2013广东省高考压轴卷 数学理试题 密押卷

合集下载

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题及答案解析(图片版)

2013年广东高考理科数学试题与答案解析2013年普通高等学校招生全国统一考试〔广东卷〕数学〔理科〕参考答案一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. DC CA BD BB二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分9. (-2,1) 10.k =-1 11. 7 12.20 13.614.sin 4πρθ⎛⎫+= ⎪⎝⎭15.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.〔本小题满分12分〕[解析](Ⅰ)1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-, 所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---=⎪⎝⎭. 17.〔本小题满分12分〕[解析](Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.向量法图(Ⅲ) 设事件A:从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A=1148212C CC 1633=.18.〔本小题满分14分〕[解析](Ⅰ) 在图1中,易得3,OC AC AD===连结,OD OE,在OCD∆中,由余弦定理可得OD==由翻折不变性可知A D'=,所以222A O OD A D''+=,所以A O OD'⊥,理可证A O OE'⊥, 又OD OE O=,所以A O'⊥平面BCDE.(Ⅱ) 传统法:过O作OH CD⊥交CD的延长线于H,连结A H',因为A O'⊥平面BCDE,所以A H CD'⊥,所以A HO'∠为二面角A CD B'--的平面角.结合图1可知,H为AC中点,故2OH=,从而2A H'==所以cos5OHA HOA H'∠==',所以二面角A'的平面角的余弦值为.向量法:以O点为原点,建立空间直角坐标系O-则()0,0,3A',()0,3,0C-,()1,2,0D-所以(CA'=,(1,DA'=-设(),,n x y z=为平面A CD'的法向量,则n CAn DA⎧'⋅=⎪⎨'⋅=⎪⎩,即3020yx y⎧=⎪⎨-+=⎪⎩,解得yz=⎧⎪⎨=⎪⎩,令1x=,得(1,1,n=-由(Ⅰ) 知,()0,0,3OA'=为平面CDB的一个法向量,所以3cos,3n OAn OAn OA'⋅'==⋅'即二面角A CD B'--19.〔本小题满分14分〕[解析](Ⅰ) 依题意,12122133S a=---,又111S a==,所以24a=;(Ⅱ) 当2n≥时,32112233n nS na n n n+=---,()()()()321122111133n nS n a n n n-=-------两式相减得()()()2112213312133n n na na n a n n n+=----+---整理得()()111n nn a na n n++=-+,即111n na an n+-=+,又21121a a-=故数列nan⎧⎫⎨⎬⎩⎭是首项为111a=,公差为1的等差数列,所以()111n a n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<.20.〔本小题满分14分〕[解析](Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=0c >,解得1c =. 所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设A (x 1,y 1), B (x 2,y 2) (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点P (x 0,y 0),所以1001220x x y y --=,2002220x x y y --= 所以(x 1,y 1),(x 2,y 2)为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点P (x 0,y 0)在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭ 所以当012y =-时, AF BF ⋅取得最小值,且最小值为92. 21.〔本小题满分14分〕 [解析](Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令f'(x )=0,得0x =,ln 2x = 当x 变化时, f'(x ), f (x )的变化如下表:f (x ) 极大值极小值右表可知,函数f (x )的递减区间为(0,ln2),递增区间为(-∞,0), (ln2,+∞). (Ⅱ)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-, 令f'(x )=0,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤ ⎥⎝⎦上递增,所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈所以当()()0,ln 2x k ∈时, f'(x )<0;当()()ln 2,x k ∈+∞时, f'(x )>0;所以()(){}(){}3max 0,max 1,1kM f f k k e k ==--- 令()()311kh k k e k =--+,则()()3kh k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以φ(k )在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e e ϕϕ⎛⎫⎛⎫⋅=--< ⎪ ⎪⎝⎭⎝⎭ 所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时, φ(k )>0, 当()0,1k x ∈时, φ(k )<0, 所以φ(k )在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减. 因为1170228h e ⎛⎫=-+> ⎪⎝⎭,()10h =, 所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=〞.综上,函数f (x )在[0,k ]上的最大值()31kM k e k =--.。

2013全国大纲版高考压轴卷 数学理试题 密押卷

2013全国大纲版高考压轴卷 数学理试题 密押卷

2013全国大纲版高考压轴卷数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效...........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

一.选择题 (1)若复数,12i iz -=则z 等于( ) ()()()()212221D C B A(2) 若{}8222<≤∈=-x Z x A ,{}1log 2>∈=x R x B ,则()B C A R 的元素个数为( )(A) 0(B) 1(C) 2 (D)3(3)已知函数()y f x =与()x fy 1-=互为反函数,且函数()1y f x =+与函数()11+=-x f y 也互为反函数,若(),01=f 则()20101-f =( )()()()()2009201010--D C B A(4) 已知等比数列{}n a 中,公比,0<q 若,42=a 则321a a a ++ 有( )(A)最小值-4 (B)最大值-4 (C)最小值12 (D)最大值12(5) 一圆形餐桌依次有A 、B 、C 、D 、E 、F 共有6个座位.现让3个大人和3 个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总 数为( )(A )6 (B )12 (C )72 (D )144 (6) 已知函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=( ) (A )10 (B )8 (C )87 (D )47(7) 在正方形ABCD 中,,4=AB 沿对角线AC 将正方形ABCD 折成一个直二面角D AC B --,则点B 到直线CD 的距离为( )()()()()222322322+D C B A(8) 设,R a ∈函数()x x e a e x f -⋅+=的导函数是(),x f '且()x f '是奇函数,若曲线()x f y =的一条切线的斜率是,23则切点的横坐标为( )(A) 22ln -(B)2ln - (C) 2ln (D) 22ln (9) 已知()),,2,1,0(0,2log 0,112*∈≥≠>⎪⎩⎪⎨⎧≥+<+-=N n n m m x x C x xx x f n n m 若()x f 在0=x 处连续,则m 的值为( ) (A)81 (B)41 (C) 21(D) 2 (10)已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++= 的整数k ( )(A )有3个 (B )有2个 (C )有1个 (D )不存在(11) 已知直线l 交椭圆805422=+y x 于N M ,两点,椭圆与y 轴的正半轴交于B 点,若BMN ∆的重心恰好落在椭圆的右焦点上,则直线l 的方程是( )(A) 02856=--y x (B)02856=-+y x (C) 02865=-+y x (D) 02865=--y xxA BP y O(12) 在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )(A)()R 26- (B)()R 12- (C)R 41 (D)R31第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目。

2013年高考数学选填压轴题(理科)含答案

2013年高考数学选填压轴题(理科)含答案

高考理科数学选填压轴题训题型一:集合与新定义 (2013福建理10)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ).D A .A =N*,B =NB .A ={x|-1≤x≤3},B ={x|x =-8或0<x≤10}C .A ={x|0<x <1},B =RD .A =Z ,B =Q(2013广东理8)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S中,则下列选项正确的是( ).BA .(y ,z ,w)∈S ,(x ,y ,w)∉SB .(y ,z ,w)∈S ,(x ,y ,w)∈SC .(y ,z ,w)∉S ,(x ,y ,w)∈SD .(y ,z ,w)∉S ,(x ,y ,w)∉S 提示:特殊值法,令x=1,y=2,z=3,w=4即得。

题型二:平面向量(2013北京理13)向量a ,b ,c 在正方形网格中的位置如图所示,若()c a b λμλμ=+∈R ,,则λμ= .4 (2013湖南理6)已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ).AA .11] B .12] C .[11] D .[12]解析:由题意,不妨令a =(0,1),b =(1,0),c =(x ,y ),由|c -a -b |=1得(x -1)2+(y -1)2=1,|c |可看做(x ,y )到原点的距离,而点(x ,y )在以(1,1)为圆心,以1为半径的圆上.如图所示,当点(x ,y )在位置P 时到原点的距离最近,在位置P ′时最远,而PO1,P ′O1,故选A .(2013重庆理10)在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB .若|OP|<12,则|OA |的取值范围是( ).D A.0,2⎛ ⎝⎦ B.,22⎛ ⎝⎦ C.2⎛ ⎝ D.2⎛ ⎝ 解析:因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB 所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ), 则AP =1AB +2AB =(a ,b ),即P (a ,b ).由|1OB |=|2OB |=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0.由|OP |<12,得(x -a )2+(y -b )2<14, 即0≤1-x 2+1-y 2<14.所以74<x 2+y 2≤2,即2<≤所以|OA |的取值范围是⎝,故选D .(2013山东理15)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为__________.7/12(2013天津理12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点. 若1AC BE =, 则AB 的长为 .1/2(2013浙江理17)设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈,若12,e e 的夹角为6π,则||||x b 的最大值等于________。

2013年广东高考(理科)数学及答案详解(word版)

2013年广东高考(理科)数学及答案详解(word版)

绝密★启用前 试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:球的体积34=3V R π,其中R 为球的半径.锥体的体积公式为1=3V Sh ,其中S 为锥体的底面积,h 为锥体的高。

参考公式:台体的体积公式h S S S S V )(312121++=,其中S 1,S 2分别表示台体的上、下底面积,h 表示台体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x |x 2+2x =0,x ∈R},N={x |x 2-2x =0,x ∈R},则N M ⋃=( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2}2.定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) A . 4 B .3 C .2 D .13.若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C . (4,-2) D .(4,2)4.已知离散型随机变量X 的分布列如右表,则X 的数学期望E (X )=( ) A .23错误!未找到引用源。

2013年高考数学押题卷(最后一卷)试题及答案(理科数学)

2013年高考数学押题卷(最后一卷)试题及答案(理科数学)

2013高考数学押题卷(最后一卷)( 理 科 数 学)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一个选项是符合题目要求的) 1.若ii m -+1是纯m 的值为( )A .1-B .0C .1 D2.已知集合}13|{},1|12||{>=<-=xx N x x M ,则N M ⋂=( )A .φB .}0|{<x xC .}1|{<x xD .}10|{<<x x3.若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是( )4.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a =( )A .21 B .22 C .2 D .2 5.已知变量x 、y 满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z 23+=的最大值为( )A .-3B .25 C .-5 D .46.过点(0,1)且与曲线11-+=x x y 在点(3,2)处的切线垂直的直线的方程为( )A .012=+-y xB .012=-+y xC .022=-+y xD .022=+-y x 7.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是( ) ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;④由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (A )①②③ (B )②③④ (C )①③④ (D )①②③④8.已知620126(12)xa ax axa x-=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )A .1B .1-C .63 D .629.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是x ∈( )A .[0,1]B .[3,5]C .[2,3]D .[2,4]10.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( ) A. -1 B. 2 C. 1 D.-211.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R ∈+=λλ,则AD 的长为( )A .1B .3C .32D .312.在三棱锥S —ABC 中,AB ⊥BC,AB=BC=2,SA=SC=2,,二面角S —AC —B 的余弦值是33-,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A .68B .π6C .24πD .6π二、填空题:(本大题4小题,每小题5分,共20分) 13.在△ABC 中,B=3π中,且34=⋅BC BA ,则△ABC 的面积是14.若函数1)(2++=mx mx x f 的定义域为R ,则m 的取值范围是15.已知向量,满足:2||,1||==,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是16.某几何体的三视图如图所示,则它的体积是正视图 侧视图 俯视图三、解答题(本大题共6小题,共70分。

2013年广东高考数学理及答案(解析版)

2013年广东高考数学理及答案(解析版)

⎛ ⎝
3 4 ⎛ 3π ⎞ ,θ ∈ ⎜ , 2π ⎟ ,所以 sin θ = − , 5 5 ⎝ 2 ⎠
24 7 2 2 , cos 2θ = cos θ − sin θ = − 25 25 π⎞ 7 ⎛ 24 ⎞ 17 ⎛ 所以 f ⎜ 2θ + ⎟ = cos 2θ − sin 2θ = − . −⎜− ⎟ = 3⎠ 25 ⎝ 25 ⎠ 25 ⎝
二、填空题:本题共 7 小题,考生作答 6 小题,每小题 5 分,共 30 分 (9 ~13 题) (一)必做题 必做题(9 (9~
9.不等式 x + x − 2 < 0 的解集为___________. 【解析】 ( −2,1) ;易得不等式 x 2 + x − 2 < 0 的解集为 ( −2,1) . 10.若曲线 y = kx + ln x 在点 (1, k ) 处的切线平行于 x 轴,则 k = ______. 输入n
2013 年普通高等学校招生全国统一考试(广东卷) 数学(理科)逐题详解
:台体的体积公式 V = 参考公式 参考公式:
积, h 表示台体的高.
1 下底面 S1 + S1S2 + S2 h ,其中 S1 , S2 分别是台体的上、 3
(
)
:本大题 共 8 小题 ,每小 题 5 分,共 40 分,在每小题给出的四个选项中 , 一、 选择题 选择题: 本大题共 小题, 每小题 在每小题给出的四个选项中, . 只有一项是符合题目要求的 只有一项是符合题目要求的.
z < x < y …③三个式子中恰有一个成立; z < w < x …④, w < x < z …⑤, x < z < w …⑥

2013年组合教育密押三套卷理(一)参考答案

2013年组合教育密押三套卷理(一)参考答案
由以上两式得:
( AC + BC )
2
− 3 AC BC = AB = 3 ,
2
( AC + BC )
2
= 3 + 3 AC BC = 11 ,
1 2− 2 = 3 . 故选 B. tan ∠AOB = 1 4 1+ 2 × 2
6. A【解析】如图所示, PC =
所以 AC + BC = 11 . 10. 2 5 【解析】如图所示,连接 OP ,设 BC I OD = E , 由 P 为 AD 的中点,得 AP = PD , OP ⊥ AD , 在 Rt △ OPD 中, OP = OE ⋅ OD ,
2013 年普通高等学校招生全国统一考试密押卷理(一) 参考答案
一、选择题 1. 2. 3. B【解析】 (1 − 2i )( a + i ) = a + i − 2ai − 2i = ( a + 2 ) + (1 − 2a ) i 为纯虚数,
2
8. B【解析】如图所示,取 SC 、 DC 的中点 P 、 M ,则动点 P 在四棱锥表面上 运动的轨迹为△ PME ,则动点 P 的轨迹的周长为 二、填空题 9.
因此 ∠AEF = 90o , 即 AE ⊥ EF .且在 △ABE 中, 所以 AE + EF = AF ,
2 2 2
T π ⎛ 7π ⎞ π 2π = − − ⎜ − ⎟ = ,得 T = π = ,所以 ω = 2 ,…………(3 分) 4 3 ⎝ 12 ⎠ 4 ω 1 且 f (0) = 1 ,得 2 sin ϕ = 1 , sin ϕ = , ϕ < π ,且点 (0,1) 在函数 f ( x ) 的 2 π π π 因此 ϕ = , ……………… (5 分) 递增

2013高考数学押题卷:高三理科数学高考押题卷(带答案)

2013高考数学押题卷:高三理科数学高考押题卷(带答案)

2013年⾼考数学(理)押题精粹(课标版)(30道选择题+20道⾮选择题)⼀.选择题(30道)1.设集合,,若,则的值为()A.0 B.1 C. D.2. 已知是实数集,集合,,则 ( )A. B.C. D.3.已知i为虚数单位,则复数等于()A.-1-i B.-1+i C.1+i D.1—i4.复数在复平⾯上对应的点不可能位于A.第⼀象限 B.第⼆象限 C.第三象限 D.第四象限5. “ ”是“⽅程表⽰焦点在y轴上的椭圆”的()A.充分⽽不必要条件 B.必要⽽不充分条件C.充要条件 D.既不充分也不必要条件6.若命题“ R,使得 ”为假命题,则实数m的取值范围是()(A)(B)(C)(D)7.⼀个算法的程序框图如右,则其输出结果是()A.0B.C. D.8.下⾯的程序框图中,若输出的值为,则图中应填上的条件为()A. B. C. D.9.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点()A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.已知则的值( )A.随着k的增⼤⽽增⼤B.有时随着k的增⼤⽽增⼤,有时随着k的增⼤⽽减⼩C.随着k的增⼤⽽减⼩D.是⼀个与k⽆关的常数11.关于函数的四个结论:P1:值为 ;P2:最⼩正周期为 ;P3:单调递增区间为 Z;P4:图象的对称中⼼为 Z.其中正确的有( )A.1 个 B.2个 C.3个 D.4个12. 是两个向量,,,且,则与的夹⾓为()(A)(B)(C)(D)13.已知a,b是两个互相垂直的单位向量,且c•a=c•b=1,,则对任意正实数t, 的最⼩值是( )A. B. C. D.14.⼀个⼏何体的三视图如右图所⽰,则它的体积为()A. B.15.正⽅形的边长为 ,中⼼为 ,球与正⽅形所在平⾯相切于点,过点的球的直径的另⼀端点为 ,线段与球的球⾯的交点为 ,且恰为线段的中点,则球的体积为( )A. B. C. D.16.不等式组表⽰⾯积为1的直⾓三⾓形区域,则的值为()A. B. C. D.17.设函数, . 若当时,不等式恒成⽴,则实数的取值范围是().A. B. C. D.18、⼀个盒⼦⾥有3个分别标有号码为1,2,3的⼩球,每次取出⼀个,记下它的标号后再放回盒⼦中,共取3次,则取得⼩球标号值是3的取法有()A.12种B. 15种C. 17种D.19种19、⼆项式的展开式中常数项是()A.28 B.-7 C.7 D.-2820、⾼三毕业时,甲,⼄,丙等五位同学站成⼀排合影留念,已知甲,⼄相邻,则甲丙相邻的概率为() A. B. C. D.⼀、某苗圃基地为了解基地内甲、⼄两块地种植的同⼀种树苗的长势情况,从两块地各随机抽取了10株树苗测量它们的⾼度,⽤茎叶图表⽰上述两组数据,对两块地抽取树苗的⾼度的平均数和中位数进⾏⽐较,下⾯结论正确的是()A. B.C. D.22、公差不为0的等差数列{ }的前21项的和等于前8项的和.若,则k=()A.20 B.21 C.22 D.2323、已知数列为等⽐数列,,,则的值为()A. B. C. D.24. 已知分别是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若是锐⾓三⾓形,则该双曲线离⼼率的取值范围是( )A. B. C. D.25.圆-2x+my-2=0关于抛物线=4y的准线对称,则m的值为()A.1B. 2C. 3D. 426.已知抛物线的焦点到准线的距离为 , 且上的两点关于直线对称, 并且 , 那么 =( )A. B. C.2 D.327.如果函数图像上任意⼀点的坐标都满⾜⽅程,那么正确的选项是()(A) 是区间(0,)上的减函数,且(B) 是区间(1,)上的增函数,且(C) 是区间(1,)上的减函数,且(D) 是区间(1,)上的减函数,且28.定义在R上的奇函数,当 ≥0时,则关于的函数(0<<1)的所有零点之和为()(A)1- (B)(C)(D)29.的展开式中, 的系数等于40,则等于( )A. B. C.1 D.30.已知函数 ,,设函数,且函数的零点均在区间内,则的最⼩值为()A. B. C. D.⼆.填空题(8道)31.已知A ,B(0,1)),坐标原点O在直线AB上的射影为点C,则 = .32.在的展开式中,含项的系数是________.(⽤数字作答)33.若实数、满⾜,且的最⼩值为,则实数的值为__34.已知四⾯体的外接球的球⼼在上,且平⾯ , , 若四⾯体的体积为 ,则该球的体积为_____________35.已知是曲线与围成的区域,若向区域上随机投⼀点,则点落⼊区域的概率为.36.公⽐为4的等⽐数列中,若是数列的前项积,则有也成等⽐数列,且公⽐为;类⽐上述结论,相应的在公差为3的等差数列中,若是的前项和,则有⼀相应的等差数列,该等差数列的公差为_____________.37.在中,⾓所对的边分别为 ,且 ,当取值时,⾓的值为_______________38.已知抛物线的准线为 ,过点且斜率为的直线与相交于点 ,与的⼀个交点为 ,若 ,则等于____________三.解答题(12道)39、中,,,分别是⾓的对边,向量, , .(1)求⾓的⼤⼩;(2)若,,求的值.40、已知等差数列的⾸项,公差.且分别是等⽐数列的.(Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意⾃然数均有 … 成⽴,求 … 的值.41、⼀次考试中,五名同学的数学、物理成绩如下表所⽰:学⽣(1)请在直⾓坐标系中作出这些数据的散点图,并求出这些数据的回归⽅程;(2)要从名数学成绩在分以上的同学中选⼈参加⼀项活动,以表⽰选中的同学的物理成绩⾼于分的⼈数,求随机变量的分布列及数学期望的值.42、⼗⼀黄⾦周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意 单位:名男⼥总计满意 50 30 80不满意 10 20 30总计 60 50 110(1)从这50名⼥游客中按对景区的服务是否满意采取分层抽样,抽取⼀个容量为5的样本,问样本中满意与不满意的⼥游客各有多少名?(2)从(1)中的5名⼥游客样本中随机选取两名作深度访谈,求选到满意与不满意的⼥游客各⼀名的概率;(3)根据以上列联表,问有多⼤把握认为“游客性别与对景区的服务满意”有关附:P( )0.050 0.025 0.010 0.0053.841 5.024 6.635 7.87943、如图在四棱锥中,底⾯是边长为的正⽅形,侧⾯底⾯,且 ,设、分别为、的中点.(Ⅰ) 求证: //平⾯;(Ⅱ) 求证:⾯平⾯;(Ⅲ) 求⼆⾯⾓的正切值.44、已知椭圆 : 的焦距为 ,离⼼率为 ,其右焦点为 ,过点作直线交椭圆于另⼀点 .(Ⅰ)若 ,求外接圆的⽅程;(Ⅱ)若过点的直线与椭圆相交于两点、,设为上⼀点,且满⾜(为坐标原点),当时,求实数的取值范围.45. 已知定点A(1,0), B为x轴负半轴上的动点,以AB为边作菱形ABCD,使其两对⾓线的交点恰好落在y轴上.(1) 求动点D的轨迹五的⽅程.(2) 若四边形MPNQ的四个顶点都在曲线E上,M,N关于x轴对称,曲线E在M点处的切线为l,且PQ//l①证明直线PN与QN的斜率之和为定值;②当M的横坐标为,纵坐标⼤于O, =60°时,求四边形MPNQ的⾯积46. 对于函数f(x)(x∈D),若x∈D时,恒有>成⽴,则称函数是D上的J函数.(Ⅰ)当函数f(x)=m lnx是J函数时,求m的取值范围;(Ⅱ)若函数g(x)为(0,+∞)上的J函数,①试⽐较g(a)与 g(1)的⼤⼩;②求证:对于任意⼤于1的实数x1,x2,x3,…,xn,均有g(ln(x1+x2+…+xn))>g(lnx1)+g(lnx2)+…+g(lnxn).47. 设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)如果存在,使得成⽴,求满⾜上述条件的整数;(Ⅲ)如果对任意的,都有成⽴,求实数的取值范围.48.选修4-1:⼏何证明选讲.如图,过圆E外⼀点A作⼀条直线与圆E交B,C两点,且AB= AC,作直线AF与圆E相切于点F,连接EF交BC于点D,⼰知圆E的半径为2, =30.(1)求AF的长.(2)求证:AD=3ED.49. 在直⾓坐标系中,以原点为极点, 轴的正半轴为极轴建坐标系.已知曲线 ,已知过点的直线的参数⽅程为:,直线与曲线分别交于两点.(1)写出曲线和直线的普通⽅程;(2)若成等⽐数列,求的值.50. 选修4-5:不等式选讲设(1)当,求的取值范围;(2)若对任意x∈R,恒成⽴,求实数的最⼩值.2013年⾼考数学(理)押题精粹(课标版)【参考答案与解析】⼆.选择题(30道)1.【答案】A2.【答案】D【点评】:集合问题是⾼考必考内容之⼀,题⽬相对简单.集合的表⽰法有列举法、描述法、图⽰法三种,⾼考中与集合的运算相结合,不外乎上述⼏种题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013广东省高考压轴卷数学理试题本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回. 参考公式:锥体的体积公式:13V Sh =(S 是锥体的底面积,h 是锥体的高) 球体体积公式:343V R π=球(R 是半径)一、选择题:本大题共8小题,每小题5分,满分40分.1、设全集R ,{|(2)0},{|ln(1)},A x x x B x y x =-<==- 则A U (C B )= ( ) A .(2,1)- B .[1,2) C .(2,1]- D .(1,2)2、已知复数z 的实部为1-,虚部为2,则5iz= ( ) A .2i - B .2i + C .2i -- D . 2i -+3、已知a ∈R ,则“2a <”是“|2|||x x a -+>恒成立”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4、函数()sin ()f x x x x R =+∈ ( ) A .是偶函数,且在(,)-∞+∞上是减函数; B .是偶函数,且在(,)-∞+∞上是增函数; C .是奇函数,且在(,)-∞+∞上是减函数; D .是奇函数,且在(,)-∞+∞上是增函数;5、已知(){}1,1,≤≤=Ωy x y x ,A 是曲线2x y =与21x y =围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( ) A.31 B.41 C.81 D.121 6、图1是某市参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm )在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A .i <6B .i <7C .i <8D .i <97、2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 ( ) A. 60 B. 48 C. 42 D. 368、称(,)||d a b a b =- 为两个向量,a b 间的距离。

若a b 、满足:①||=1;b②a b ≠ ; ③对任意的,t R ∈恒有(,)(,)d a tb d a b ≥,则 ( ) A. ()()a b a b +⊥- B. ()b a b ⊥- C.a b ⊥ D. ()a a b ⊥-二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题(9-13题)9、某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为___________10、设,x y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最大值是_________.11 、已知某棱锥的三视图如右图所示,则该棱锥 的体积为 .12、若23*0123(1)()n n n x a a x a x a x a x n N -=++++⋅⋅⋅+∈,且13:1:7a a =,则5_____a = 13、定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = . 选做题(14 - 15题,考生只能从中选做一题) 14、已知曲线1C 的参数方程为(0≤θ<π),直线l 的极坐标方程为4πθ=,()R ρ∈,则它们的交点的直角坐标为 _____ .15、如图,直线PC 与 O 相切于点C ,割线PAB 经过 圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE =第11题图图乙图甲DNCBMAB DCNM A yxO -1654321-1-21三、解答题:本大题共6小题,满分80分。

解答需写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)已知函数()sin()f x A x ωϕ=+,x ∈R (其中ππ0,0,22A ωϕ>>-<<),其部分图像如图所示. (1) 求函数()f x 的解析式;(2) 已知横坐标分别为1-、1、5的三点M 、N 、P 都在函数()f x 的图像上,求sin MNP ∠的值.17. (本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]元件A 8 1240 32 8 元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率. 18.(本题满分13分)如图甲,直角梯形ABCD 中,//AB CD ,2DAB π∠=,点M 、N分别在AB ,CD 上,且MN AB ⊥,MC CB ⊥,2BC =,4MB =,现将梯形ABCD 沿MN 折起,使平面AMND 与平面MNCB 垂直(如图乙). (Ⅰ)求证://AB 平面DNC ;(Ⅱ)当DN 的长为何值时,二面角D BC N --的大小为30︒?19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且满足2+3=,2=1+1n n S S S ()1,2,3n = . (I )求证:数列{}1+n S 为等比数列; (Ⅱ)设2nnn S a b =,求证:1...21<+++n b b b .20.(本小题满分14分)动圆P 在x 轴上方与圆F :()2211x y +-=外切,又与x 轴相切.(1)求圆心P 的轨迹C 的方程;(2)已知A 、B 是轨迹C 上两点,过A 、B 两点分别作轨迹C 的切线,两条切线的交点为M, 设线段AB 的中点为N ,是否存在R λ∈使得MN OF λ=(F 为圆F 的圆心);(3)在(2)的条件下,若轨迹C 的切线BM 与y 轴交于点R ,A 、B 两点的连线过点F,试求△ABR 面积的最小值.Ks5u21.(本小题满分14分) ()()0ln >--=a x a x x f . (1)若,1=a 求()x f 的单调区间及()x f 的最小值; (2)若0>a ,求()x f 的单调区间; Ks5u(3)试比较222222ln 33ln 22ln n n +++ 与()()()12121++-n n n 的大小.()2≥∈*n N n 且,并证明你的结论.2013广东省高考压轴卷 数学理试题答案一.选择题(每题5分,共40分) 二.填空题(每题5分,共30分)9、 15 10、____ __ 0 11、 212. 56- 13、 2 22n-14. 3030(,)6615.1251、()()0,2,,1,A B ==-∞[)1,,U C B =+∞2、12z i =-+,()()()5125510521212125i i i i ii z i i i ---====--+-+-- 3、2x x a -+>恒成立等价于()min2x xa -+>,即2a >4、()()()sin sin f x x x x x f x -=-+-=--=-,得()f x 为奇函数 ()/1cos 0fx x =+>得()f x 在R 上为增函数 5、区域A 面积为()3123120211|333x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ 11/4312P == 6、160~180是4A 到7A ,参与循环的是7i =,循环结束 是8i =7、先把两个女生选好在捆绑在一起22326C A =题号 1 2 3 4 5 6 7 8 答案 BACDDCBB假设捆在一起的女生记为A,B ,另一个女生记为C ,两个男生记为甲乙,从左到右编号1~5 (一)A,B 排在1,2号,那么甲可以选3,4.若甲选3,则C,乙无要求,有2种;如果甲选4号,则C 只能选5号,有一种。

则共3种情形(二)A,B 排在2,3号,那么甲只能选4号, C 只能选5号,有一种。

(三)A,B 排在3,4号,那么甲只能选2号, C 只能选1号,有一种。

(二)A,B 排在4,5号,情形同(一)共3种 则总数为N=6*8=48种8、考察向量减法的三角法则,以及向量模的几何意义。

对任意的,t R ∈恒有(,)(,)d a tb d a b ≥ ,表明(,)||d a b a b =-是所有(,)||d a tb a tb =- 中最短的一个,而垂线段最短,故有()b a b ⊥-9、7750350n =得n=15 10、线性规划,三角形区域,最优解(1,1) 11、四棱锥底面是直角梯形,面积为()122132⨯⨯+=,高为2,则体积为2 12、()()1133111276n n C a n n n a C -===---得n=8,55856a C =-=- 13、解:根据定义得(2,2)(11,2)2[(1,2)(1,1)]2(1,1)212f f f f f =+=+==⨯=。

3(3,2)(21,2)2[(2,2)(2,1)]2(21)622f f f f =+=+=⨯+==-, 4(4,2)(31,2)2[(3,2)(3,1)]2(61)1422f f f f =+=+=⨯+==-, 5(5,2)(41,2)2[(4,2)(4,1)]2(141)3022f f f f =+=+=⨯+==-,所以根据归纳推理可知(,2)22nf n =-。

相关文档
最新文档