串行通信实验报告

合集下载

串行通信实验报告

串行通信实验报告

串行通信实验报告串行通信实验报告引言:串行通信是一种数据传输方式,通过将数据一位一位地传输,相比并行通信具有更高的传输效率和更少的硬件成本。

本实验旨在通过搭建串行通信系统,了解串行通信的原理和应用,并探究不同参数对传输效果的影响。

一、实验目的本实验旨在:1. 了解串行通信的原理和基本概念;2. 掌握串行通信的实验搭建方法;3. 分析不同参数对串行通信传输效果的影响。

二、实验原理串行通信是一种将数据一位一位地传输的通信方式。

在串行通信中,数据以二进制形式传输,每一位的传输时间相等。

常见的串行通信方式有同步串行通信和异步串行通信。

同步串行通信中,发送端和接收端的时钟信号同步,以确保数据的准确传输。

发送端将数据按照一定的帧格式发送,接收端通过时钟信号进行同步,按照相同的帧格式接收数据。

异步串行通信中,发送端和接收端的时钟信号不同步,通过起始位和停止位来标识数据的开始和结束。

发送端在每个数据帧前加上一个起始位,接收端通过检测起始位来判断数据的开始。

三、实验步骤1. 搭建串行通信系统:将发送端和接收端连接,通过串口线进行数据传输。

2. 设置串行通信参数:根据实验要求,设置波特率、数据位、停止位等参数。

3. 编写发送端程序:通过编程语言编写发送端程序,实现数据的发送。

4. 编写接收端程序:通过编程语言编写接收端程序,实现数据的接收和显示。

5. 调试和测试:进行通信测试,观察数据的传输效果,记录实验结果。

四、实验结果与分析在实验中,我们通过设置不同的串行通信参数进行测试,观察数据的传输效果。

实验结果显示,在较低的波特率下,数据传输速度较慢,但传输稳定性较高;而在较高的波特率下,数据传输速度较快,但传输稳定性较差。

此外,我们还测试了不同数据位和停止位对传输效果的影响。

结果显示,增加数据位可以提高数据的传输精度,但也会增加传输的时间和成本。

增加停止位可以增加数据的传输稳定性,但也会降低传输速度。

五、实验总结通过本次实验,我们深入了解了串行通信的原理和应用,并通过实验搭建了串行通信系统。

串行通信技术实验报告

串行通信技术实验报告

#### 实验目的1. 理解串行通信的基本原理和常用通信协议。

2. 掌握串行通信硬件设备的连接与配置。

3. 熟悉串行通信软件编程,实现数据传输。

4. 通过实验验证串行通信的稳定性和可靠性。

#### 实验时间2023年10月15日#### 实验地点电子实验室#### 实验设备1. 两台PC机2. 串行通信模块(如USB转串口模块)3. 串行通信软件(如PuTTY)4. 串行通信协议转换器(如RS-232转RS-485模块)5. 数据线、电源线等辅助连接线#### 实验原理串行通信是一种通信方式,将数据一位一位地依次传输,按位顺序组成字符或字节。

与并行通信相比,串行通信在传输距离、传输速率和设备复杂度上具有优势。

本实验采用RS-232协议进行串行通信。

#### 实验步骤1. 硬件连接:- 将两台PC机通过串行通信模块连接,确保通信模块与PC机的串口正确对应。

- 如果需要,使用RS-232转RS-485模块实现串行通信协议的转换。

2. 软件配置:- 在PC机上安装并运行串行通信软件,如PuTTY。

- 设置串行通信参数,包括波特率、数据位、停止位、校验位等,确保两台PC机的串行通信参数一致。

3. 编程实现:- 在PC机上编写串行通信程序,实现数据的发送和接收。

- 使用C语言或Python等编程语言,调用串行通信库函数进行编程。

4. 实验验证:- 在一台PC机上发送数据,另一台PC机上接收数据。

- 检查接收到的数据是否与发送的数据一致,验证串行通信的稳定性。

#### 实验结果与分析1. 硬件连接:- 成功连接了两台PC机,并使用串行通信模块进行通信。

2. 软件配置:- 串行通信软件成功运行,并设置好通信参数。

3. 编程实现:- 编写串行通信程序,实现数据的发送和接收。

4. 实验验证:- 发送数据成功,接收到的数据与发送的数据一致,验证了串行通信的稳定性。

#### 结论通过本次实验,我们成功实现了两台PC机之间的串行通信。

实验七串行口通讯实验报告

实验七串行口通讯实验报告

实验七串行口通讯实验报告一、引言串行口通讯是一种常见的数据传输方式,通过串行口可以在计算机和其他设备之间实现数据的传输和通信。

本实验通过使用Arduino开发板,以及利用串行口通讯实现从计算机向Arduino开发板发送指令,控制LED 灯的亮灭。

二、实验目的1.了解串行口通讯的基本原理和工作方式;2.掌握Arduino上位机通讯程序的编写及与硬件的串行口通讯方法;3.通过串行口通讯实现计算机对Arduino开发板的远程控制。

三、实验设备和器材1. Arduino Uno板;2.计算机;B数据线;4.杜邦线;5.LED灯。

四、实验原理当计算机与Arduino开发板连接时,可以通过串行口通讯实现双方之间的数据传输。

串行口通讯使用两根信号线:一根发送线(TX),用于发送数据;一根接收线(RX),用于接收数据。

通讯的双方都必须发送和接收数据,因此需要双向数据传输,即双向通讯。

五、实验步骤1. 连接Arduino开发板和计算机,使用USB数据线将两者连接;2. 打开Arduino IDE开发环境,编写以下代码并上传到Arduino开发板:```c++int ledPin = 13;void setuSerial.begin(9600);pinMode(ledPin, OUTPUT);void looif (Serial.available( > 0) { // 如果串行口接收到数据digitalWrite(ledPin, HIGH);digitalWrite(ledPin, LOW);}}```3. 打开串行监视器(Serial Monitor),设置波特率为9600,并选择“无”作为换行符;4.在串行监视器中输入“1”,回车,LED灯将点亮;5.在串行监视器中输入“0”,回车,LED灯将熄灭;6.关闭串行监视器。

六、实验结果和分析在本实验中,通过串行口通讯实现了从计算机向Arduino开发板发送指令,控制LED灯的亮灭。

串行通信 实验报告

串行通信 实验报告

串行通信实验报告串行通信实验报告引言:串行通信是一种在计算机科学和电子工程中广泛使用的通信方式。

与并行通信相比,串行通信通过逐位传输数据,具有更高的可靠性和稳定性。

本实验旨在研究串行通信的原理和应用,并通过实际操作来验证其性能。

一、实验目的本实验的主要目的是掌握串行通信的基本原理和操作方法,并通过实验验证串行通信的性能。

二、实验设备和材料1. 串行通信模块2. 电脑3. 串行通信线缆4. 示波器5. 逻辑分析仪三、实验步骤1. 连接串行通信模块和电脑,确保连接正确稳定。

2. 设置串行通信模块的波特率、数据位、停止位等参数,根据实际需求进行调整。

3. 编写电脑端的串行通信程序,实现数据的发送和接收功能。

4. 使用示波器和逻辑分析仪监测串行通信的信号波形,分析数据传输的过程和效果。

四、实验结果与分析通过实验,我们成功地建立了串行通信连接,并实现了数据的传输和接收。

通过示波器和逻辑分析仪的监测,我们可以清晰地观察到串行通信的信号波形和数据传输的过程。

在实验中,我们发现串行通信相较于并行通信,虽然传输速率较慢,但具有更高的可靠性和稳定性。

由于数据逐位传输,串行通信可以更好地应对信号干扰和传输错误的情况。

同时,串行通信可以通过调整参数来适应不同的传输距离和传输速率需求。

根据实验结果和分析,我们可以得出结论:串行通信是一种可靠且稳定的通信方式,广泛应用于计算机科学和电子工程领域。

在实际应用中,我们需要根据具体需求选择合适的串行通信参数,以确保数据的正确传输和接收。

五、实验总结通过本次实验,我们深入了解了串行通信的原理和应用。

实验结果表明,串行通信具有较高的可靠性和稳定性,适用于各种数据传输场景。

在今后的学习和工作中,我们将继续探索串行通信的更多应用领域,并不断提高串行通信技术的性能和效率。

六、参考文献[1] 张三, 串行通信技术研究, 电子通信学报, 2008.[2] 李四, 串行通信在计算机网络中的应用, 计算机应用技术, 2010.注:本实验报告仅供参考,如需引用请注明出处。

数电实验报告串行(3篇)

数电实验报告串行(3篇)

第1篇一、实验目的1. 理解串行通信的基本原理和方式。

2. 掌握串行通信接口电路的设计与调试方法。

3. 熟悉串行通信在实际应用中的使用。

二、实验原理串行通信是一种数据传输方式,它将数据一位一位地顺序传送,每位的持续时间远远大于数据信号的持续时间。

与并行通信相比,串行通信具有传输距离远、抗干扰能力强、成本低等优点。

串行通信方式主要有两种:同步串行通信和异步串行通信。

同步串行通信使用统一的时钟信号来同步发送和接收设备,而异步串行通信则使用起始位和停止位来同步。

三、实验器材1. 实验箱2. 串行通信模块3. 信号发生器4. 示波器5. 计算器四、实验步骤1. 连接电路根据实验要求,将串行通信模块、信号发生器、示波器等设备正确连接到实验箱上。

2. 设置参数根据实验要求,设置串行通信模块的波特率、数据位、停止位和校验位等参数。

3. 发送数据使用信号发生器生成要发送的数据信号,通过串行通信模块发送出去。

4. 接收数据通过示波器观察接收到的数据信号,分析其波形和参数。

5. 调试与优化根据观察到的波形和参数,对串行通信模块进行调试和优化,确保数据传输的准确性和可靠性。

五、实验结果与分析1. 发送数据波形观察到发送的数据信号波形符合要求,波特率、数据位、停止位和校验位等参数设置正确。

2. 接收数据波形观察到接收到的数据信号波形与发送端一致,说明数据传输过程中没有发生错误。

3. 调试与优化通过调整串行通信模块的参数,提高了数据传输的稳定性和抗干扰能力。

六、实验结论1. 通过本次实验,掌握了串行通信的基本原理和方式。

2. 熟悉了串行通信接口电路的设计与调试方法。

3. 了解了串行通信在实际应用中的重要性。

七、实验心得1. 串行通信在实际应用中具有广泛的应用前景,如工业控制、远程通信等。

2. 在设计和调试串行通信接口电路时,要充分考虑抗干扰能力和数据传输的稳定性。

3. 要熟练掌握串行通信模块的参数设置,以确保数据传输的准确性。

串行通讯的实验报告

串行通讯的实验报告

一、实验目的1. 理解串行通讯的基本原理和通信方式。

2. 掌握串行通讯的硬件设备和软件实现方法。

3. 学会使用串行通讯进行数据传输。

4. 通过实验,提高动手能力和分析问题、解决问题的能力。

二、实验原理串行通讯是指用一条数据传输线将数据一位一位地按顺序传送的通信方式。

与并行通讯相比,串行通讯具有线路简单、成本低等优点。

串行通讯的基本原理如下:1. 异步串行通讯:每个字符独立发送,字符间有时间间隔,不需要同步信号。

每个字符由起始位、数据位、奇偶校验位和停止位组成。

2. 同步串行通讯:数据块作为一个整体发送,需要同步信号。

同步串行通讯分为两种方式:面向字符方式和面向比特方式。

三、实验设备1. 计算机:一台2. 串行通讯设备:串行数据线、串行接口卡、串口调试助手等3. 单片机实验平台:一台4. 数码管显示模块:一个四、实验内容1. 异步串行通讯实验(1)硬件连接:将计算机的串口与单片机实验平台的串行接口连接。

(2)软件设计:编写程序,实现单片机向计算机发送数据,计算机接收数据并显示在屏幕上。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

b. 编写发送程序,实现单片机向计算机发送数据。

c. 编写接收程序,实现计算机接收数据并显示在屏幕上。

2. 同步串行通讯实验(1)硬件连接:与异步串行通讯实验相同。

(2)软件设计:编写程序,实现单片机向计算机发送数据块,计算机接收数据块并显示在屏幕上。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

b. 编写发送程序,实现单片机向计算机发送数据块。

c. 编写接收程序,实现计算机接收数据块并显示在屏幕上。

3. 双机通讯实验(1)硬件连接:将两台单片机实验平台通过串行数据线连接。

(2)软件设计:编写程序,实现两台单片机之间相互发送和接收数据。

(3)实验步骤:a. 设置串行通信参数:波特率、数据位、停止位、奇偶校验位等。

设备通信实验报告(3篇)

设备通信实验报告(3篇)

第1篇一、实验目的1. 理解并掌握串行通信的基本原理和通信协议。

2. 掌握单片机与PC之间的串行通信编程方法。

3. 通过实验验证串行通信在实际应用中的可靠性。

二、实验设备1. 单片机最小系统教学实验模块(含AT89S51单片机)2. PC机3. 串口通信线4. 示波器5. 数码管显示模块三、实验原理串行通信是一种串行传输数据的方式,数据按照位顺序逐位传输。

串行通信分为同步通信和异步通信两种方式。

本实验采用异步通信方式,即串行数据传输过程中,每个字符数据前都有一个起始位,字符数据后有一个或多个停止位,字符数据之间可以插入空闲位。

异步通信的波特率是指每秒钟传输的位数。

本实验中,单片机与PC之间的通信波特率为9600。

四、实验内容1. 单片机与PC之间的串行通信(1)编写单片机串行通信程序,实现数据发送和接收。

(2)编写PC端串口通信程序,实现数据发送和接收。

(3)使用示波器观察单片机串行通信过程中的信号波形。

2. 双机通信实验(1)连接两套单片机实验模块,实现单片机之间的串行通信。

(2)编写两个单片机之间的串行通信程序,实现数据发送和接收。

(3)使用数码管显示模块显示接收到的数据。

五、实验步骤1. 编写单片机串行通信程序(1)设置单片机串行口工作在方式1,波特率为9600。

(2)编写数据发送函数,实现数据的串行发送。

(3)编写数据接收函数,实现数据的串行接收。

2. 编写PC端串口通信程序(1)打开串口,设置波特率为9600,数据位为8位,停止位为1位,校验位为无。

(2)编写数据发送函数,实现数据的串行发送。

(3)编写数据接收函数,实现数据的串行接收。

3. 使用示波器观察单片机串行通信过程中的信号波形(1)将示波器的探头连接到单片机的串行通信接口。

(2)运行单片机程序,发送数据。

(3)观察示波器上的信号波形,验证串行通信的可靠性。

4. 连接两套单片机实验模块,实现单片机之间的串行通信(1)将两套单片机实验模块的串行通信接口通过串口通信线连接。

串行通信实验报告

串行通信实验报告

串行通信实验报告实验报告:串行通信实验一、实验目的本实验旨在通过搭建串行通信系统,了解串行通信的基本原理和工作方式,掌握串行通信的相关知识和技术。

二、实验仪器和材料1. Arduino开发板B数据线3.跳线若干4.电脑三、实验原理串行通信是一种通过连续的、位的形式传输数据的通信方式。

在串行通信中,数据通过一个数据线一位一位地传输,与并行通信相比,串行通信的线路数量较少,适用于数据传输距离较远的场景。

在本实验中,我们使用Arduino开发板作为串行通信的发送和接收端,通过USB数据线连接电脑与Arduino开发板进行数据交互。

四、实验步骤1. 连接电路:将Arduino开发板通过USB数据线连接至电脑,确保连接稳定。

2. 编写Arduino代码:使用Arduino IDE软件编写Arduino代码,实现数据发送和接收的功能。

代码示例://发送端void setuSerial.begin(9600); //设置串行通信波特率为9600void looString message = "Hello World!"; //待发送的消息Serial.println(message); //通过串行通信发送消息delay(2000); //延迟2秒//接收端void setuSerial.begin(9600); //设置串行通信波特率为9600void looif (Serial.available() { //如果串行通信接收到数据String message = Serial.readString(; //读取接收到的数据Serial.println("Received: " + message); //打印接收到的数据}3. 上传代码:将编写好的代码上传至Arduino开发板,使其开始工作。

4. 打开串行监视器:在Arduino IDE中点击“工具”菜单并选择“串行监视器”(或使用快捷键Ctrl+Shift+M)打开串行监视器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串行通信实验报告班级姓名学号日期一、实验目的:1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。

2、了解实现串行通讯的硬环境、数据格式的协议、数据交换的协议。

3、学习串口通讯的程序编写方法。

二、实验要求1.单机自发自收实验:实现自发自收。

编写相应程序,通过发光二极管观察收发状态。

2.利用单片机串行口,实现两个实验台之间的串行通讯。

其中一个实验台作为发送方,另一侧为接收方。

三、实验说明通讯双方的RXD、TXD信号本应经过电平转换后再行交叉连接,本实验中为减少连线可将电平转换电路略去,而将双方的RXD、TXD直接交叉连接。

也可以将本机的TXD接到RXD上。

连线方法:在第一个实验中将一台实验箱的RXD和TXD相连,用P1.0连接发光二极管。

波特率定为600,SMOD=0。

在第二个实验中,将两台实验箱的RXD和TXD交叉相连。

编写收发程序,一台实验箱作为发送方,另一台作为接收方,编写程序,从内部数据存储器20H~3FH单元中共32个数据,采用方式1串行发送出去,波特率设为600。

通过运行程序观察存储单元内数值的变化。

四、程序甲方发送程序如下:ORG 0000HLJMP MAINORG 0023HLJMP COM_INTORG 1000HMAIN: MOV SP,#53HMOV 78H,#20H— MOV 77H,00HMOV 76H,20HMOV 75H,40HACALL TRANSHERE: SJMP HERETRANS: MOV TMOD,#20HMOV TH1,#0F3HMOV TL1,#0F3HMOV PCON,#80HSETB TR1MOV SCON,#40HMOV IE,#00HCLR F0MOV SBUF,78HWAIT1: JNB TI,WAIT1CLR TIMOV SBUF,77HWAIT2: JNB TI,WAIT2CLR TIMOV SBUF,76HWAIT3: JNB TI,WAIT3CLR TI— MOV SBUF,75HWAIT4: JNB TI,WAIT4CLR TIMOV IE,#90HMOV DPH,78HMOV DPL,77HMOVX A,@DPTRMOV SBUF,AWAIT: JNB F0,WAITRETCOM_INT: CLR TIINC DPTRMOV A,DPHCJNE A,76H,END1MOV A,DPLCJNE A,75H,END1SETB F0CLR ESCLR EARETEND1: MOVX A,@DPTRMOV SBUF,AEND乙方发送程序如下:ORG 0000HLJMP MAINORG 0023HLJMP COM_INTORG 1000H MAIN: MOV SP,#53HACALL RECEI HERE: SJMP HERE RECEI: MOV R0,#78H MOV TMOD,#20H MOV TH1,#0F3H MOV TL1,#0F3H MOV PCON,#80H SETB TR1MOV SCON,#50H MOV IE,#90H CLR F0CLR 7FH WAIT: JNB 7FH,WAITCOM_INT: PUSH DPLPUSH DPHPUSH AccCLR RIJB F0,R_DATAMOV A,SBUFMOV @R0,ADEC R0CJNE R0,#74H,RETN SETB F0RETN: POP AccPOP DPHPOP DPLRETIR_DATA: MOV DPH,78HMOV DPL,77HMOV A,SBUFMOVX @DPTR,AINC 77HMOV A,77HJNZ END2— INC 78HEND2: MOV A,76HCJNE A,78H,RETNMOV A,75HCJNE A,77H,RETNCLR ESCLR EASETB 7FHSJMP RETNEND五、实验过程中遇到的主要问题OUTBIT equ 08002h ; 位控制口OUTSEG equ 08004h ; 段控制口IN equ 08001h ; 键盘读入口HasRcv equ 20h.0 ; 接收标志位LEDBuf equ 40h ; 显示缓冲RCVBuf equ 50H ; 接收缓冲ORG 0000HLJMP START; 串行口中断程序ORG 0023HJNB TI,S0_RCLR TINOPSJMP S0_RETS0_R: ; 接收数据CLR RIMOV RCVBUF,SBUF ; 保存数据SETB HasRcv ; 提示收到数据NOPS0_RET:RETILEDMAP: ; 八段管显示码db 3fh, 06h, 5bh, 4fh, 66h, 6dh, 7dh, 07hdb 7fh, 6fh, 77h, 7ch, 39h, 5eh, 79h, 71h Delay: ; 延时子程序mov r7, #0DelayLoop:djnz r7, DelayLoopdjnz r6, DelayLoopretDisplayLED:mov r0, #LEDBufmov r1, #6 ; 共6个八段管mov r2, #00100000b ; 从左边开始显示Loop:mov dptr, #OUTBITmov a, #0movx @dptr, a ; 关所有八段管mov a, @r0mov dptr, #OUTSEGmovx @dptr,amov dptr, #OUTBITmov a, r2movx @dptr, a ; 显示一位八段管mov r6, #1call Delaymov a, r2 ; 显示下一位rr amov r2, ainc r0djnz r1, LoopretTestKey:mov dptr, #OUTBITmov a, #0movx @dptr, a ; 输出线置为0mov dptr, #INmovx a, @dptr ; 读入键状态cpl aanl a, #0fh ; 高四位不用retKeyTable: ; 键码定义db 16h, 15h, 14h, 0ffhdb 13h, 12h, 11h, 10hdb 0dh, 0ch, 0bh, 0ahdb 0eh, 03h, 06h, 09hdb 0fh, 02h, 05h, 08hdb 00h, 01h, 04h, 07hGetKey:mov dptr, #OUTBITmov P2, dphmov r0, #Low(IN)mov r1, #00100000bmov r2, #6KLoop:mov a, r1 ; 找出键所在列cpl amovx @dptr, acpl arr amov r1, a ; 下一列movx a, @r0cpl aanl a, #0fhjnz Goon1 ; 该列有键入djnz r2, KLoopmov r2, #0ffh ; 没有键按下, 返回0ffhsjmp ExitGoon1:mov r1, a ; 键值= 列X 4 + 行mov a, r2—dec arl arl amov r2, a ; r2 = (r2-1)*4mov a, r1 ; r1中为读入的行值mov r1, #4LoopC:rrc a ; 移位找出所在行jc Exitinc r2 ; r2 = r2+ 行值djnz r1, LoopCExit:mov a, r2 ; 取出键码mov dptr, #KeyTablemovc a, @a+dptrmov r2, aWaitRelease:mov dptr, #OUTBIT ; 等键释放clr amovx @dptr, amov r6, #10call Delaycall TestKeyjnz WaitReleasemov a, r2retSTART:MOV SP, #60HMOV IE, #0 ; DISABLE ALL INTERRUPTMOV TMOD,#020H ; 定时器1工作于方式2 (8位重装)MOV TH1, #0F3H ; 波特率?2400BPS @ 12MHzMOV TL1, #0F3HANL PCON,#07FH ; SMOD 位清零orl PCON,#80hMOV SCON,#050H ; 串行口工作方式设置MOV LEDBuf, #0ffh ; 显示8.8.8.8.mov LEDBuf+1, #0ffhmov LEDBuf+2, #0ffh—mov LEDBuf+3, #0ffhmov LEDBuf+4, #0mov LEDBuf+5, #0SETB TR1SETB ESSETB EA;mov sbuf,a;jnb ti,$MLoop:jb HasRcv, RcvData ; 收到数据?call DisplayLED ; 显示call TestKey ; 有键入?jz MLoop ; 无键入, 继续显示call GetKey ; 读入键码anl a, #0fh ; 通讯口输出键码MOV SBUF,ALJMP MLoopRcvData:clr HasRcv ; 是mov a, RcvBuf ; 显示数据mov b,aanl a,#0fh ; 显示低位mov dptr, #LEDMapmovc a, @a+dptrmov LEDBuf+5, amov a,bswap a ; 显示高位anl a,#0fhmov dptr, #LEDMapmovc a, @a+dptrmov LEDBuf+4, aljmp MLoopEND六、实验后的心得体会。

相关文档
最新文档