单片机全双工串行通信实验原理

合集下载

单片机串口通信原理

单片机串口通信原理

单片机串口通信原理
单片机串口通信原理是指通过串口进行数据的发送和接收。

串口通信是一种异步通信方式,它使用两根信号线(TXD和RXD)进行数据的传输。

在发送数据时,单片机将待发送的数据通过串口发送数据线(TXD)发送出去。

发送的数据会经过一个串口发送缓冲区,然后按照一定的通信协议进行处理,并通过串口传输线将数据发送给外部设备。

在接收数据时,外部设备将待发送的数据通过串口传输线发送给单片机。

单片机接收数据线(RXD)会将接收到的数据传
输到一个串口接收缓冲区中。

然后,单片机会根据通信协议进行数据的解析和处理,最后将数据保存在内部的寄存器中供程序使用。

串口通信协议通常包括数据位、停止位、校验位等信息。

数据位指的是每个数据字节占据的位数,常见的有8位和9位两种。

停止位用于表示数据的结束,常用的有1位和2位两种。

校验位用于检测数据在传输过程中是否发生错误,常见的校验方式有奇偶校验和无校验。

总的来说,单片机串口通信原理是通过串口发送数据线和接收数据线进行数据的传输和接收,并通过一定的通信协议进行数据的解析和处理。

这种通信方式可以实现单片机与外部设备的数据交换,广泛应用于各种嵌入式系统和物联网设备中。

单片机 串口通信原理

单片机 串口通信原理

单片机串口通信原理
单片机串口通信是指通过串行口进行数据的传输和接收。

串口通信原理是利用串行通信协议,将数据按照一定的格式进行传输和接收。

在单片机中,串口通信一般是通过UART(通用异步收发传输器)模块来实现的。

UART模块包括发送和接收两部分。

发送部分将数据从高位到低位逐位发送,接收部分则是将接收到的数据重新组装成完整的数据。

串口通信的原理是利用串行通信协议将发送的数据进行分帧传输。

在传输的过程中,数据被分成一个个的数据帧,每帧包括起始位、数据位、校验位和停止位。

起始位和停止位用于标识数据的开始和结束,数据位则是用来存放需要传输的数据。

校验位用于校验数据的正确性。

在发送端,单片机将需要发送的数据按照一定的格式组装成数据帧,然后通过UART发送出去。

在接收端,UART接收到的数据也是按照数据帧的格式进行解析,然后重新组装成完整的数据。

通过这样的方式,发送端和接收端可以进行数据的传输和接收。

串口通信具有简单、可靠性高、适应性强等优点,广泛应用于各种领域,如物联网、嵌入式系统等。

掌握串口通信原理对于单片机的应用开发具有重要意义。

单片机双机串行实验报告

单片机双机串行实验报告

单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。

二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。

数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。

2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。

3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。

通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。

4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。

5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。

三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。

2. 实验软件:Keil C51集成开发环境。

四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写发送端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。

(4)循环发送指定的数据。

2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写接收端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。

RS232串口通讯

RS232串口通讯

实验九 RS232串口通讯应用一、实验目的串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到电脑端,而且也能实现电脑对单片机的控制,比如可以很直观地把红外遥控器键值的数据码显示在电脑上等。

本次实验目的:1、通过实际硬件连接及软件编程完成 51单片机和PC机之间的串口通讯,从而加深对异步串行通信接口的基本结构、工作原理等串行通信基本概念的理解;2、了解RS-232C电平规定与TTL电平规定的不同,及采用专用芯片MAX232实现两者之间电平转换的连接电路。

二、实验设备51单片机实验板、PC机、串口连接线、串口调试软件、Keil软件、连接导线等。

三、实验原理及内容51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。

进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,在此采用专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。

采用三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。

这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

图1 串口通讯的硬件电路连接为了能够在电脑端看到单片机发出的数据,必须借助一个WINDOWS软件进行观察,这里利用一个免费的电脑串口调试软件(这是一个绿色的软件,无需安装,可以直接在当前位置运行这个软件)。

软件界面如下图,1先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。

串口选择为COM1,当然51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源,这时只要按下K1一次,在串口调试助手软件的接收区界面中就会增加一个“AF”字符,表示单片机向电脑发送“AF”字符成功。

(单片机原理及应用)第8章AT89C51串行通信及其应用

(单片机原理及应用)第8章AT89C51串行通信及其应用
(单片机原理及应用)第8章 at89c51串行通信及其应用
目录
• at89c51简介 • at89c51串行通信原理 • at89c51串行通信应用实例 • at89c51串行通信编程 • at89c51串行通信常见问题及解决方案
01 at89c51简介
at89c51单片机简介
at89c51是一种基于CMOS技术 的8位微控制器,由Atmel公司
解决方案
针对信号干扰问题,可以采取增加信 号线屏蔽、优化电源滤波等措施;针 对通信协议不匹配问题,需要统一发 送和接收设备的通信协议;针对数据 校验不通过问题,可以在数据传输过 程中加入校验码,并在接收端进行校 验。
串行通信接口电路设计问题
总结词
接口电路设计不合理可能导致串行通信性能下降或通信失败。
波特率设置
波特率是数据传输的速率, 需要根据实际情况进行合理 设置,以保证数据传输的稳
定性和正确性。
数据校验
为了防止数据传输过程中出 现错误,需要进行数据校验 ,常用的校验方法有奇偶校
验和CRC校验等。
硬件流控制
当数据传输速率较高时,可 以采用硬件流控制来保证数 据传输的稳定性,常用的硬 件流控制方式有RTS/CTS流 控制和XON/XOFF流控制。
串行通信的基本概念
串行通信是一种数据传输方式,数据在单条线路上按顺序一位一位 地传输,具有线路简单、成本低等优点。
at89c51的串行通信接口
at89c51单片机内置一个全双工的串行通信接口,可以同时进行数 据的发送和接收。
串行通信协议
包括起始位、数据位、奇偶校验位和停止位等,用于规定数据的传 输格式和顺序。
一个6向量两级中断结构。
片内振荡器和时钟电路。

51单片机串口通信

51单片机串口通信

一、串口通信原理串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。

由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。

串口通信的工作原理请同学们参看教科书。

以下对串口通信中一些需要同学们注意的地方作一点说明:1、波特率选择波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。

MSC-51串行端口在四种工作模式下有不同的波特率计算方法。

其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。

在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。

在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1))其中,SMOD——寄存器PCON的第7位,称为波特率倍增位;TH1——定时器的重载值。

在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。

这要根据系统的运作特点,确定通信的频率范围。

然后考虑通信时钟误差。

使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。

为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。

下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。

则TH1=256-62500/波特率根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。

列计数器重载值,通信误差如下表:因此,在通信中,最好选用波特率为1200,2400,4800中的一个。

2、通信协议的使用通信协议是通信设备在通信前的约定。

单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。

假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。

双机通信实验报告.doc

双机通信实验报告.doc

双机通信实验报告。

单片机实验报告(自动化15级)实验名称:串行通信实验1.实验1的目的。

掌握单片机串口的工作模式;2.掌握双机通信的接口电路设计和程序设计。

2.实验设备1。

个人电脑;2.单片机最小系统教学实验模块:3.数码管显示模块三、实验内容1。

两套单片机测试装置(两个实验组)共同完成了实验。

我们U1是机器A,U2是机器B。

机器A将学生的学号后的8位数字发送到机器B。

机器B接收到这8位数字,并将其显示在8位数字的电子管上。

该电路如图1所示。

串行通信模式要求为模式1,波特率为2400位/秒,不是双倍,单片机外部晶振频率为11.0592米。

图1双机通信原理附加要求示意图:机器b收到后,该机器(机器b)的学生编号的最后8位数字被送回机器a,并显示在数码管上。

2.单片机与PC机之间的通信单片机向PC机发送数据。

单片机将本机的学生号(学生本人)反复发送到PC机,发送波特率为1200,采用模式1,单片机外部晶振频率为11.0592米四、实验原理4.1串行通信模式在串行通信中,有两种基本通信模式:异步通信。

异步串行通信规定了字符数据的传输格式,即每个数据以相同的帧格式传输。

每个帧信息由起始位、数据位、奇偶校验位和停止位组成。

本实验主要研究异步通信的实现方法。

在异步通信中,每个字符使用一个起始位和一个停止位作为字符开始和结束的符号,因此占用时间。

因此,为了提高传输数据块时的通信速度,这些标记通常被去除,并采用同步通信。

同步通信不像异步通信那样依赖起始位在每个字符数据的开头发送和接收同步。

相反,同步字符用于在每个数据块传输开始时同步发送方和接收方。

根据通信方式,数据传输线可分为三种类型:单工模式、半双工模式、全双工模式。

(1)单工模式在单工模式中,通信线路的一端连接到发射机,另一端连接到接收机,这形成单向连接,并且仅允许数据在固定方向上传输。

(2)半双工模式在半双工模式下,系统中的每个通信设备由一个发射机和一个接收机组成,它们通过收发器开关连接到通信线路,如图33所示-1.实验1的目的。

单片机双机通信实验报告

单片机双机通信实验报告

单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。

实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。

实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。

接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。

具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。

具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。

实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。

一台单片机发送的数据可以被另一台单片机接收到。

实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。

通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。

同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机全双工串行通信实验原理
单片机全双工串行通信实验原理是基于单片机内部的串行口(Serial Port)进行数据传输。

在全双工通信模式下,数据可以在两个方向上进行传输,同时进行接收和发送。

以下是单片机全双工串行通信实验的基本原理:
1. 硬件连接:将单片机与另一台设备(如计算机、另一块单片机等)通过串行通信接口连接起来。

通常需要设置通信参数,如波特率(baud rate)、数据位(data bits)、停止位(stop bits)等。

2. 内部结构:单片机的串行口内部通常包括两个物理上独立的缓冲器,一个用于发送数据(发送缓冲器),另一个用于接收数据(接收缓冲器)。

3. 传输原理:串行通信时,数据一位一位地进行传输,每一位数据都占据一个固定的时间长度。

在全双工通信模式下,发送和接收可以在同一时刻进行。

4. 数据格式:一帧数据通常包括起始位、数据位、奇偶校验位和停止位。

起始位指示数据的开始,数据位表示要传输的实际数据,奇偶校验位用于检查传输过程中是否出现错误,停止位指示数据的结束。

5. 通信协议:为了确保数据的正确传输,需要制定一定的通信
协议。

例如,如何处理数据的校验错误、如何处理接收方未准备好等情况。

6. 中断处理:在全双工通信中,当接收到一帧数据时,接收缓冲器会被填满,此时会触发接收中断。

在中断处理程序中,可以从接收缓冲器中读取数据并处理。

同样地,当发送一帧数据时,发送缓冲器会被清空,此时也会触发发送中断。

在中断处理程序中,可以将要发送的数据写入发送缓冲器。

7. 调试与测试:完成硬件连接和参数设置后,需要进行调试和测试以确认通信是否正常。

可以通过编写简单的程序进行测试,如发送一串数据并接收回来检查是否正确。

需要注意的是,具体的实验原理和实现方法可能因不同的单片机型号和开发环境而有所不同。

在进行实验前,建议仔细阅读相关文档和教程,并参考具体的单片机开发指南。

相关文档
最新文档