STM32定时器定时时间配置总结

合集下载

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。

⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采⽤内部时钟。

TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。

这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。

{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。

⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。

如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究一、死区设置位置:决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。

二、死区时间设置公式如下:DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。

在72M的定时器时钟下TDTS=1/72M=13.89ns.所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns换个角度看,就是(128~254)*13.89同理,第三个公式就是3555.84ns~7000.56ns换个角度看,就是(256~504)*13.89第四个公式就是7111.68ns~14001.12ns换个角度看,就是(512~1008)*13.89综上:死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。

而但是在不同的死区时间范围内死区时间设置步进是不同的。

若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。

当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。

例子:这样当我需要3us的死区持续时间时,则可这么计算:3us在第二个公式决定的死区范围之内。

所以选择第二个公式。

3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0XabTIM1->BDTR|=0xab;反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us经示波器验证,完全正确。

By zxx2013.07.18。

stm32 timer 用法

stm32 timer 用法

stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。

其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。

本文将详细介绍STM32定时器的用法。

2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。

其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。

3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。

计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。

当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。

4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。

5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。

(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。

STM32F103ZET6的基本定时器

STM32F103ZET6的基本定时器

STM32F103ZET6的基本定时器1、定时器的分类 STM32F103ZET6总共有8个定时器,它们是:TIM1~TIM8。

STM32的定时器分为基本定时器、通⽤定时器和⾼等定时器。

TIM6、TIM7是基本定时器。

基本定时器是只能向上计数的16位定时器,基本定时器只能有定时的功能,没有外部IO⼝,所以没有捕获和⽐较通道。

TIM2、TIM3、TIM4、TIM5是通⽤定时器。

通⽤定时器是可以向上计数,也可以向下计数的16位定时器。

通⽤定时器可以定时、输出⽐较、输⼊捕捉,每个通⽤定时器具有4个外部IO⼝。

TIM1、TIM8是⾼等定时器。

⾼等定时器是是可以向上计数,也可以向下计数的16位定时器。

⾼等定时器可以定时、输出⽐较、输⼊捕捉、还可以输出三相电机互补信号,每个⾼等定时器有8个外部IO⼝。

定时器分类图如下:2、基本定时器 基本定时器没有外部IO⼝,所以它只有定时的功能。

基本定时器只能向上计数,也就是说基本定时器只能递增计数。

基本定时器功能框图如下: 从功能图的1中可以看到,基本定时器的时钟TIMxCLK来⾃内部时钟,该内部时钟为经过APB1预分频器分频后提供的。

基本定时器跟APB1总线时钟的关系如下:如果APB1预分频系数为1,则基本定时器的时钟等于APB1总线时钟。

如果APB1预分频系数不为1,则基本定时器的时钟等于APB1总线时钟经过分频后的2倍。

⽐如APB1总线经过2分频后的时钟为36MHZ,那么基本定时器的时钟就是72MHZ3(36*2)。

功能图中的2是⼀个预分频器,来⾃内部的时钟经过预分器分频后的时钟,⽤来驱动基本定时器的计数器计数。

基本定时器的预分频器是⼀个16位的预分频器,预分频器可以对定时器时钟进⾏1~65536之间的任何⼀个数进⾏分频。

计算⽅式如下: 定时器⼯作时钟 = 来⾃APB1的时钟/(预分频系数+1) 功能图中的3是⼀个16位的计数器,该计数器能能向上计数,最⼤计数值位65535。

STM32的定时器定时时间计算(计数时间和中断定时时间)

STM32的定时器定时时间计算(计数时间和中断定时时间)

STM32的定时器定时时间计算(计数时间和中断定时时间)时基单元可编程⾼级控制定时器的主要部分是⼀个16位计数器和与其相关的⾃动装载寄存器。

这个计数器可以向上计数、向下计数或者向上向下双向计数。

此计数器时钟由预分频器分频得到。

计数器、⾃动装载寄存器和预分频器寄存器可以由软件读写,即使计数器还在运⾏读写仍然有效。

时基单元包含:●计数器寄存器(TIMx_CNT)●预分频器寄存器 (TIMx_PSC)●⾃动装载寄存器 (TIMx_ARR)●重复次数寄存器 (TIMx_RCR)⾃动装载寄存器是预先装载的,写或读⾃动重装载寄存器将访问预装载寄存器。

根据在TIMx_CR1寄存器中的⾃动装载预装载使能位(ARPE)的设置,预装载寄存器的内容被⽴即或在每次的更新事件UEV时传送到影⼦寄存器。

当计数器达到溢出条件(向下计数时的下溢条件)并当TIMx_CR1寄存器中的UDIS位等于0时,产⽣更新事件。

更新事件也可以由软件产⽣。

随后会详细描述每⼀种配置下更新事件的产⽣。

计数器由预分频器的时钟输出CK_CNT驱动,仅当设置了计数器TIMx_CR1寄存器中的计数器使能位(CEN)时,CK_CNT才有效。

(更多有关使能计数器的细节,请参见控制器的从模式描述)。

注意,在设置了TIMx_CR寄存器的CEN位的⼀个时钟周期后,计数器开始计数。

预分频器描述预分频器可以将计数器的时钟频率按1到65536之间的任意值分频。

它是基于⼀个(在TIMx_PSC寄存器中的)16位寄存器控制的16位计数器。

因为这个控制寄存器带有缓冲器,它能够在运⾏时被改变。

新的预分频器的参数在下⼀次更新事件到来时被采⽤。

尤其注意的是当发⽣⼀个更新事件时,所有的寄存器都被更新,硬件同时(依据URS位)设置更新标志位(TIMx_SR寄存器中的UIF位)。

●重复计数器被重新加载为TIMx_RCR寄存器的内容。

●⾃动装载影⼦寄存器被重新置⼊预装载寄存器的值(TIMx_ARR)。

stm32定时器时钟以及中间对齐模式

stm32定时器时钟以及中间对齐模式

stm32定时器时钟以及中间对齐模式在永磁同步电机的控制中,需要对电机的三相定⼦施加⼀定的电压,才能控制电机转动。

现在⽤的较多的是SVPWM(SVPWM的具体原理会在后⾯另写⼀篇博客说明),要想产⽣SVPWM波形,需要控制的三相电压呈如下形式,即A、B、C三相的电压是中间对齐的,这就需要⽤到stm32定时器的中间对齐模式了。

1、stm32的时钟树stm32的时钟树如下图所⽰,简单介绍⼀下stm32时钟的配置过程。

以外部时钟作为时钟源为例。

HSE代表外部时钟(假设为8M)、SYSCLK为系统时钟,经过倍频器之后变成168M、SYSCLK经过AHB预分频器(假设分频系数为1)后变成HCLK时钟等于系统时钟SYSCLK,HCLK即AHB外部总线时钟,经过APB预分频器分出APB1时钟(分频系数为2,低速设备SYSCLK/4)与APB2时钟(分频系数为1,⾼速设备SYSCLK/2)HSE->SYSCLK->HCLK->APB1、APB2。

针对stm32f427的配置源码如下static void SetSysClock(void){#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || defined (STM32F401xx)/******************************************************************************//* PLL (clocked by HSE) used as System clock source *//******************************************************************************/__IO uint32_t StartUpCounter = 0, HSEStatus = 0;/* Enable HSE */RCC->CR |= ((uint32_t)RCC_CR_HSEON);/* Wait till HSE is ready and if Time out is reached exit */do{HSEStatus = RCC->CR & RCC_CR_HSERDY;StartUpCounter++;} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));if ((RCC->CR & RCC_CR_HSERDY) != RESET){HSEStatus = (uint32_t)0x01;}else{HSEStatus = (uint32_t)0x00;}if (HSEStatus == (uint32_t)0x01){/* Select regulator voltage output Scale 1 mode */RCC->APB1ENR |= RCC_APB1ENR_PWREN;PWR->CR |= PWR_CR_VOS;/* HCLK = SYSCLK / 1*/RCC->CFGR |= RCC_CFGR_HPRE_DIV1;//AHB时钟#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx)/* PCLK2 = HCLK / 2*/RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;//APB2时钟/* PCLK1 = HCLK / 4*/RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//APB1时钟#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx *//* Configure the main PLL */RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |(RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);/* Enable the main PLL */RCC->CR |= RCC_CR_PLLON;/* Wait till the main PLL is ready */while((RCC->CR & RCC_CR_PLLRDY) == 0){}#if defined (STM32F427_437xx) || defined (STM32F429_439xx)/* Enable the Over-drive to extend the clock frequency to 180 Mhz */PWR->CR |= PWR_CR_ODEN;while((PWR->CSR & PWR_CSR_ODRDY) == 0){}PWR->CR |= PWR_CR_ODSWEN;while((PWR->CSR & PWR_CSR_ODSWRDY) == 0){}/* Configure Flash prefetch, Instruction cache, Data cache and wait state */FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS; #endif /* STM32F427_437x || STM32F429_439xx *//* Select the main PLL as system clock source */RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));RCC->CFGR |= RCC_CFGR_SW_PLL;/* Wait till the main PLL is used as system clock source */while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);{}}else{ /* If HSE fails to start-up, the application will have wrong clockconfiguration. User can add here some code to deal with this error */}}2、stm32定时器的时钟stm32定时器分为⾼级定时器(TIM1与TIM8)、通⽤定时器(TIM2-TIM5、TIM9-TIM14)、基本定时器(TIM6、TIM7)。

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究一、死区设置位置:决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。

二、死区时间设置公式如下:DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。

在72M的定时器时钟下TDTS=1/72M=13.89ns.所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns换个角度看,就是(128~254)*13.89同理,第三个公式就是3555.84ns~7000.56ns换个角度看,就是(256~504)*13.89第四个公式就是7111.68ns~14001.12ns换个角度看,就是(512~1008)*13.89综上:死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。

而但是在不同的死区时间范围内死区时间设置步进是不同的。

若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。

当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。

例子:这样当我需要3us的死区持续时间时,则可这么计算:3us在第二个公式决定的死区范围之内。

所以选择第二个公式。

3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0XabTIM1->BDTR|=0xab;反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us经示波器验证,完全正确。

By zxx2013.07.18。

STM32设置定时器TIM2

STM32设置定时器TIM2

STM32如何设置定时器STM32如何设置定时器下面以stm32的TIM2作为实例一步步配置成为定时器:第一种对定时器的基本配置TIM_TimeBaseStructure.TIM_Period = 1000;//设置自动装载寄存器TIM_TimeBaseStructure.TIM_Prescaler = 35999; //分频计数TIM_TimeBaseStructure.TIM_ClockDivision = 0;TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//选择向上计数TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);TIM_Cmd(TIM2, ENABLE); //是能定时器始能定时器的中断:TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);在开启时钟里一定要打开TIM2的时钟,函数表达式如下:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);4:中断向量函数的编写:void NVIC_Configuration(void){NVIC_InitTypeDef NVIC_InitStructure;#ifdef VECT_TAB_RAM //如果程序在ram中调试那么定义中断向量表在Ram 中否则在Flash中NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);#else /* VECT_TAB_FLASH *//* Set the Vector Table base location at 0x08000000 */NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);#endif/* Enable the TIM2 global Interrupt */NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQChannel;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);}5:中断函数的编写:当有TIM2的无论哪个中断触发中断发生那么就会进入这个函数TIM2_IRQHandler(void)所以这个更新事件的中断判断要依靠以下语句:if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)按照以上步骤配置可以顺利进行定时器的基本定时应用第二种方法:/* Enable TIM2 Update interrupt [TIM2溢出中断允许]*/ TIM_ITConfig(TIM2, TIM_IT_CC1, ENABLE);中断中的设置为:if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STM32定时器定时时间配置总结
STM32系列微控制器内置了多个定时器模块,它们可以用于各种定时
功能,如延时、周期性触发、脉冲计数等。

在使用STM32定时器之前,我
们需要进行定时时间配置,本文将总结一下STM32定时器定时时间配置的
相关知识,包括定时器工作模式、定时器时钟源选择、定时器时钟分频、
定时器计数器重载值以及定时器中断配置等内容。

首先,我们需要选择定时器的工作模式。

STM32定时器支持多种工作
模式,包括基本定时器模式、高级定时器模式、输入捕获模式和输出比较
模式等。

基本定时器模式适用于简单的定时和延时操作,输入捕获模式适
用于捕获外部事件的时间参数,输出比较模式适用于产生精确的PWM波形。

根据具体的应用需求,选择合适的工作模式。

其次,我们需要选择定时器的时钟源。

STM32定时器的时钟源可以选
择内部时钟源(如系统时钟、HCLK等)或外部时钟源(如外部晶体)。

内部时钟源的稳定性较差,适用于简单的定时操作,而外部时钟源的稳定
性较好,适用于要求较高的定时操作。

然后,我们需要选择定时器的时钟分频系数。

定时器的时钟分频系数
决定了定时器的时钟频率,从而影响了定时器的计数速度。

我们可以通过
改变时钟分频系数来调整定时器的计数速度,从而实现不同的定时时间。

时钟分频系数的选择需要考虑定时器的最大计数周期和所需的定时精度。

接着,我们需要配置定时器的计数器重载值。

定时器的计数器从0开
始计数,当计数器达到重载值时,定时器将重新开始计数。

通过改变计数
器重载值,可以实现不同的定时时间。

计数器重载值的选择需要考虑定时
器的时钟频率和所需的定时时间。

最后,我们需要配置定时器的中断。

定时器中断可以在定时器计数达到重载值时触发,用于通知CPU定时器已经计数完成。

在定时器中断中,我们可以执行相应的中断服务程序,比如改变一些IO口的状态,实现定时操作。

通过配置定时器的中断使能和中断优先级,可以实现不同的中断操作。

需要注意的是,不同型号的STM32微控制器的定时器模块可能略有不同,具体的配置方法和寄存器设置也可能不同,请参考相应的数据手册和参考手册进行具体操作。

相关文档
最新文档