(完整版)流体力学知识点总结汇总

合集下载

大一物理流体的运动知识点总结

大一物理流体的运动知识点总结

大一物理流体的运动知识点总结流体力学是研究流体的力学性质和运动规律的学科,是物理学的一个重要分支。

在大一的物理学课程中,我们学习了流体力学的基本概念和运动规律。

下面是对流体的运动知识点的总结。

一、流体的基本性质流体是指能够流动的物质,包括气体和液体。

流体的特点是没有固定的形状,能够适应所处容器的形状。

流体的基本性质包括质量密度、体积密度、压强和浮力等。

1. 质量密度:流体的质量与其体积的比值,常用符号ρ表示,单位是千克/立方米。

2. 体积密度:流体的质量密度的倒数,常用符号ρ'表示,单位是立方米/千克。

3. 压强:流体受到的压力,是垂直于单位面积的力,常用符号P表示,单位是帕斯卡(Pa)。

4. 浮力:流体对物体上浸的部分所施加的向上的力,大小等于被排开的流体重量。

二、流体的运动规律1. 连续性方程:在稳恒流动的条件下,流经一个截面的流体质量速率恒定,即质量守恒定律。

2. 波依恩定律:对于一个稳恒流动的理想流体,沿任意一条流线,流体速度、压力和高度之间满足波依恩定律。

3. 压强和速度的关系:对于一个稳恒流动的理想流体,速度增大,压强减小;速度减小,压强增大。

4. 伯努利定律:对于一个稳恒流动的理想流体,沿一条流线,流体的总机械能保持不变。

5. 流体的黏性:流体黏性是指流体内部的分子间的相互作用力,黏性对流体的流动有一定的阻碍作用。

三、流体的实际应用流体力学在现实生活中有广泛的应用,例如管道输送、飞机和汽车空气动力学、水力发电等。

下面是一些流体在实际应用中的重要现象和原理。

1. 血流动力学:通过研究血液在血管中的流动规律,可以了解心脏和血管的疾病。

2. 鸟类飞行原理:通过研究空气动力学,可以分析鸟类飞行的原理,并应用于飞机设计。

3. 水力发电:利用水流的动能产生电能的过程,通过水轮机转动发电机,将水的动能转化为电能。

4. 管道输送:通过流体在管道中的流动,可以实现将液体或气体从一处运输到另一处,例如输油管道、天然气管道等。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。

它在工程、物理学、气象学、生物学等众多领域都有着广泛的应用。

下面将对流体力学中的一些重要知识点进行总结。

一、流体的性质1、流体的定义流体是一种在微小剪切力作用下就会连续变形的物质。

与固体不同,流体不能承受剪切力而保持固定的形状。

2、密度和重度密度是单位体积流体的质量,用ρ表示,单位通常为 kg/m³。

重度是单位体积流体所受的重力,用γ表示,单位通常为 N/m³,γ =ρg,其中 g 为重力加速度。

3、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,膨胀性则是指流体在温度变化时体积膨胀的性质。

液体的压缩性和膨胀性通常较小,可视为不可压缩流体;而气体的压缩性和膨胀性较大。

4、粘性粘性是流体内部阻碍其相对运动的一种性质。

粘性力的大小与速度梯度和流体的粘性系数有关。

牛顿内摩擦定律给出了粘性力的表达式:τ =μ(du/dy),其中τ为粘性切应力,μ为动力粘性系数,du/dy 为速度梯度。

二、流体静力学1、静压力静止流体中,单位面积上所受的法向力称为静压力。

静压力的特性包括:方向总是垂直于作用面;静止流体中任意一点的静压力大小与作用面的方向无关。

2、静压强基本方程p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,γ 为流体的重度,h 为该点在液面下的深度。

3、压力体压力体是由受力曲面、液体的自由表面以及两者之间的铅垂面所围成的封闭体积。

通过压力体可以确定流体对物体表面的垂直作用力的方向。

三、流体运动学1、流线和迹线流线是某一瞬时在流场中画出的一条曲线,曲线上各点的切线方向与该点的速度方向相同。

迹线则是某一流体质点在一段时间内的运动轨迹。

2、流管和流束流管是在流场中通过封闭曲线所围成的管状区域,流管内的流体称为流束。

3、连续性方程对于定常流动,质量守恒定律可表示为连续性方程:ρ₁v₁A₁=ρ₂v₂A₂,即流过不同截面的流体质量流量相等。

(完整版)流体力学重点概念总结

(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学知识点大全

流体力学知识点大全

流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。

以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。

液体和气体都具有易于流动的特点。

2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。

3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。

速度矢量的大小和方向决定了流体中每一点的速度和运动方向。

4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。

压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。

5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。

流体动力学包括流体的运动方程、速度场描述和流动量的计算等。

6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。

而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。

7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。

而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。

8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。

流体的黏度越大,流体粘性越大,流动越缓慢。

黏性对于流体的层流和湍流特性有重要影响。

9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。

当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。

10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。

流体知识点总结

流体知识点总结

流体知识点总结一、流体的基本性质1. 流体的定义和分类流体是指物质的一种状态,不固定的形状和体积,能够流动。

根据流体的粘性和压缩性,流体可分为理想流体和真实流体两大类。

理想流体是一种没有黏性和压缩性的流体,其运动规律可以用欧拉方程描述,而真实流体具有一定的粘性和压缩性,其运动规律则需用纳维-斯托克斯方程描述。

2. 流体的密度和压强流体的密度是指单位体积内的质量,通常用ρ表示。

流体的压强是指单位面积上的力,通常用p表示。

密度和压强是描述流体基本性质的重要参数,它们与流体的运动和压力有着密切的关系。

3. 流体的黏性和运动流体的黏性是指其内部分子间存在的摩擦力,使得流体在运动时具有阻力。

黏性是影响流体流动的一个重要因素,它使得流体在流动时会出现一些特有的现象,如粘滞流动、湍流等。

流体的运动规律受到黏性的影响,需要用纳维-斯托克斯方程来描述。

二、流体静力学1. 流场及其描述流场是指流体中任意空间中各点速度和密度的分布状态,可以分为定常流场和非定常流场。

描述流场的方法通常有拉格朗日描述和欧拉描述两种。

2. 流体的静力学平衡流体的静力学平衡是指在无外力作用时,流体处于静止状态的平衡规律。

根据流体受力的性质,静力学平衡可以分为流体的静平衡、压强平衡和重力平衡。

3. 流场的描述方法欧拉描述和拉格朗日描述是流体静力学研究的两种基本方法。

欧拉描述是以空间任意一点作为参照系来描述流体状态和运动规律,而拉格朗日描述则是以流体质点为参照系来描述流体运动。

三、流体动力学1. 流体的运动规律根据流体的运动性质,流体运动可以分为层流和湍流两种。

层流是指流体在运动中,各层流体分层并按某种规律运动的现象,而湍流则指流体在运动中乱七八糟、无规律的运动现象。

2. 流体的动能和动量流体的动能是指流体由于运动而具有的能量,通常用K表示,而流体的动量则是指流体在运动中具有的动能量,通常用L表示。

动能和动量是描述流体动力学运动规律的关键参数,与流体的流速、流量、压力等有着密切的关系。

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

流体流动知识点总结归纳

流体流动知识点总结归纳

流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。

在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。

一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。

流体包括液体和气体两种状态,其共同特点是具有流动性。

2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。

流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。

3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。

黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。

二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。

这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。

2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。

3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。

4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。

三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。

2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。

流体入门知识点总结图解

流体入门知识点总结图解

流体入门知识点总结图解一、流体的基本概念1. 流体概念流体是一种物质的状态,是指在外力作用下能够流动的物质,包括液体和气体。

流体具有流动性、变形性和粘性。

2. 流体性质密度:流体的质量与单位体积的比值。

比重:流体的密度与水的密度的比值。

粘度:流体的内部阻力,决定了流体的黏稠度。

3. 流体静力学基本假设(1)流体是连续的。

(2)流体是不可压缩的。

(3)流体是静止的或者静止状态的流体。

二、流体静力学1. 压力(1)压力的定义:单位面积上的力。

(2)压强:单位面积上的压力。

(3)流体的压力:液体或气体内各点的压力都相等,且在不同深度的液体中,压力与深度成正比。

2. 压力的传递液体传压:液体内各点的压力是平行的,且在各点的压力相等。

气体传压:气体内各点的压力也是平行的,但是气体的密度非常的小,所以气体的传压效应并不显著。

3. 浮力物体在液体中浸没时,液体对物体产生的向上的浮力。

浮力的大小与物体的体积成正比。

三、流体动力学1. 流体的动力学特性流体力学包括了流体的流动、旋转、涡动和湍流等特性。

2. 流体流动的分类(1)按流动程度分类:层流流动和湍流流动。

(2)按流动速度分类:亚临界流动、临界流动和超临界流动。

(3)按流动方向分类:一维流动、二维流动和三维流动。

3. 流速和流量流速:单位时间内流体通过单位横截面积的速度。

流量:单位时间内流体通过横截面的体积。

四、基本流体方程1. 连续性方程连续性方程描述了流体的流动过程中质量的守恒,表现为质量流量的守恒。

\[A_1 v_1 = A_2 v_2\]2. 动量方程动量方程描述了流体在流动过程中的动量守恒。

动量方程可以用来计算流体在流动中所受的压力和阻力。

\[F = \frac{{\Delta p}}{{\Delta t}}\]3. 质能方程质能方程描述了流体在流动过程中的能量守恒。

质能方程可以用来计算流体内能和外力对流体的功率变化。

五、流体流动的控制方程1. 泊松方程泊松方程描述了流体的流动与液体的静力平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学知识点总结第一章 绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止 时不能承受剪应力。

2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3流体力学的研究方法:理论、数值、实验。

4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力. T 为A 点的剪应力Pl A应力的单位是帕斯卡(pa ), 1pa=1N/ m 2,表面力具有传递性。

(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例 重力、惯性力、uv 生力、离心力)5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下):34°时的水1000 kg / m 3(2)粘性F Bm单位为应力_P作用于A 上的平均压应力周围流体作用 的表面力切向应力法向应力P APliPH为A 点压应力,即A 点的压强切向应力(常见的质量力:20 C 时的空气1.2kg /m 3作用于A 上的平均剪应力说明:1) 气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2) 液体 T f 门气体 T f 卩匸无黏性流体无粘性流体,是指无粘性即口 =0的液体。

无粘性液体实际上是不存在的,它只是一种对物 性简化的力学模型。

(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。

T 一定,dp 增大,dv 减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。

P 一定,dT 增大,dV 增大A 液体的压缩性和膨胀性液体的压缩性用压缩系数表示 压缩系数:在一定的温度下,压强增加单位P ,液体体积的相对减小值。

dV /V1 dV dP V dP由于液体受压体积减小,dP 与dV 异号,加负号,以使K 为正值;其值愈大,愈容易压缩。

K 的单位是“ 1/Pa ”。

(平方米每牛)体积弹性模量K 是压缩系数的倒数,用 K 表示,单位是“ Pa ”dP d牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即dudy以应力表示du dr dydtT —粘性切应力,是单位面积上的内摩擦力。

由图可知du u dy h粘度速度梯度,剪切应变率(剪切变形速度)□是比例系数,称为动力黏度,单位“pa ・s ”。

动力黏度是流体黏性大小的度量, □值越大,流体越粘,流动性越差。

运动粘度单位:m2/s 同加速度的单位dV液体的热膨胀系数:它表示在一定的压强下,温度增加1度,体积的相对增加率。

1dV在一定压强下,体积的变化速度与温度成正比。

水的压缩系数和热膨胀系数都很小。

P增大水的压缩系数K减小T升高水的膨胀系数增大B气体的压缩性和膨胀性气体具有显著的可压缩性,一般情况下,常用气体(如空气、氮、氧、C02等)的密度、压强和温度三者之间符合完全气体状态方程,即理想气体状态方程P ——气体的绝对压强(Pa);F RTP气体的密度(Kg/cm3 );T ——气体的热力学温度(K);8314R (J/Kg K)R —气体常数;在标准状态下,MM为气体的分子量,空气的气体常数R=287J/Kg . K。

适用范围:当气体在很高的压强,很低温度下,或接近于液态时,其不再适用。

第二章流体静力学1静止流体具有的特性(1)应力方向沿作用面的内发现方向。

(2)静压强的大小与作用面的方位无关。

流体平衡微分方程在静止流体中,各点单位质量流体所受表面力和质量力相平衡。

欧拉方程全微分形式:(Xdx Ydy Zdz)2等压面:压强相等的空间点构成的面(平面或曲面)。

f ds 0 等压面的性质:平衡流体等压面上任一点的质量力恒正交于等压面。

由等压面的这一性质,便可根据质量力的方向来判断等压面的形状。

质量力只有重力时,因重力的方向铅垂向下,可知等压面是水平面。

若重力之外还有其它质量力作用时,等压面是与质量力的合力正交的非水平面。

欧拉X1P0xY1Py0dpZ1p0V dT dT单位为“ 1/K”或“ 1/Ctn*空值与相对压强大小相等,正负号相反(必小于0)p pabspa相对压强和绝对压强的关系说明:计算时无特殊说明时液体均采用相对压强计算,气体一般选用绝对压强。

5测量压强的仪器(金属测压表和液柱式测压计)。

(1) 金属测压计测量的是相对压强(弹簧式压力表、真空表)(2) 液柱式测压计是根据流体静力学基本原理、利用液柱高度来测量压强(差)的仪器。

测压管p ghP o gh o3液体静力学基本方程p Po g(H z) p ° ghp —静止液体内部某点的压强h —该点到液面的距离,称淹没深度 Z —该点在坐标平面以上的高度P0—液体表面压强,对于液面通大气的开口容器,视为大气压强并以Pa 表示推论(1)静压强的大小与液体的体积无关(2) 两点的的压强差等于两点之间单位面积垂 直液柱的重量(3) 平衡状态下,液体内任意压强的变化,等值的传递到其他各点。

液体静力学方程三大意义⑴•位置水头z :任一点在基准面以上的位置高度,表示单位重量流体从某一基准面算起所 具有的位置势能,简称比位能,或单位位能或位置水头。

⑵•压强水头:—厂表示单位重量流体从压强为大气压算起所具有的压强势能,简称比压 能或单位压能或压强水头。

p⑶•测压管水头( zg ):单位重量流体的比势能,或单位势能或测压管水头。

4压强的度量绝对压强:以没有气体分子存在的完全真空为基准起算的压强, 以符号pabs 表示。

(大于0)相对压强:以当地大气压为基准起算的压强,以符号 真空:当流体中某点的绝对压强小于大气压时,p 表示。

(可正可负可为 0)则该点为真空,其相对压强必为负值。

真绝对压强、相对压强、真空度之间的关系pP a P abs(p absP a )(P abs P a )P■ID真空度P B水ga水银g hP B 水银g h水gapM 2gh 2 I gh 1pP M2gh 2igh iP(h i h 2)h 1A Lsh 1 L(s/A) h 2 L sinsp g — sin L KL gLsinA(Z B k) __i2.6h pg上式的图形A 点相对压强 U 形管测压计III)倾斜微压计*U形水银测压计,已知测压计上各液面及A点的标高为:3 =2.0m,4 =1.0m,A =5 =1.5m。

试确定管中A6作用在平面上的静水总压力图算法(1)压强分布图根据基本方程式:p gh绘制静水压强大小;(2)静水压强垂直于作用面且为压应力。

S,乘以受压面的宽度b,即P=bS 总压力的作用线通过压强分布图的形心,作用线与受压面的交点,就是总压力的作用点适用范围:规则平面上的静水总压力及其作用点的求解。

原理:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点便是压心P。

经典例题一铅直矩形闸门,已知h1=1m,h2=2m,宽b=1.5m,求总压力及其作用点。

a上底,b下底pg 如-ki]i77Z^总压力=受压平面形心点的压强X受压平面面积P gsi n ?y c A gh c A P c A任一轴的力矩等于各分力对同一轴力矩之和P A ( 12)(32)(34) ( 5 4)(1 234)(32 5 4)13.6 9.8 (1.80.6 21) 19.8(2 0.6 1.5 1)274.6 kPa解:总压力为压强分布图的体积: 耳= 的+屐幽+阳2旳=58.8kN作用线通过压强分布图的重心:例&在管道M上装一复式1 1=1.8m 2=0.6m,点压强。

梯形形心坐标图算法的步骤是:先绘出压强分布图,总压力的大小等于压强分布图的面积解析法平行移轴定理1 x 1C经典例题 一铅直矩形闸门,已知 y C Ah1=1m ,I C yDycy c Ah2=2m ,宽 b=1.5m , 求总压力及其作用点。

解: h cr* ■1 .5 9 .807 h c58 .84 KN—bh3112 7作用在曲面上的静水压力 二向曲面 yD具有平行母线的柱面6 2・17m水平分力Px | ifj 1gl%?A x P c ?Ax 作用在曲 面上的水平分力等于受压面形心处的相对压强PC 与其在垂 直坐标面 铅垂分力oyz 的投影面积Ax 的乘积。

dP z pdAsintanP z P xgV压力体合力的大小PP zPX =受压平面形心点的压强 PZ =液体的容重Y X 压力体的体积 注明:P 的作用线必然通过 Px 和Pz 的交点,但这个交点不一定在曲面上,该作用线与曲面 的交点即为总压力的作用点 压力体压力体分类:因Pz 的方向(压力体 合力的方向p c x受压曲面在 yoz 轴上的投影VAZ压力体和液面在曲面 AB 的同侧,Pz 方向向下 虚压力体 ——压力体和液面在曲面 AB 的异侧,Pz 方向向上) 压力体叠加一一对于水平投影重叠的曲面,分开界定压力体,然后相叠加,虚、实压力体 重叠的部分相抵消。

潜体——全部浸入液体中的物体称为潜体,潜体表面是封闭曲曲。

浮体——部分浸入液体中的物体称为浮体。

第三章流体动力学基础1基本概念:(1)流体质点(particle):体积很小的流体微团,流体就是由这种流体微团连续组成的。

(2)空间点:空间点仅仅是表示空间位置的几何点,并非实际的流体微团。

(3)流场:充满运动的连续流体的空间。

在流场中,每个流体质点均有确定的运动要素。

(4)当地加速度(时变加速度):在某一空间位置上,流体质点的速度随时间的变化率。

迁移加速度(位变加速度):某一瞬时由于流体质点所在的空间位置的变化而引起的速度变化率。

(5)恒定流与非恒定流:一时间为标准,各空间点上的运动参数都不随时间变化的流动是恒定流。

否则是非恒定流。

(6)一元流动:运动参数只是一个空间坐标和时间变量的函数。

二元流动:运动参数只是两个空间坐标和时间变量的函数。

三元流动:以空间为标准,各空间点上的运动参数是三个空间坐标和时间的函数。

(7)流线:某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。

流线性质(1)流线上各点的切线方向所表示的是在同一时刻流场中这些点上的速度方向,因而流线形状一般都随时间而变。

(2)流线一般不相交(特殊情况下亦相交:V=0、速度=)(3)流线不转折,为光滑曲线。

(8)迹线:流体质点在一段时间内的运动轨迹。

迹线与流线(1 )恒定流中,流线与迹线几何一致。

异同'弓(2)非恒定流中,二者一般重合,个别情况(V=C)二者仍可重合。

(9)流管:某时刻,在流场内任意做一封闭曲线,过曲线上各点做流线,所构成的管状曲面。

相关文档
最新文档