流体力学-总结+复习 4-5章
流体力学重点概念总结(可直接打印版)资料讲解

流体力学重点概念总结(可直接打印版)第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
注意:只要平面面积与形心深度不变:1.面积上的总压力就与平面倾角θ无关;2.压心的位置与受压面倾角θ无直接关系,是通过yc表现的;3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。
作用在曲面壁上的总压力—水平分力作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
《流体力学》各章节复习要点

第一章一、名词解释1.理想流体:没有粘性的流体2.惯性:是物体所具有的反抗改变原有运动状态的物理性质。
3.牛顿内摩擦力定律:流体内摩擦力T 的大小与液体性质有关,并与流速梯度和接触面A成正比而与接触面上的压力无关。
4.膨胀性:在压力不变条件下,流体温度升高时,其体积增大的性质。
5.收缩性:在温度不变条件下,流体在压强作用下,体积缩小的性质。
6.牛顿流体:遵循牛顿粘性定律得流体。
二、填空题1.流体的动力粘性系数,将随流体的(温度)改变而变化,但随流体的(压力)变化则不大。
2.动力粘度μ的国际单位是(s p a ⋅或帕·秒)物理单位是(达因·秒/厘米2或2/cm s dyn ⋅)。
3.运动粘度的国际单位是(米2/秒、s m /2),物理单位是(沱 )。
4.流体就是各个(质点)之间具有很大的(流动性)的连续介质。
5.理想流体是一种设想的没有(粘性)的流体,在流动时各层之间没有相互作用的(切应力),即没有(摩擦力)三、单选题1. 不考虑流体粘性的流体称( )流体。
AA 理想B 牛顿C 非牛顿D 实际2.温度升高时,空气的粘性( ) BA .变小B .变大C .不变D .不能确定3.运动粘度的单位是( ) BA .s/m 2B .m 2/sC .N ·m 2/sD .N ·s/m 24.与牛顿内摩擦定律直接有关的因素是( ) CA .切应力与速度B .切应力与剪切变形C .切应力与剪切变形速度D .切应力与压强5.200℃体积为2.5m 3的水,当温度升至800℃时,其体积变化率为( ) C200℃时:1ρ=998.23kg/m 3; 800℃时: 2ρ=971.83kg/m 3A .2.16%B .1.28%C .2.64%D .3.08%6.温度升高时,水的粘性( )。
AA .变小B .变大C .不变D .不能确定2.[动力]粘度μ与运动粘度υ的关系为( )。
BA .υμρ=B .μυρ=C .ρυμ= D .μυ=P3.静止流体( )剪切应力。
流体力学要点

流体力学第一章绪论1、流体力学是研究流体平衡和宏观运动规律的科学。
研究方法:理论分析方法、实验研究方法、数值计算方法2、流体:在任何微小的剪切力的作用下都能产生连续变形的物质(流体的流动性)。
自然界物质存在的主要形态:固态、液态和气态。
气体、液体统称流体。
①流体具有流动的特征。
切力停止作用时,在弹性极限内固体可以恢复原来形状,流体只是停止变形。
②在静止状态下,固体能同时受法向应力和切向应力,流体仅能受法向应力,只有在运动状态下才能同时受法向应力和切向应力。
③固体有一定的形状,而流体则取其容器的形状。
3、流体力学中研究流体运动时所取的最小流体微元是:体积无穷小而又包含大量分子的流体微团。
连续介质模型:不必去研究流体的微观分子运动,而只研究描述流体运动的宏观物理属性,可以不考虑分子间存在的间隙,而把流体视为有无数连续分布的流体微团组成的连续介质。
根据连续介质模型,流体的密度、压强、速度、温度等物理量一般在空间和时间上都是连续分布的,都应该是空间坐标和时间的单值连续可微函数,4、表面力:与周围流体或物体的相互作用力,分布于有限流体的表面。
质量力:某种力场作用在流体全部质点上的力。
质量力的大小与流体的质量成正比。
5、①密度:单位体积流体所具有的质量,以符号ρ表示,单位对于非均质流体,密度随点而异。
均质流体,其密度:②相对密度(比重): 在共同的特定条件下某一流体的密度与另一参考流体的密度之比,符号,③比体积:单位质量的流体所占有的体积称为比体积,用ν表示,单位④混合气体的密度6、①压缩性:温度不变时,流体的体积在压力作用下体积缩小的性质。
压缩系数:一定温度下,单位压强增量引起的体积变化率。
②膨胀性:压力不变时,流体的体积随温度升高而增大的性质。
膨胀系数:一定压力下,单位温升引起的体积变化率。
7、①流体的粘性:流体的粘性是指流体流动时产生内摩擦力的性质,粘性是流体的固有物理属性。
流体的粘性只有在运动状态下才能显示出来。
流体力学与传热复习提纲

流体力学与传热复习提纲第一章 流体流动1) 压强的表示方法绝对压:以绝对真空为基准的真实压强值表压:以大气压为基准的相对压强值表绝=p p p a +如果绝对压小于表压,此时表压称为真空度。
例题 当地大气压为745mmHg 测得一容器内的绝对压强为350mmHg ,则真空度为 。
测得另一容器内的表压强为1360 mmHg ,则其绝对压强为 。
2) 牛顿粘度定律的表达式及适用条件dydu μτ= 适用条件:牛顿型流体 μ-流体粘度3) 粘度随温度的变化液体:温度上升,粘度下降;气体:变化趋势刚好和液体相反,温度上升,粘度增大。
4) 流体静力学基本方程式5) 流体静力学基本方程式的应用等压面及其条件静止、连续、同种流体、同一水平面6) 连续性方程对于稳定流动的流体,通过某一截面的质量流量为一常数:如果流动过程ρ不变,则1122u A u A =如果是圆管,则121222u d u d =因此管径增大一倍,则流速成平方的降低。
7) 伯努利方程式的表达式及其物理意义、单位不可压缩理想流体作稳定流动时的机械能衡算式∑-+++=+++21,222212112121f s W p u gz W p u gz ρρ 对于理想流动,阻力为0,机械能损失为0,且又没有外加功,则ρρ222212112121p u gz p u gz ++=++ )(2112z z g p p -+=ρ常数==uA m ρs物理意义:理想流体稳定流动时,其机械能守恒。
注意伯努利方程的几种表达形式和各物理量的单位。
例题 如题图所示虹吸装置。
忽略在管内流动损失,虹吸管出口与罐底部相平,则虹吸管出口处的流速8) 流型的判据流体有两种流型:层流,湍流。
层流:流体质点只作平行管轴的流动,质点之间无碰撞;湍流:流体质点除了沿管轴作主流运动外,在其它的方向上还作随机脉动,相互碰撞。
流型的判据: Re <2000,流体在管内层流,为层流区;Re >4000,流体在管内湍流,为湍流区;9) 流体在圆管内层流时的速度分布层流时流体在某一截面各点处的速度并不相等,在此截面上呈正态分布。
流体力学期末总复习

习要求:
掌握两种流态和雷诺数的概念及流态的判 别方法;
了解圆管层流及湍流的运动规律、速度分 布; 掌握管路沿程压强(水头)损失(特别是 )和局部压强(水头)损失的计算方法。
2.
3.
第4章重点复习内容
①
边界层、边界层流动分离的条件
②
③
管道流动结合孔口出流做管路计算
薄壁孔口自由出流和淹没出流
④
平板缝隙流动
第5章重点复习内容
本章主要介绍了相似原理和量纲分析。
在设计模型流动实验时,需要使模型流 动与实物流动具有一定的对应关系,这 就要求两个流动满足几何、运动、动力 这三个层次上的相似(力学相似),其 中动力相似是流动相似的主导因素。
动力相似要求两个流动各个同名力的比 值都相等,由此提出了不同的相似准则, 并定义了不同的相似准数。从理论上说, 只有当两个流动的各同名相似准数都相 等时,流动才严格地满足动力相似。但 在大多数情况下,并不需要、且常常也 不可能同时满足所有的相似准则。因此, 在设计模型流动时需要认真分析流动的 各个影响因素,优先考虑起主导作用的 相似准则。
第6章重点复习内容
应用伯努利方程解决工程实际应用问题时应注意以 下几点: 1、适用条件:不可压缩流体、定常流动、质量力 只有重力作用。
2、往往与连续方程联合使用。
3、在选取适当的位置势能为零的水平基准面后, 可选择过流断面上任意高度为已知点 z1 和 z2 列出 伯努利方程。(三选一列) 4、所选用的过流断面必须是缓变过流断面。且其 中一个断面应选在待求未知量所在处,另一个断面 应选在各参数已知处。
《工程流体力学》总复习
《工程流体力学》是很重要的一门专业基 础课,教材内容及课堂讲授内容均为最基
流体力学知识点经典总结

流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。
主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。
二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。
六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。
这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。
清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。
特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。
特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。
流体力学复习内容

dFn v v pnn pn dA
特征一: 流体静压强的方向沿作用面的内法向方向。 特征二: 静止流体中任一点上不论来自何方的静压 强均相等。
3.2 流体平衡的微分方程式
一,平衡方程:由微元受力平衡(表面力和质量力) 得出静止流体平衡的微分方程。
1、压强差公式:
dp f x dx f y dy f z dz
表明:静止液体中,流体静压强的增量dp随坐标增量 的变化决定于质量力。
3.6 静止液体作用在平面上的总压力
§2.2 流体受力平衡微分方程
压强全微分方程: 等压面方程:
dp f x dx f y dy f z dz
分子组成的,宏观尺度非常小,而微观尺度又
足够大的物理实体。
§2.2 连续介质假设
流体质点选取必须具备的两个基本条件:
宏观尺度非常小:
才能把流体视为占据整个空间的一种连续介质, 且其所有的物理量都是空间坐标和时间的连续函 数的一种假设模型。 有了这样的模型,就可以把数学上的微积分手 段加以应用了。
微观尺度又足够大的物理实体:
使得流体质点中包含足够多的分子,使各物理 量的统计平均值有意义(如密度,速度,压强,温 度,粘度,热力学能等宏观属性)。而无需研究所 有单个分子的瞬时状态。
§2.5 流体的可压缩性
流体体积随着压力和温度的改变而发生变化的 性质。
二、流体的第二个重要特性——可压缩性
单一参数影响规律
x x(a,b,c,t )
特征:追踪观察,如将不易扩散的染料滴一滴到水流
中,染了色的流体质点的运动轨迹。
用欧拉方法求流体质点物理量时间变化率的一 般公式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A16轮机3,流体力学复习资料,4&5章
第四章相似原理和量纲分析
1. 流动的力学相似
1)几何相似:两流场中对应长度成同一比例。
2)运动相似:两流场中对应点上速度成同一比例,方向相同。
3)动力相似:两流场中对应点上各同名力同一比例,方向相同。
4)上述三种相似之间的关系。
基本概念(量纲、基本量纲、导出量纲)
量纲:物理参数度量单位的类别称为量纲或因次。
基本量纲:基本单位的量纲称为基本量纲,基本量纲是彼此独立的,例如用,LMT来表示长度,质量和时间等,基本量纲的个数与流动问题中所包含的物理参数有关,对于不可压缩流体流动一般只需三个即,LMT(长度,质量和时间),其余物理量均可由基本量纲导出。
导出量纲:导出单位的量纲称为导出量纲。
一些常用物理量的导出量纲。
2. 动力相似准则
牛顿数?表达式?
弗劳德数?表达式,意义?
雷诺数?表达式,意义?
欧拉数?柯西数?韦伯数?斯特劳哈尔数?
判断基本模型实验通常要满足的相似准则数。
掌握量纲分析法(瑞利法和π定理)。
第五章黏性流体的一维流动
1. 黏性总流的伯努利方程
应用:黏性不可压缩的重力流体定常流动总流的两个缓变流截面。
该方程的具体形式?几何意义?
2. 黏性流体管内流动的两种损失
沿程损失:产生的原因?影响该损失的因素?
沿程损失的计算公式?达西公式?
局部损失:产生原因?
局部损失计算公式?
3. 黏性流体的两种流动状态
层流和紊流
上临界速度,上临界雷诺数?
下临界速度,下临界雷诺数?
工程实际中,圆管中流动状态判别的雷诺数?2000
4. 管口进口段中黏性流体的流动
边界层的概念?
紊流边界层
层流边界层
层流进口段长度计算经验公式
5. 圆管中的层流流动
速度分布?
切应力分布?
哈根泊肃叶公式?
6. 黏性流体的紊流流动
紊流流动的三个特征?
时均法?瞬时速度的组成?
雷诺应力?湍动粘度,表达式及意义?黏性底层厚度与雷诺数的关系?
水力光滑?水力粗糙?
7. 沿程损失的实验研究
尼古拉兹实验?分为几个区?
莫迪图?分为几个区?
8. 局部损失
突扩、突缩、弯管局部损失产生的原因?常用管件的局部损失系数?
9. 管道的水力计算
串联管道?
并联管道?
分支管道?管网?
10. 孔口管嘴出流
薄壁孔口?厚壁孔口?小孔口?大孔口?收缩系数?流速系数?流量系数?
孔板流量计?孔板流速和流量?
11. 水击现象
理解水击过程?压缩波,膨胀波水击压强?
12. 空化和空蚀,定义?
空化系数?影响因素?。