有理数混合运算的方法及法则

合集下载

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理汇总

有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。

(2)如有括号,先进行括号里的运算。

1.先算乘方,再算乘除,最后算加减。

2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧

初一数学有理数混合运算解题方法与技巧板块一、有理数基本加、减混合运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.示例:a+b=b+a(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.示例:(a+b)+c=a+(b+c)(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.有理数减法法则:减去一个数,等于加这个数的相反数.示例:a-b=a+(-b)有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.示例:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是求正3,负0.15,负9,正5,负11的和.板块二、有理数基本乘法、除法有理数乘、除法Ⅰ:有理数乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等.示例:ab=ba (乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.示例:abc=a(bc)(乘法结合律)③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.示例:a(b+c)=ab+ac(乘法分配律)有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.Ⅱ:有理数除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.板块三、有理数混合运算的顺序在进行有理数运算时,先算乘方,再算乘除,最后算加减,同级运算,按照从左到右的顺序进行,有括号的先算括号里的数.-----------------------------------------------------------------------------------------------------有理数运算所需的小学知识储备:整数、小数和分数的四则运算;约分和通分;常用的小数与分数的互化;基本的运算律和运算性质;在进行有理数运算之前,必须要掌握相反数、倒数和绝对值等相关概念:相反数:倒数:绝对值:要想学好有理数运算,必须要熟练掌握有理数运算法则:加法:减法:乘法:除法:乘方:有理数运算要点:有理数的运算顺序:先乘方和绝对值,再乘除,最后加减,有括号的先算括号里面的。

有理数的混合运算三注意

有理数的混合运算三注意
分析:这是一道有理数乘除混合运算的题目,由于乘除是同级运算,应按从左到右的顺序依次进行.
解:原式=-81× × ×(- )=1.
评注:在计算本题时,如果你禁不住 × =1的诱惑,来一个从中间开始算起,就违背了运算顺序的原则,必将导致失败!
三、注意运算律的灵活应用
有理数的运算律包括加法交换律、结合律,乘法交换律、结合律、乘法对加法的分配律.若能灵活、巧妙地运用它们,将使计算过程变得简捷.在具体运用时,主要有以下几种技巧:(1)相反数结合;(2)凑整结合;(3)正、负数分别结合;(4)分数、小数、整数分别结合;(5)带分数拆开后,整数、分数分别结合;(6)同分母或分母易通分的先结合;(7)易约分的先结合等.在有理数的混合运算中,往往是两种或两种以上的技巧的综合运用.
例4.计算:(+3 )+(+4 )-(+1 )+(-3 ).
分析:本题可应用结合律简化运算过程.
解:原式=[(+3 )-(+1 )]+[(+4 )+(-3 )]
=2 +1= .
例5.计算: ×(-8).
分析:对于本题,如果先把 化成假分数再计算,将十分繁琐.若把 拆成(71+ ),则可应用乘法的分配律求解.
评注:在进行乘方运算时,要特别注意 与 的不同.
二、注意运算顺序与运算步骤
有理数混合运算的顺序是:先算乘方,再算乘除,最后算加减.如果有括号,就先算括号里面的.有理数的运算步骤是:对于每一个运算,都应先确定结果的符号,再计算结果的绝对值.即“符号先判断,绝对值后计算”.
例3.计算:-81÷ × ÷(-16).
解:原式=(71+ )×(-8)=71×(-8)+ ×(-8)
=-568+(- )=-575 .
有理数的混合运算三注意
一般地,有理数混合运算的法则是:

有理数的混合运算技巧

有理数的混合运算技巧
有理数混合运算的方法技巧 一、理解运算顺序 有理数混合运算的运算顺序: ①从高级到低级:先算乘方,再算乘除,最后算加减; 有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键 例 1:计算:3+50÷22×( )-1 ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
二、应用四个原则: 1、整体性原则: 乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类, 分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。 2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽 量运用简便方法,如五个运算律的运用。 3、 口算原则: 在每一步的计算中, 都尽量运用口算, 口算是提高运算率的重要方法之一, 习惯于口算,有助于培养反应能力和自信心。 4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分别进行运算。如 何分段呢?主要有: (1)运算符号分段法。 有理数的基本运算有五种: 加、 减、 乘、 除和乘方, 其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。在运算中,低级运算把高 级运算分成若干段。 一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、 乘除的结果先计算出来,最后再算出这几个加数的和. 把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确 定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之 有效的方法. (2)括号分段法,有括号的应先算括号里面的。在实施时可同时分别对括号内外的算式 进行运算。 (3)绝对值符号分段法。绝对值符号除了本身的作用外,还具有括号的作用,从运算顺 序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进 行计算. (4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算。 1 4 2 101 2 2 例 2 计算:-0.25 ÷(- ) -(-1) +(-2) ×(-3) 2 说明:本题以加号、减号为界把整个算式分成三段,这三段分别计算出来的结果再相加。 三、掌握运算技巧 (1) 、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或 负数)归类计算。 (2) 、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。 (3) 、分解:将一个数分解成几个数和的形式,或分解为它的因数相乘的形式。 (4) 、约简:将互为倒数的数或有倍数关系的数约简。

有理数混合运算法则及技巧

有理数混合运算法则及技巧

有理数混合运算法则及技巧
以下是 6 条关于有理数混合运算法则及技巧:
1. 有理数混合运算,一定要先搞清楚运算顺序呀!就像你出门先穿好衣服再穿鞋一样,先算乘除后算加减呀!比如算3+2×5,那可不能先算 3+2 呀,得先算2×5 等于 10,再加上 3 才对呀!不然结果就错啦,这多重要呀!
2. 注意符号问题可太关键啦!这就像走在路上要认清方向,不能跑偏呀!比如计算-3×(-2),两个负号碰到一起就变成正啦,结果就是 6 哦!可别搞错
符号啦!
3. 巧用括号能帮大忙呢!括号就像是给运算加上了一层保护罩。

比如 10-(3+2),得先算括号里的 3+2 等于 5,再用 10 减去 5 才对呀!这技巧能让你算得更清楚明白呀!
4. 在有理数混合运算中,约分能让计算变简单好多呢!就像把一件复杂的事情简化了一样。

像计算12÷4/3,就可以把除法变成乘法,12×3/4,然后
约分一下,轻松算出 9,是不是很神奇呀!
5. 转换思路也很重要哦!有时候换个角度就能恍然大悟啦!比如说算转化
成分数 1/4,计算起来是不是一下子就容易多啦?多试试转换呀!
6. 要多练多熟悉呀!就像你熟悉了回家的路,走起来就轻松。

经常做有理数混合运算的练习,你就会越来越熟练,越来越厉害呀!以后遇到再难的题都不怕喽!
总之,有理数混合运算不难,掌握好这些法则和技巧,多练多熟悉,你一定能轻松搞定它!。

有理数混合运算的方法及法则

有理数混合运算的方法及法则

有理数混合运算的方法及法那么有理数混合运算的方法1、从高级到低级,先算乘方,再算乘除,最后算加减;2、从内向外,假如有括号,就先算小括号里的,再算中括号里的,最后算大括号里的;3、从左向右,同级运算,按照从左至右的顺序进展。

有理数混合运算法那么〔1〕有理数的加法法那么:1.同号两数相加,和取一样的符号,并把绝对值相加;2.绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.一个数与零相加仍得这个数;4.两个互为相反数相加和为零。

⑵有理数的减法法那么:减去一个数等于加上这个数的相反数。

补充:去括号与添括号:去括号法那么:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

添括号法那么:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。

⑶有理数的乘法法那么:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,假设其中有一个为零,积就为零。

⑷有理数的除法法那么:法那么一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法那么二:除以一个数等于乘以这个数的倒数。

⑸有理数的乘方:求n个一样因数的积的运算,叫做乘方,乘方的给果叫做幂。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

⑹有理数的运算顺序:有理数的混合运算法那么即先算乘方或开方,再算乘法或除法,后算加法或减法。

有括号时,先算小括号里面的运算,再算中括号,然后算大括号。

⑺运算律:①加法的交换律:a+b=b+a;②加法的结合律:〔a+b〕+c=a+〔b+c〕;③乘法的交换律:ab=ba;④乘法的结合律:〔ab〕c=a〔bc〕;⑤乘法对加法的分配律:a〔b+c〕=ab+ac;注:除法没有分配律。

有理数的加减乘除混合运算

有理数的加减乘除混合运算

5
.
【解析】
15 7 5 4 15 7 5 4 原式=- 4 ×-3×-7×-5= × × × =5. 4 3 7 5
课件目录


末 页
第2课时
有理数的加减乘除混合运算
分层作业
1.[2016· 新泰月考]下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷ (-9)=- 2 9 3 1 4;③ ×-4÷ (-1)= ;④(-4)÷ ×(-2)=16.其中计算正确的个数为( C ) 3 2 2 A.4 个 C.2 个 B.3 个 D.1 个
A.4 C.-2
B.2 D.-4
课件目录


末 页
第2课时
有理数的加减乘除混合运算
6.计算:
1 3 (1)42×-7+(-0.25)÷ ; 4 1 -1 ; (2)-1-2.5÷ 4
(3)[12-4×(3-10)]÷ 4.
1 解:(1)-6 ;(2)1;(3)10. 3
课件目录


末 页
第2课时
有理数的加减乘除混合运算
5 7 5 - (2) 12-18÷ 36 5 7 36 =12-18×- 5
5 36 7 36 = ×- 5 - ×- 5 12 18 14 =-3+ 5 1 =- . 5
课件目录


末 页
第2课时
有理数的加减乘除混合运算
2.[2017· 双柏县期末]计算-5-3×4 的结果是( A ) A.-17 C.-8 B.-7 D.-32
3.计算:[2017· 武汉]2×3+(-4)=
2

有理数加减乘除混合运算法则小结5.10

有理数加减乘除混合运算法则小结5.10

有理数的加减乘除知识梳理一、有理数的加法法则:①同号两数相加,和取相同的符号并把绝对值相加;如:-2+(-3)=-5②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 如: 2+(-3)=-(3-2)=-1 ③一个数与零相加仍得这个数; 如: 0+(-3)=-3④两个互为相反数的数相加和为零; 如: 3+(-3)=0二、有理数的减法法则:减去一个数等于加上这个数的相反数 如: 5-(-3)=5+3=8三、有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;如:(-2)×(-5)=+(2×5)=10 2×(-5)=-(2×5)=-10②任何数与零相乘都得零;③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正。

如:(-4)×(-2)×1×(-3)=-(4×2×1×3)=-24④几个有理数相乘若其中有一个为零积就为零四、有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数等于乘以这个数的倒数六、运算律:① 加法交换律:a +b =b +a 。

② 加法结合律:(a +b )+c =a +(b +c )。

③ 乘法交换律:ab =ba 。

④ 乘法结合律:(ab )c =a (bc )。

⑤ 乘法分配律:a (b +c )=ab +ac 。

七、运算顺序:有理数的混合运算法则大体与整数混合运算相同:先算乘方或开方,再算乘法或除法,后算加法或减法,有括号时、先算小括号里面的运算、再算中括号、然后算大括号。

有理数计算题1、(1)2+(-3) (2)(-5)+(-8) (3)6+(-4)(4)5+(-5) (5)0+(-2) (6))43(31-+(7)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121 (8)()⎪⎭⎫ ⎝⎛++-5112.1 2、(1)9-(-5) (2)(-3)-1 (3)(-3)-(-5)(4)0-8 (5)0-(-74) (6)(-6)-(-6) (7)(-52)-(-53) (8)(-32)-52; 3、(1) )127()65()411()310(-++-+ (2))539()518()23()52()21(++++-+-;(3)(-72)-(-37)-(-22)-17; (4)(-32)-21-(-65)-(-31);(5)(-8)-(-15)+(-9)-(-12) (6)0.5+(-41)-(-2.75)+21;(6)(-32)+(-61)-(-41)-21 (8)21+(-32)-(-54)+(-21)4、(1)(-9)×32 (2)(-132)×(-0.26)(3)(74)×56 (4)(-132)×(-0.26) 5、(1)18÷(-3) (2) (-57)÷(-3) (3) (-53)÷526、(1)(-4)×(-10)×0.5×(-3) (2) (-83)×34×(-1.8)(3)-36÷(-131)÷(-32) (4)(-1)÷(-4)÷74(5)3÷(-76)×(-97) (6)131÷(-3)×(-31)7、 (1)(65―43―97)×36 (2) 3×(–9)+7×(–9)(3)-3÷(31-41) (4)56×(-31-21)÷45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数混合运算的方法及法则1500字
有理数混合运算是指将整数、分数和小数混合起来进行加减乘除运算的过程。

下面将
介绍一些常用的方法和法则。

一、加法运算:
我们可以将有理数混合运算中的加法运算分解为两个步骤:先计算整数部分之间的和,然后计算小数部分和分数部分之间的和。

最后将两个部分的和相加即得最终结果。

二、减法运算:
减法运算与加法运算类似,也是将有理数混合运算中的减法运算分解为两个步骤:先
计算整数部分之间的差,然后计算小数部分和分数部分之间的差。

最后将两个部分的
差相减即得最终结果。

三、乘法运算:
有理数混合运算中的乘法运算可以按照下面的步骤进行:
1. 先将所有数的整数部分相乘;
2. 再将所有数的小数部分相乘;
3. 将所有数的分数部分相乘;
4. 将上面三个结果相乘。

四、除法运算:
有理数混合运算中的除法运算可以按照下面的步骤进行:
1. 先将被除数的整数部分除以除数的整数部分;
2. 再将被除数的小数部分除以除数的小数部分;
3. 将被除数的分数部分除以除数的分数部分;
4. 将上面三个结果相除。

五、加减乘除的法则:
1. 加法和乘法的交换律和结合律:a+b=b+a,a×b=b×a,(a+b)+c=a+(b+c),(a×b)×c=a×(b×c)。

这些法则可以使我们在进行运算时更加方便和灵活,可以用于改变运算顺序,使运算更简单。

2. 减法和除法的公式转换:a-b=a+(-b),a÷b=a×(1/b)。

减法可以转换为加法的计算,除法可以转换为乘法的计算,这样可以简化计算过程。

3. 分数与整数的运算法则:将整数看成分母为1的分数,可以将整数与分数相加、相减、相乘、相除。

4. 小数与分数的运算法则:可以将小数转换为分数进行计算,或者将分数转换为小数
进行计算。

综上所述,有理数混合运算的方法和法则可以帮助我们进行加减乘除运算,从而解决
实际问题。

在运算过程中,我们需要注意整数与分数之间的转换以及小数与分数之间
的转换,灵活运用各种运算法则,能更加快速、准确地进行运算。

相关文档
最新文档