水源热泵设计方案

合集下载

水源热泵方案

水源热泵方案

一、项目概况北京某办公楼位于城南,该办公楼为改造项目,地上五层,地下一层,总建筑面积约8000平米。

需解决夏季空调制冷,冬季供暖问题,全年保持室温在18℃-25℃。

二、制冷供暖解决方案1、风冷热泵加辅助电加热方案利用风冷热泵实现夏季制冷,冬季供暖考虑到风冷热泵机组在室外温度-8℃时启动困难,需增加辅助电加热。

2、水源热泵方案该方案要求在建筑物附近打三口井,井深80-100米,一口抽水,出水量为100M3/h,两口井回灌,保持地下水资源稳定,利用井水作为冷热源,水源热泵机组夏季制冷,冬季供暖满足办公楼要求。

三、负荷计算及机组1. 设计依据、范围及原则本方案包含某办公楼的空调制冷供暖系统,包括冷热源、设备选型及末端系统方案。

能够独立实现夏季制冷,冬季供暖。

保证大楼的正常使用。

2. 空调冷热负荷计算考虑到该建筑主要为办公室,根据国家标准单位建筑面积制冷负荷选取100W/M2, 建筑总冷负荷约为800KW。

单位建筑面积供暖热负荷选取60W/M2, 建筑总热负荷约为480KW。

3. 机组设备选型及技术参数选择方案时应该考虑节省投资和保障该建筑正常制冷供暖要求。

风冷热泵机组设计装机容量为835.2KW,配置风冷热泵机组MTD-80SH叁台。

水源热泵机组设计装机容量为930KW,配置水源热泵机组MSRB80壹台。

表一机组选型项目风冷热泵水源热泵设备名称风冷冷(热)水机组水源热泵机组设备型号MTD-80SH MSRB80数量3台1台单台制冷量278.4KW 930KW单台制热量304KW 1116KW总制冷量835.2KW 930KW总制热量912KW 1116KW总耗电量262.2KW 178.8KW单台外形尺寸长4320mm 3640mm宽2110mm 1300mm高2130mm 2200mm表中机组的设计装机容量基本满足大楼的需求。

4.风冷热泵机组由于存在在室外温度-8℃时启动困难,需增加功率为480KW的辅助电加热设备,解决在严寒情况下供暖问题。

水源热泵系统设计

水源热泵系统设计

水源热泵系统设计一、水源热泵设备选型⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。

传统的系统——用较大的热负荷或冷负荷选择系统。

以出水温度35℃的制冷量或以出水温度18℃的制热量作为选择水源热泵机组的依据。

⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵消。

⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。

⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。

⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进行修正。

二、循环水系统设计水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。

水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。

三、系统水流量设计水源热泵系统夏季需冷量的计算方法与其它系统相同。

根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。

一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。

另水源热泵装置的数量越多,同时使用系数越小,反之则越大。

同时使用系数可按以下原则来确定:⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。

四、系统形式水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。

水源热泵供暖方案

水源热泵供暖方案

水源热泵供暖方案概述水源热泵是一种环保、高效的供暖方式。

它利用水体中的热能来产生热量,通过热泵系统将低温热能转化为高温热能,提供舒适的室内供暖。

本文将介绍水源热泵供暖的原理、优势和适用场景,并提供一种基于水源热泵的供暖方案。

原理水源热泵供暖系统主要由水源热泵机组、地源热沟和室内热交换器组成。

其工作原理如下:1.水源热泵机组通过冷水管从水源中吸收低温热量,经过压缩机提升温度,并将高温热量释放到热水管。

2.高温热水通过地源热沟流向室内,经过热交换器与室内空气进行热交换,将热量释放到室内供暖。

3.冷却后的水再次流回水源中,循环往复。

由于水体的热容量较大,水源热泵供暖系统能够稳定提供连续的高效供暖。

优势与传统的供暖方式相比,水源热泵供暖具有以下优势:1.环保节能:水源热泵利用水体中的热能来产生热量,不需燃烧化石燃料,减少了对环境的污染,同时也大大降低了暖气系统的能耗。

2.稳定供暖:水源热泵供暖系统能够稳定提供连续的高效供暖,不受气温变化的影响。

3.节省空间:与传统的暖气片相比,水源热泵供暖系统不需要大量的散热器,节省了室内空间。

4.多功能:水源热泵供暖系统可以通过换向阀实现冷暖两用,既能供暖也能制冷,提高了系统的使用灵活性。

适用场景水源热泵供暖系统适用于各种建筑场景,特别适合以下情况:1.新建楼宇:在新建楼宇中,可以提前规划水源热泵供暖系统,减少后期改造成本。

2.低温区域:水源热泵供暖系统适用于低温区域,无论在寒冷的冬季还是湿冷的春秋季节都能提供舒适的供暖。

3.高耗能建筑:高耗能建筑对供暖负荷的要求较高,水源热泵供暖系统可以满足其高效供暖的需求。

4.环保要求高的场所:对于追求环保的建筑场所,水源热泵供暖系统是一种高效、低碳的供暖选择。

水源热泵供暖方案在水源热泵供暖方案中,可采用以下具体措施来实现供暖:1.安装水源热泵机组:选择合适容量的水源热泵机组,机组包括压缩机、蒸发器、冷凝器和控制系统等。

2.建设地源热沟:开挖地下热沟,将地沟与水源热泵机组相连,用于水的循环流动。

30000㎡住宅小区地源热泵方案

30000㎡住宅小区地源热泵方案

诸城30000㎡住宅小区水源热泵系统设计方案诸城市百盛暖通工程有限公司联系人:王泽林电话:137********第一章工程概述本工程总建筑面积为30000平方米,建筑功能为节能型住宅建筑,室内采用地板辐射采暖;本工程拟采用水源热泵系统提供热源,实现冬季取暖.第二章方案设计2。

1 主机系统设计从冷热源主机初投资、辅助设备初投资、安装费用、机房土建投资、维护费用及运行费用等角度综合考虑,根据程实际情况,现提出以下设计方案:本工程建筑热负荷综合概算指标取40w/m2,则本工程空调系统的总热负荷为1200kw。

根据上面负荷设计要求,主机设备选用2台HP600型螺杆型水源热泵机组提供热源,采用电脑全自动汉字显示控制系统,根据负荷侧室内人员的增减及室外阳光直射、室内设备发热量等负荷的变化,自动确定开关机数量,将室温控制在设定的温度范围,既达到供热的舒适效果又达到节能的目的。

2台HP600A型螺杆型水源热泵机组,总制热量为1196KW,主机冬季最大总输入功率为282KW.HP600A型螺杆式水源热泵机组主要性能参数如下:在水源进出水温度:15℃/ 7℃时,名义制热量为598KW,输入功率为141KW,水源水量为50m3/h.2。

2 运行管理设计为便于管理和进一步实现节能目的,根据住宅入住率随时间变化的特点,可将系统设定按以下方式主动控制:晚上18:00—21:00和凌晨4:00—9:00时,开启1台或1.5台水源热泵;晚上21:00—次日4:00时,开启2台水源热泵机组;白天9:00-18:00时,开启1台机组在低负荷状态下运行,既满足了使用要求,又保证建筑内的水系统管道不被冻裂。

采取上述控制方式可大大减少了设备运行时间,达到了降低运行费用的目的。

2。

3水源系统设计☆水源热泵机组对井水水温要求:水温10~30℃,冬季水温15℃.深井水温高,对冬季制热时效率高有益,但对夏季制冷时效率低不宜。

第三章工程造价概算第四章运行费用分析计算基础数据表冬季运行费用计算表第五章水源热泵系统介绍5。

水源热泵方案设计思路

水源热泵方案设计思路

水源热泵方案设计思路一、项目前期调研在设计水源热泵方案之前,需要对项目进行充分的前期调研。

这包括了解项目所在地的气候条件、地质水文情况、建筑物的用途和功能、用户的需求和期望等。

1、气候条件了解当地的气温、湿度、降雨量、太阳辐射等气候参数,这些参数将直接影响水源热泵系统的负荷计算和设备选型。

2、地质水文情况对项目所在地的地质结构、地下水水位、水质、水温等进行勘察和分析。

地下水的水量和水温是决定水源热泵系统能否稳定运行的关键因素。

如果采用地表水作为热源或热汇,还需要了解河流、湖泊的流量、水质等情况。

3、建筑物用途和功能不同类型的建筑物(如住宅、商业、工业等)对空调系统的需求和使用时间不同。

例如,商业建筑在白天的空调负荷较大,而住宅建筑在晚上的负荷较大。

了解建筑物的用途和功能有助于合理确定系统的运行模式和设备容量。

4、用户需求和期望与用户进行充分沟通,了解他们对室内温度、湿度、舒适度的要求,以及对系统运行成本、维护管理等方面的期望。

二、负荷计算负荷计算是水源热泵方案设计的基础。

准确的负荷计算可以为设备选型和系统优化提供依据,确保系统能够满足建筑物的冷热需求。

1、建筑围护结构传热计算根据建筑物的结构、材料、朝向、窗户面积等参数,计算通过墙体、屋顶、窗户等围护结构的传热量。

2、室内人员、设备、照明散热计算考虑建筑物内人员的数量、活动情况,以及设备、照明的功率和使用时间,计算室内的散热负荷。

3、新风负荷计算根据建筑物的使用功能和人员密度,确定新风量,并计算新风处理所需的冷热量。

4、同时使用系数和负荷系数的确定考虑建筑物内不同区域、不同设备的使用时间和负荷变化情况,确定同时使用系数和负荷系数,以对计算得到的负荷进行修正。

三、水源系统设计水源系统是水源热泵系统的重要组成部分,其设计的合理性直接影响系统的性能和运行效率。

1、水源类型选择根据项目所在地的地质水文条件和用户需求,选择合适的水源类型。

常见的水源类型有地下水、地表水(河流、湖泊)和城市再生水等。

住宅小区海水源热泵方案

住宅小区海水源热泵方案

住宅小区海水源热泵方案海水源热泵是一种利用海水作为热源或冷源的热泵系统,适用于住宅小区的供暖和制冷。

海水源热泵系统具有以下优势:节能、环保、稳定可靠、运行成本低等。

本文将介绍住宅小区海水源热泵方案的设计原理、系统组成以及实施步骤。

住宅小区海水源热泵系统的设计原理是利用海水的稳定温度作为热源或冷源,通过热泵技术实现供暖和制冷。

具体而言,海水中的热量通过换热器传输给热泵系统,在热泵系统中经过压缩、膨胀等过程完成热能的转换,然后将热能通过供暖或制冷系统输送到住宅中,从而实现供暖和制冷的目的。

海水供水系统包括泵站、管路和阀门等设备,其作用是将海水抽取到热泵系统中进行能量转换。

泵站负责将海水从海域或海港抽取至供暖/制冷系统;管路负责将海水输送至热泵系统;阀门用于控制海水的流量和流向。

热泵系统包括换热器、压缩机、膨胀阀和冷凝器等设备,其作用是实现能量的转换和传输。

换热器用于将海水中的热量传递给压缩机;压缩机将高温高压的气体冷凝为高温低压的气体,并将其输送至膨胀阀;膨胀阀将高温低压的气体膨胀为低温低压的气体;冷凝器用于将低温低压的气体中的热量释放至供暖/制冷系统。

供暖/制冷系统是最终实现供暖和制冷的部分,包括暖气片、地暖系统、空调等设备。

供暖系统通过循环泵将热能输送至暖气片或地暖系统,使住宅得到舒适的供暖;制冷系统通过制冷剂的循环实现空调的制冷效果,为住宅提供凉爽的环境。

首先,进行可行性研究和技术评估,了解地区的海水资源情况、住宅的能源需求以及热泵技术的适用性和经济性。

然后,进行初步设计和方案论证,确定海水供水系统和热泵系统的规模、配置和布局。

同时,对供暖/制冷系统进行设计,确定具体的供暖设备和制冷设备。

接下来,进行系统的详细设计和施工准备,包括选购设备、制定施工方案、编制施工图纸等。

然后,开始系统的施工和安装,依据施工方案和施工图纸完成设备的安装、管道的敷设和电气的接线等工作。

最后,进行系统的调试和运行,包括设备的启动、管路的冲洗和供暖/制冷系统的调节等。

方案说明(水源热泵)3.15

方案说明(水源热泵)3.15

开元新村供暖系统设计说明一、工程概况本项目为开元新村,位于济南市商河县,建筑面积约9万平方米,住宅。

供热面积9万平米。

地热条件:井出水温度为56度左右,出水量80m³/h。

二、冷热负荷估算住宅楼采暖形式为地板辐射采暖,总热负荷为3420kw,热指标为38w/㎡。

三、选型说明1、主机方案:用户侧热水供回水温度为35/45℃,地热水出水温度56℃。

本方案首先采用地热水通过板式换热器与供暖水换热后供给4.5万平方住宅建筑,地热水出板式换热器(温度28℃),再进入板式换热器后进行余热回收后排放。

选用一台全封闭螺杆热泵机组1台WCFXHP41TG,基本满足使用要求。

单台WCFXHP41TG机组制热量为1518kw,输入功率为308.6kW,热水出水温度45℃。

热源水进水温度20℃,出水温度15℃.2、机房附属设备配置方案:热水循环泵:(1)换热器加热供水系统选用1台型号为KQL100/160-22/2的立式水泵,流量为160m³/h,扬程32m,电机功率为22kW,二用一备,满足使用要求。

采暖板式换热器:1台,一次水侧56/28℃,二次水侧45/35℃,一次水流量为80,二次水流量为160m³/h,换热量1520kw。

热回收换热器:1台,一次侧28/20℃,二次侧20/16℃,二次侧循环泵KQL100/160,流量130 m ³/h,扬程24m,换热量746kw。

为保证换热效果与设备的使用寿命,在空调水管路管路中各加一个电子除垢仪,补水采用软化水,热源水经过除砂器和井水处理仪后进入板换。

供暖热水采用定压补水装置补水定压。

需要配置流量200m³,扬程22m自来水加水泵2台,1用一备。

3、初投资概算1、主机造价单位:人民币元2、机房附属设备及工程造价单位:人民币元本报价中电缆引至我方控制柜。

4、投资概算汇总表单位:人民币元一次换热:。

某污水处理厂综合楼污水源热泵系统设计

某污水处理厂综合楼污水源热泵系统设计

某污水处理厂综合楼污水源热泵系统设计某污水处理厂综合楼污水源热泵系统设计一、引言随着城市化进程的加速,污水处理厂的建设和改造变得越来越重要。

为了满足综合楼对热水的需求,本文将设计一套基于污水源热泵的供暖和热水系统,提出了污水源热泵的工作原理和设计方案。

二、工作原理污水源热泵系统通过污水中所含的热能来进行供暖和热水的制备。

系统主要由水源热泵、热水储存设备、热水循环系统、热水供应系统和控制系统等部分组成。

1. 污水回收和前处理首先,通过管道将污水收集到污水处理厂。

在处理过程中,对污水进行初级、中级和高级处理,去除其中的杂质和有害物质。

2. 污水源热泵工作原理污水源热泵主要采用了压缩机、换热器、膨胀阀和冷凝器等组件。

首先,污水从储水池中通过泵送到换热器中,与循环介质(水或其他介质)发生换热作用,从而使污水中的热能传递给循环介质。

然后,循环介质通过蒸发器中的压缩机加热,产生高温高压气体。

高温高压气体进入冷凝器,通过与供应系统中冷水的换热,实现了热能的传递和回收。

三、设计方案基于以上工作原理,设计出某污水处理厂综合楼的污水源热泵系统如下:1. 热水储存设备综合楼采用了一组储水罐作为热水的储存设备,容量为100m³。

储水罐设计为分层结构,上层为热水,下层为冷水。

这样可以有效地减少热泵系统的运行次数,提高能源利用效率。

2. 热水循环系统热水循环系统由水泵、流量传感器和管道组成。

水泵负责将热水从储水罐中抽取出来,经过流量传感器控制流量,供给用户使用。

在夏季,系统还可将冷水通过换热器冷却供应给用户。

3. 热水供应系统热水供应系统主要由热交换器和调节阀组成。

热交换器用于将从热泵系统中提取的热能传递给热水循环系统,调节阀用于控制热能的传输。

4. 控制系统控制系统是整个污水源热泵系统的核心部分,主要由传感器、控制器、计算机和人机界面组成。

传感器负责实时监测系统的运行状态和温度变化,控制器根据传感器的反馈信息对压缩机和水泵进行控制,计算机和人机界面用于操作和监视系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水源热泵设计方案
介绍
水源热泵(Water Source Heat Pump,WSHP)是一种利用地下水或湖泊水体
作为热源或热泵系统排热的热泵系统。

本文将介绍水源热泵的基本原理和设计方案,以实现高效、节能的供暖和制冷。

基本原理
水源热泵利用热力循环的原理,通过不同温度工质之间的传热来实现能量转换。

其基本原理如下:
1.蒸发换热器:地下水或湖泊水体通过蒸发换热器吸收热量,使水体
温度降低。

2.压缩机:通过压缩机提高蒸发压力,使蒸发温度升高,进一步增加
系统的热效率。

3.冷凝换热器:经过压缩后的蒸汽或气体通过冷凝器释放热量,使水
体温度升高。

4.膨胀阀:膨胀阀控制系统的压力,使压力降低,从而降低蒸发温度,
循环继续。

设计方案
水源热泵设计方案需要考虑以下几个关键因素:
1. 热负荷计算
在确定水源热泵的型号和容量之前,需要进行热负荷计算。

热负荷计算包括室
内外温度差、建筑外墙材料、建筑面积、建筑朝向等因素。

通过计算得到的热负荷可以帮助选用适当容量的水源热泵。

2. 地下水或湖泊水体的选择
水源热泵需要从地下水或湖泊水体中吸收热量或排热。

选择合适的水源需要考
虑水体的温度、流量和水质等因素。

水源温度越高,系统的热效率越高,但也需要注意水体的可持续性和环境保护。

3. 设备布局和管道设计
水源热泵系统的设备布局和管道设计对系统性能和效率有重要影响。

设备应该
放置在通风良好、易于维护的位置,同时要注意避免设备之间的相互干扰和噪音传递。

管道设计应合理布置,减少压力损失和能量损失。

4. 控制系统设计
水源热泵的控制系统设计应考虑系统的自动化程度和能耗控制。

通过合理设置温度控制器、压力传感器和流量计等设备,可以实现系统的智能控制和优化调节,提高能源利用效率。

5. 维护与保养
水源热泵系统需要定期检查和保养,以确保其良好的运行状态。

定期清洁和更换过滤器、检查管道是否漏水、清除水垢等工作可以保证系统的正常运行,并延长设备的使用寿命。

结论
水源热泵是一种高效、节能的供暖和制冷系统。

设计方案的合理性和实施的质量将直接影响系统的性能和效益。

本文介绍了水源热泵的基本原理及设计方案的关键因素,希望能为相关工程师和设计人员提供参考,以实现可持续、高效的能源利用。

相关文档
最新文档