解:因为 }0,1{-=N {—1,0,1}=M , 所以答 B .2.下列n 的取值中,使1=ni (i 是虚数单位)的是A .n=2 B. n=3 C. n=4 D. n=52.答C 。

因为12-=i ,所以 i i i i i =-==534,,1。

3.已知平面向量a =(x,1), b =(—x,x 2 ),则向量b a +A .平行于x 轴 B.平行于第一、三象限的角平分线 C. 平行于y 轴 D.平行于第二、四象限的角平分线3.解:)1,0(2x b a +=+,故答C 。

4、若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,且(2)1f =,则()f x = A .2log x B .12x C . 12log x D .22x - 4.解:由函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,可知x x f a log )(=,又(2)1f =,即12log =a ,所以a=2, x x f 2log )(=。

故答A 。

5、已知等比数列{}n a 的公比为正数,且25932a a a =⋅,2a =1,则1a =A .12 BC .D .25.解:由等比数列的性质可知266693a a a a a =⋅=⋅, 所以25262a a =,设公比为q, 则 225262==a a q ,所以2=q ,又112==q a a ,所以2211==q a ,故答B . 6、给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

其中,为真命题的是A .①和②B .②和③C .③和④D .②和④ 6.解: 显然 ①和③是假命题,故否定A,B,C, 答 D.7、已知△ABC 中,A B C ∠∠∠,,的对边分别为a,b,c.若26+==c a ,且A ∠=75,则b =A .2 B.4+ C .4- D7. 解:显然,△ABC 为等腰三角形,∠B=ooo30752180=⨯-,由余弦定理,得o b 30cos )26(2)26()26(2222+-+++==4,所以b=2.8.函数x e x x f )3()(-=的单调递增区间是A. (),2-∞B.(0,3)C. (1,4)D. ()2,+∞8.解:xx x e x e x e x f )2()3()(-=-+=',令0)(>'x f ,解得x>2,故答D 。

9.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A. 最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数 9.解:22cos 14y x π⎛⎫=-- ⎪⎝⎭=x x x 2sin 22cos 22cos =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-ππ,为奇函数,22T ππ==,故答A 。

10.广州2010年亚运会火炬传递在A,B,C,D,E 五个城市之间进行,各城市之间的距离(单位:百公里)见右表。

若以A 为起点,E 为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是 A. 20.6 B.21 C. 22 D. 2310.解:用树状图,列出以A 为起点,E 为终点的所有路线,共6条,各条路线及其距离分别为:A-B-C-D-E (5+7+9+5=26),A-B-D-C-E (5+6+9+8.6=28.6), A-C-B-D-E (4+7+6+5=22),A-C-D-B-E (4+9+6+2=21), A-D-B-C-E (5+6+7+8.6=26.6),A-D-C-B-E (5+9+7+2=23),比较可知,答案为B.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11--13题)11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”)11.解:6≤i , 654321a a a a a a +++++。

12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,,196200号).若第5组抽出的号码为22,则第8组抽出的号码应是 .若用分层抽样方法,则40岁以下年龄段应抽取 人.12.答:37 , 20 。

12.解:依题意可知,用系统抽样法抽取的40名职工的编号构成公差为5的等差数列,因为第5组抽出的号码为22,所以第8组抽出的号码应是22+3⨯5=37.因为40岁以下职工占50%,故用分层抽样方法, 40岁以下年龄段应抽取20人.13. 以点(2,-1)为圆心且与直线6x y +=相切的圆的方程是________________________.13.解:由题意得,所求圆的半径为2511612=+--=r ,所以所求圆的方程为()225)1(222=++-y x .(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)若直线12,23.{x t y t =-=+(t 为参数)与直线41x ky +=垂直,则常数k =________.14.解:参数方程12,23.{x t y t =-=+(t 为参数)化为普通方程是)1(232--=-x y ,该直线的斜率为23-, 若k=0,显然两直线不垂直;若0≠k ,则由两直线垂直的充要条件,得1234-=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛-k , 6-=k 。

15.(几何证明选讲选做题) 如图3,点A B C 、、是圆O 上的点,且4AB =,o 30ACB ∠=,则圆O 的面积等于___________________ .15.解:连结OA ,OB ,则∠AOB=2∠ACB=60O,所以△AOB 为正三角形,圆O 的半径r=4AB =,于是,圆O 的面积等于πππ16422=⨯=r三、解答题:本大题共6小题,满分80分。

解答须写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)已知向量()sin 2a θ’=-与()1cos b θ=,互相垂直,其中⎪⎭⎫⎝⎛∈2,0πθ. (1) 求sin θ和cos θ的值;(2) 若20,cos 53)cos(5πϕϕϕθ<<=-,求cos ϕ的值。

16.解:(1)∵ 向量()sin 2a θ’=-与()1cos b θ=,互相垂直,∴ 0cos 2sin =-=∙θθ,即θθcos 2sin =①,又 1cos sin 22=+θθ ②① 代入②,整理,得51cos 2=θ, 由⎪⎭⎫⎝⎛∈2,0πθ,可知0cos >θ, ∴55cos =θ,代入①得552sin =θ故 55cos =θ, 552sin =θ。

(2)∵ϕϕθcos 53)cos(5=-,∴ϕϕθϕθcos 53)sin sin cos (cos 5=+将(1)的结果代入其中,得ϕϕϕcos 53sin 552cos 555=⎪⎪⎭⎫⎝⎛+ 整理,得ϕϕcos sin =③, 又1cos sin 22=+ϕϕ④③代入④,整理,得21cos 2=ϕ由20πϕ<<,可知0cos >ϕ,所以,解得22cos =ϕ。

17.(本小题满分13分)某高速公路收费站入口处的安全标识墩如图4所示。

墩的上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.图5、图6分别是该标识墩的正(主)视图和俯视图。

(1) 请画出该安全标识墩的侧(左)视图; (2) 求该安全标识墩的体积; (3) 证明:直线BD ⊥平面PEG .17.(1)解:该安全标识墩的侧(左)视图如右图所示;(2)解:墩的上半部分正四棱锥P EFGH -的高为h=60,所以,正四棱锥P EFGH -的体积为)(3200060403131221cm Sh V =⨯⨯==下半部分长方体ABCD EFGH -的体积为)(320002040222cm V =⨯=故,该安全标识墩的体积为21V V V +==)(6400032000320002cm =+(3)证明: 连结BD , FH ,EG ,设EG ∩FH=O ,则O 为正方形EFGH 的中心,且EG ⊥FH ,连结OP ,则由四棱锥P EFGH -是正四棱锥,可知OP ⊥平面EFGH , ∴ OP ⊥FH , 又EG ∩OP=O , ∴ FH ⊥平面PEG .又 长方体ABCD EFGH -中BD ∥FH 所以,直线BD ⊥平面PEG .18.(本小题满分13分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图7. (1) 根据茎叶图判断哪个班的平均身高较高; (2) 计算甲班的样本方差;(3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。

相关文档
最新文档