2022年浙江省杭州市中考数学模拟考试试卷附解析
2022年浙江省杭州市中考数学真题模拟试卷附解析

2022年浙江省杭州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点.AB ⊥x 轴于B,CD ⊥y 轴于D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .522.计算43x x ÷结果是( ) A . x B . 1 C .7x D .1x 3.一个正方形的边长增加了 2 cm ,面积相应增加了32 cm 2,则这个正方形的边长为( )A . 6cmB . 5cmC .8cmD .7cm4.某城市一年漏掉的水相当于建一个自来水厂,据不完全统计,全市至少有5610⨯个水龙头,5210⨯个抽水马漏水. 如果一个关不紧的水龙头一个月漏a (m 3)水,一个抽水马桶一个月漏掉b (m 3)水,那么一个月造成的水流失量至少是( )A .( 62a b +) m 3B .56210a b +⨯ m 3C .5[(62)10]a b +⨯ m 3D .5[8()10]a b +⨯m 3 5.已知(x -3)(x 2+mx+n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m=3,n=9B .m=3,n=6C .m=-3,n=-9D .m=-3,n=96.下列各多项式中,能用平方差公式分解因式的是( )A .22()x y --B .225x y --C .24x y -D .22()a b --+7.下列说法错误的是 ( )A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x -是同类项D .近似数3.14×103有三个有效数字8.16的平方根是±4,用算式表示正确的是( )A 4=±B .4C .4=±D 4± 9. 在|7|-,|5|,(3)-+,|0|-中,负数共有( )A .1 个B .2 个C .3 个D .4 个 二、填空题10.如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN =70°,则A ∠= . 11.在 Rt △ABC 中,若∠C= 90°,sinA =13,则cosB= . 12. 反比例函数y =k x(k>0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 .213.选一个你喜欢的合理的实数x ,求二次根式1-2x 的值,则1-2x = .14.一个样本数据,极差为2,分组时组距为0.4,为了使数据不落在边界上,应分成 组.15.在同一坐标系中,图形a 是图形b 向上平移3个单位长度得到的,如果图形以中点A 的 坐标为(4,-2),那么图形b 中与点A 对应的点A ′的坐标为 .16.在平面直角坐标系中,点P(26x -,5x -)在第四象限,则x 的取值范围是 .17.在△ABC 中,AB= AC= 6,BC= 5,AD ⊥BC 于 D ,则 CD= .18.两条平行的铁轨间的枕木的长度都相等,依据的数学原理是 .19.把多项式32244x x y xy -+分解因式,结果为 .20.若方程组41231ax y x y +=⎧⎨-=⎩无解,则a 的值是 .21.当x=3时,y=______是方程4x -2y=2的解.22.用四舍五入法取72.633的近似数,精确到个位是 ,精确到十分位是 ;用 四舍五入法把0.7096保留3个有效数字,它的近似值约是 .三、解答题23.如图,已知以等腰△ABC 的顶点A 为圆心作圆,交BC 所在直线于D 、E 两点,求证:DB=CE .24.如图,∠A=30°,BC =12 cm ,求⊙O 的半径.25.如图,□ABCD中,E是DC中点,EA=EB,求证:四边形ABCD是矩形.26.计算:(1)25xy3÷(-5y) (2)(2a3b4)2÷(-3a2b5)(3)5a2b÷(-13ab)·(2ab2) (4)(2x-y)6÷(y-2x)427.用如图所示的大正方形纸片 1 张,小正方形纸片 1 张,长方形纸片 2 张,将它们拼成一个正方形,根据图示可以验证的等式是什么?2222()a ab b a b++=+28.如图,已知四个点A,B,C,D.按下列要求画图:(1)画线段AD 和CD ;(2)画射线AB ;(3)画直线BC .29.请根据下列数据制作统计表:我国l980年人口总数为98705万人,1985年为l05851万人,1990年为ll4333万人,1995年为121121万人,1999年为l25909万人.30.已知535y ax bx cx =++-,当3x =-时,7y =,那么3x =时,求y 的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.C5.A6.D7.B8.C9.A二、填空题10.40°11.1312. 13.0(答案不惟一)14.615.(4,-5)16.35x <<17.2.518.两条平行线中,一条直线上的点到另一条直线的距离处处相等19.2(2)x x y -20.-1221.522.73,72. 6,0. 710三、解答题23.过A 作AF ⊥DE 于F ,在等腰△ABC 中有BF=CF ,又DF=EF ,故得DF-BF=EF-CF ,即BF=CF .24.⊙O 的半径为 12 cm.25.证△ADE ≌△BCE ,得∠D=∠C ,又∠D+∠C=180°得∠C=90°26.(1)-5xy 2;(2) 3434b a -;(3)2230b a -;(4)2244y xy x +-. 27.222++=+28.2()a ab b a b略29.略30.-17。
2022年浙江省杭州市中考数学二模试题附解析

2022年浙江省杭州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,将△ABC 绕顶点A 顺时针旋转60°后,得到△AB ′C ′,且C ′为BC 的中点,则C ′D :DB ′=( )A .1:2B .1:22C .1:3D .1:32.如图,在菱形ABCD 中,对角线AC ,BD 分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A .36B .48C .72D .96 3.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( )A .1种B .2种C . 4种D .无数种 4.如图,已知AB=AD ,BC=CD ,AC ,BD 相交于点E ,下列结论中错误..的是( ) A .AC ⊥BD B .AC 平分BD C .AC 平分∠DCB D .BD 平分∠ABC5.下列说法不正确的是( )A .在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B .在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C .在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D .在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数6.若321()44m n x y x y x ÷=,则( )A .m = 6,n =1B . m= 5 , n= 1C .m = 5,n =0D .m= 6,n =0 7.已知0.5a b a b x y +--与1337a x y -是同类项,那么( ) A .12ab =-⎧⎨=⎩ B . 12a b =⎧⎨=-⎩ C . 21a b =⎧⎨=-⎩ D . 21a b =-⎧⎨=⎩ 8.已知∠α= 42°,则∠α的补角等于( )A . 148°B . 138°C .58°D . 48°9.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于()A.3cm B.6cm C.11cm D.14cm10.下列长度的三条线段,能够组成三角形的是()A.2.5,2.5,5 B. l,6,6 C.2,8,4 D.10,7,2二、填空题11.如图,一游人由山脚A沿坡角为30的山坡AB行走600m,到达一个景点B,再由B沿山坡BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45,则山高CD等于m(结果用根号表示)12.如图,△ABC 内接于⊙O,点D是CA 的延长线上一点,若∠BOC= 120°,则∠BAD等于.13.已知正比例函数y=kx (k≠0),y 随x 的增大而减小,那么反比例函数kyx=,当 x<0时,y随x 的增大而.14.小明练习投篮,共投篮40次,其中投中25次,若小明再投篮80次,估计可投中次.15.如图,ABC∆中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD= . 16.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.17.:yx-y-xx-y=__________.18.一箱水果售价 a 元,水果的总质量为b(kg),则每kg水果售价是元.19.已知线段AB长为10厘米,C是线段AB上任意一点(不与A,B重合), M是AC的中点,N是BC的中点,则MN=________厘米.20.某班全体同学在“献爱心”活动中都捐了图书,捐书的情况如下表:每人捐的册数5101520相应的捐书的人数172242根据表格回答下列问题:(1)该班共有人;(2)全班共捐了册图书.三、解答题21.如图①,小然站在残墙前,小亮站在残墙后活动又不被小然看见,请在下面图②中画出小亮的活动区域.22.如图,MN为半圆O的直径,半径OA⊥MN,D为OA 的中点,过点D作BC∥M:N,求证:(1)四边形 ABOC为菱形;(2)∠MNB= 18∠BAC.23.画图:某一海洋测量船在0处,测得灯塔A在0的北偏西30°,距O地13海里处,请你在下图中画出灯塔A的位置(图中1厘米表示l0海里);24.如图4,AB∥EF,AB∥CD. 若∠EFB =l20°,∠C =70°,求∠FBC的度数.25.705班在召开期末总结表彰会前,班主任安排班长史小青去商店购买奖品,下面是史小青与售货员的对话:史小青:阿姨,你好!售货员:同学你好,想买点什么?史小青:我只有100元,请帮助我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见!根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?26.如图,把方格纸上的图形作相似变换,放大到原图形的2倍,并在方格纸上画出经过变换的像.27.用代数式表示:(1)a 的绝对值;(2)a(a≠0)的倒数;(3)a 的相反数;(4)a 的平方根(a≥0);(5)a 的立方根.28.已知一个正方体的体积为 64,求这个正方体的表面积.29.用计算器求值:(1)0.84÷4+(-0.79)×2;(2)49.75-0.252;(3)2.7×(0.5+6.3)-25÷4 5(4)12×(5.63-3.31)×112-25.30.某空中加油飞机接到命令,立即给另一架正在飞行的战斗机进行空中加油.在加油过程中,设战斗机的油箱余油量为Q l,加油飞机的加油油箱余油量为Q2,加油时间为t分钟,Q l、Q2与t之间的函数关系图象如图所示,结合图象回答问题:(1)加油飞机的加油油箱中装载了多少油?将这些油全部加给战斗机需多长时间?(2)求加油过程中,战斗机的余油量Q l(t)与时间t(min)的函数解析式;(3)战斗机加完油后,以原速度继续飞行,需10 h到达目的地,油料是否够用?请说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.D5.C6.B7.C8.B9.B10.B二、填空题11.1212.60 度13.增大14.5015.316.11或l317.-118.ab19.520.(1)45 (2)405三、解答题21.如图,②中阴影部分即为小亮的活动区域.22.(1)∵OA⊥MN,MN 为直径,∴点A为⌒MN中点,即⌒AM =⌒AN,∵ BC∥MN,⌒BM =⌒CN,∴⌒AM -⌒BM =⌒AN -⌒CN,∴⌒AB=⌒AC,∴AB=AC,∠AOB=∠AOC,∵OB=OC,D为中点,∴.OD⊥BC,BD=DC,∴四边形 ABDC为菱形.(2)∵BC ∥MN ,∴∠1=∠MNB ,∵OB=ON ,∴∠2=∠MNB ,∴∠1=∠2=12∠CBO=14∠ABO ,∵四边形 ABOC 为菱形,∴∠BAC=2∠BAO=2∠ABO ,∴∠MNB= 18∠BAC . 23.略24.∵AB ∥EF ,∠EFB=120°,∴∠ABF=180°-120°=60°∵AB ∥CD .∠C=70°,∴∠A8C=∠C=70°.∴∠FBC ∠ABC-∠ABF=70°-60°=10°25.5元和3元.26.略27.(1)||a (2) 1a(0a ≠) (3)-a (4) (a ≥ 28.4=,∴这个正方体的表面积为26496⨯= 29.(1)-1.37 (2)796 (3)12. 11 (4)108.3630.(1)30 t ,10 min ;(2)1294010Q t =+( t ≥0);(3)够用,理由略。
2022年浙江省杭州市滨江区中考二模数学试题(解析版)

∴∠B=∠C,
∵DA⊥AB,
∴∠BAD=90°,
∴∠B+∠ADB=90°,
∵∠ADB=∠C+∠CAD,
∴∠B+∠C+∠CAD=90°,
∴2∠B+38°=90°,
∴∠B=26°,
∴∠ADB=64°,
故选C.
【点睛】本题主要考查了三角形外角的性质,等腰三角形的性质,直角三角形两锐角互余,熟知直角三角形两锐角互余是解题的关键.
由图中给出的信息解答下列问题:
(1)求测试成绩属C等级的学生人数,并补全频数分布直方图.
【详解】解:如图所示,连接AH,CH,设AE与BF交于M,
∵BF⊥AE,
∴∠AMB=90°,
∴∠BAM+∠ABM=90°,
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠ABE=∠BCF=90°,
∴∠ABM+∠CBF=90°,
∴∠BAE=∠CBF,
∴△ABE≌△BCF(ASA),
∴BE=CF,
∵四边形ABCD是矩形,
∴∠ABC=∠BCD=90°, ,AD=BC,CD=AB,
∴四边形BCHE是矩形,
∴EH=BC=AD,BE=CH,
∵E是AB的中点,
∴AB=CD=2BE,
∴BE=DH=CH,
∵ ,
∴△BEF∽△DCF,
∴ ,
∴DF=2BF,
又∵BD=12,
∴BF=4,DF=8,
同理可知△BEG∽△DHG,
【解析】
【分析】先列表得到所有的等可能性的结果数,然后找到两次摸出球的编号为偶数的结果数,即可依据概率计算公式求解.
【详解】解:列表如下:
2022浙江省杭州市中考数学模拟试题(word版含答案)

2022浙江省杭州市中考数学模拟试题一、单选题(共10题;共30分) 1.(3分)若abc≠0,则|a|a+|b|b+c|c|的值为()A.±3或±1B.±3或0或±1C.±3或0D.0或±1 2.(3分)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为().A.4B.8C.±4D.±8 3.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1B.x2+2x+1C.x2﹣2x+1D.x(x﹣2)﹣(x﹣2)4.(3分)一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A.40°B.50°C.130°D.150° 5.(3分)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34 6.(3分)有一组数据:x1,x2,x3…,x n,它的平均数是x̅,中位数是x i,众数是x j,方差是S2,则关于另一组数据:7x1-3,7x2-3,7x3-3…,7x n-3的说法正确的是()A.平均数是7 x̅-3,标准差是7S-3B.中位数是7x i-3,方差是49S2-9C.众数是7x i-3,标准差是7SD.中位数是7xi,方差是7S2-37.(3分)如图是一个正方体的表面展开图,这个正方体可能是()A.B.C.D.8.(3分)已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.-2D.-49.(3分)一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是()A.a10+b19B.a10-b19C.a10-b17D.a10-b21 10.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A.3B.2√3C.√13D.4二、填空题(共6题;共24分)11.(4分)若(2x−10)2+|y+3|=0,则2x−y=.12.(4分)若方程2x−y=13的解中,x、y互为相反数,则13.(4分)若x、y都为实数,且y=2008√x−5+2007√5−x+1,则x2+y =。
浙江省杭州市2021年中考数学模拟试卷汇编(含答案)

浙江省中考数学模拟检测试卷(含答案)一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|2.下列各式中,能用完全平方公式因式分解的是()A.y2﹣x2+2xy B.y2+x2+xy C.25y2+15y+9D.4x2+9﹣12x3.如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB于E,DF⊥AC于F,则DE+DF=()A.B.C.D.4.的相反数是()A.﹣B.C.D.55.下列运算,结果正确的是()A.m2+m2=m4B.(m+)2=m2+C.(3mn2)2=6m2n4D.2m2n÷=2mn26.已知不等边三角形中,有一条边长等于另两边长的平均值,则最大边上的高与最小边上的高的比值k的取值范围是()A.B.C.1<k<2D.7.根据数量关系:x2减去10不大于10,用不等式表示为()A.x2﹣10>10B.x﹣10≥10C.x2﹣10≤10D.x2﹣10<108.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=136°,则∠C的度数是(A.44°B.22°C.46°D.36°9.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为()A.B.C.D.10.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为()A.﹣2B.4C.4或3D.﹣2或3二、填空題:本大题有6个小題,毎小题4分,共24分.11.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.12.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠C=28°,那么∠A的度数为.13.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为14.化简二次根式(x2﹣1),得出的结果是.15.如图,BD平分∠ABC,DE∥BC,过E作BD的垂线交BD于O,交BC于F,P是ED的中点.若OP=15,BF的长为.16.若不等式(a﹣2)x<1,两边除以a﹣2后变成x<,则a的取值范围是.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.18.(8分)如图,一次函数的图象分别与x轴、y轴交于点A(2,0),B(0,4).(1)求函数的表达式.(2)在该一次函数图象上有一点P到x轴的距离为6,求点P的坐标.19.(8分)如图,在△ABC中,点D在AB边上,∠ABC=∠ACD,(1)求证:△ABC∽△ACD;(2)若AD=2,AB=5.求AC的长.20.(10分)某商人开始将进价为每件8元的某种商品按每件10元出售,每天售出100件;后来他利用提高售价的方法来增加利润,发现这种商品每提价1元,每天的销售量就会减少10件.(1)他若想每天的利润达到350元,求此时的售价应为每件多少元?(2)每天的利润能否达到380元?为什么?21.(10分)如图,已知C是线段AE上一点,DC⊥AE,DC=AC,B是CD上一点,CB=CE.(Ⅰ)求证:△ACB≌△DCE;(Ⅱ)若∠E=65°,求∠A的度数;(Ⅲ)若AE=11,BC=3,求BD的长,(直接写出结果)22.(12分)平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣3与y轴交于点A,过A作AB∥x 轴与直线x=4交于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)当抛物线经过点A,B时,求此时抛物线的表达式;(3)记抛物线在线段AB下方的部分图象为G(包含A,B两点),点P(m,0)是x轴上一动点,过P作PD⊥x轴于P,交图象G于点D,交AB于点C,若CD≤1,求m的取值范围.23.(12分)如图,菱形ABCD中,过点C作CE⊥AB,交AB的延长线于点E,作CF⊥AD,交AD的延长线于点F.(1)求证:△CBE≌△CDF;(2)若∠CAE=30°,CE=3,求菱形ABCD的面积.参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;B、(﹣3)2=9,32=9,故(﹣3)2=32;C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.故选:A.【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.2.【分析】根据完全平方公式即可求出答案.【解答】解:由完全平方公式:a2±2ab+b2=(a±b)24x2+9﹣12x=(2x﹣3)2故选:D.【点评】本题考查了公式法分解因式,解题的关键是熟练运用完全平方公式,本题属于基础题型.3.【分析】首先画出几何图形,连接AD,根据三角形的面积公式即可得到AB•DE+AC•DF=S,进而求得DE+DF的值.【解答】解:如图所示:连接AD,∵AB=AC=m,△ABC的面积是S,∴AB•DE+AC•DF=S,∵AB=AC=m,∴DE+DF=,故选:B.【点评】本题考查了等腰三角形的性质,三角形的面积,有利于培养同学们钻研和探索问题的精神.4.【分析】根据相反数的意义求解即可.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.【分析】A:根据整式的混合运算方法计算即可.B:根据完全平方公式的计算方法判断即可.C:根据积的乘方的运算方法计算即可.D:根据分式的混合运算方法计算即可.【解答】解:∵m2+m2=2m2,∴选项A错误;∵(m+)2=m2++2,∴选项B错误;∵(3mn2)2=9m2n4,∴选项C错误;∵2m2n÷=2mn2,∴选项D正确.故选:D.【点评】(1)此题主要考查了分式的混合运算,要注意运算顺序,分式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)此题还考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).6.【分析】可设三角形三边a>b>c,根据三角形的面积公式可知最大边上的高与最小边上的高的比为c:a<1,再根据已知和三角形三边关系可知c:a>,则最大边上的高与最小边上的高的比值k的取值范围可求.【解答】解:设a>b>ck=:=c:a∴c:a<1又因为a+c=2b①又∵a﹣c<b②2a<3b,a<bc>bc:a>所以,<k<1.故选:D.【点评】本题综合考查了三角形的面积公式和三角形三边关系及解不等式,有一定的难度,解题的关键是得出三角形最大边上的高与最小边上的高的比等于最小边与最大边的比.7.【分析】根据题意,可以用不等式表示出x2减去10不大于10,本题得以解决.【解答】解:由题意可得,x2减去10不大于10,用不等式表示为:x2﹣10≤10,故选:C.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.8.【分析】根据圆周角定理进行解答即可.【解答】解,∵∠AOD=136°,∴∠BOD=44°,∴∠C=22°,故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.9.【分析】根据勾股定理求出各个边的长度,求出AF和AE,解直角三角形求出即可.【解答】解:过A作AF⊥CD于F,在Rt△ADB中,BD=3,AD=3,由勾股定理得:AB==3,在Rt△CAD中,AC=11,AD=3,由勾股定理得:CD==,由三角形的面积公式得:=,×AF=1×3,解得:AF=,∵AC∥BD,∴△CEA∽△DEB,∴=,∴=,∴AE=,∴sin∠AEC===,故选:B.【点评】本题考查了勾股定理、相似三角形的性质和判定、解直角三角形等知识点,能够正确作出辅助线是解此题的关键.10.【分析】利用二次函数图象上点的坐标特征找出当y=4时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=4时,有x2﹣2x+1=4,解得:x1=﹣1,x2=3.∵当a≤x≤a+1时,函数有最小值4,∴a=3或a+1=﹣1,∴a=3或a=﹣2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=4时x的值是解题的关键.二、填空題:本大题有6个小題,毎小题4分,共24分.11.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.【分析】连接OB,由题意可得∠OBA=90°,因为∠AOB=2∠C=56°,在Rt△AOB中,即可得出∠A的度数.【解答】解:如图,连接OB,∵边AB与⊙O相切,切点为B,∴∠OBA=90°,∵∠C=28°,∴∠AOB=2∠C=56°,∴∠A=90°﹣56°=34°.故答案为:34°.【点评】本题考查圆的切线的性质,直角三角形的性质.解题的关键是掌握圆的切线的性质.13.【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故答案为:4.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.【分析】原式利用二次根式性质化简,整理即可得到结果.【解答】解:原式=(x+1)(x﹣1)==﹣(x﹣1),故答案为:﹣(x﹣1)【点评】此题考查了二次根式的性质与化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.15.【分析】根据已知条件,可得EB=ED,由EF⊥BD得BO=DO,可证得△DOE≌△BOF,求得DE的长即为BF的长.【解答】解:∵DE∥BC,∴∠D=∠CBD,∵BD平分∠ABC,∴∠EBD=∠CBD,∴∠D=∠EBD,∴EB=ED,∵EF⊥BD,∴BO=DO,∠DOE=∠BOF=90°,∴△DOE≌△BOF,∴BF=DE,∵P是ED的中点,OP=15,∴BE=30,∴BF=30.故答案为30.【点评】本题考查了平行线的性质、等角对等边及三角形的中位线.16.【分析】根据不等式的性质得出不等式,求出不等式的解集即可.【解答】解:∵不等式(a﹣2)x<1,两边除以a﹣2后变成x<,∴a﹣2>0,∴a>2,故答案为:a>2.【点评】本题考查了不等式的性质和解一元一次不等式,能根据不等式的性质得出关于a的不等式是解此题的关键.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.【分析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.18.【分析】(1)点A(2,0),B(0,4)带入一次函数,就可求出函数的表达式;(2)一次函数图象上P到x轴的距离为6,即可求出P的坐标.【解答】解:(1)点A(2,0),B(0,4)带入y=kx+b中,,可得b=4,k=﹣2.∴一次函数的表达式:y=﹣2x+4.(2)点P为一次函数图象上一点,设P(x,﹣2x+4),∵有一点P到x轴的距离为6,∴分两种情况讨论.①﹣2x+4=6,解得x=﹣1,此时P(﹣1,6).②﹣2x+4=﹣6,解得x=5,此时P(5,﹣6).故点P的坐标(﹣1,6);(5,﹣6).【点评】本题主要考察了用代入法求一次函数表达式,以及求一次函数上点的特点来求坐标.19.【分析】(1)根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质即可求出答案.【解答】解:(1)∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD(2)解:△ABC∽△ACD∴,∵AD=2,AB=5,∴,∴AC=.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.20.【分析】(1)设每件这种商品的售价提升x元,则每天可售出(100﹣10x)件,根据每日利润=每件的利润×日销售数量,即可得出关于x的一元二次方程,解之就可得出x的值,再将其代入10+x即可得出结论;(2)假设能,设每件这种商品的售价提升y元,则每天可售出(100﹣10y)件,根据每日利润=每件的利润×日销售数量,即可得出关于y的一元二次方程,由该方程根的判别式△=﹣8<0,可得出该方程无解,进而可得出每天的利润不能达到380元.【解答】解:(1)设每件这种商品的售价提升x元,则每天可售出(100﹣10x)件,根据题意得:(10+x﹣8)(100﹣10x)=350,整理得:x2﹣8x+15=0,解得:x1=3,x2=5,∴10+x=13或15.答:此时的售价应为每件13元或15元.(2)假设能,设每件这种商品的售价提升y元,则每天可售出(100﹣10y)件,根据题意得:(10+y﹣8)(100﹣10y)=380,整理得:y2﹣8x+18=0.∵△=(﹣8)2﹣4×1×18=﹣8<0,∴该方程无解,∴假设不成立,∴每天的利润不能达到380元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.【分析】(Ⅰ)由“SAS”可证△ACB≌△DCE;(Ⅱ)由全等三角形的性质和直角三角形的性质可得∠A的度数;(Ⅲ)由全等三角形的性质可求AC=DC,BC=CE=3,即可求BD的长.【解答】证明:(Ⅰ)∵DC=AC,∠ACB=∠DCE=90°,BC=CE∴△ACB≌△DCE(SAS)(Ⅱ)∵△ACB≌△DCE,∴∠E=∠ABC=65°∴∠A=90°﹣∠ABC=25°(Ⅲ)∵△ACB≌△DCE∴AC=DC,BC=CE=3,∴AC=AE﹣CE=11﹣3=8=CD∴BD=CD﹣BC=8﹣3=5【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.22.【分析】利用二次函数对称轴和顶点即可求解(1)(2)问;(3)求出函数与x轴两个交点,由于CD≤1,所有C要在x轴上方的G区域,结合图象,即可求出m的范围.【解答】解:(1)根据抛物线的对称轴x=﹣,代入得到x=m;故答案为m;(2)∵y=x2﹣2mx+m2﹣3=(x﹣m)2﹣3,∴抛物线顶点坐标为(m,﹣3).∵抛物线经过点A,B时,且AB∥x轴,∴抛物线对称轴为x=m=2.∴抛物线的表达式为y=x2﹣4x+1;(3)y=x2﹣4x+1与x轴两个交点为(2﹣,0),(2+,0),∵CD≤1,∴0≤m≤2﹣或2+≤m≤4.【点评】本题主要考查二次函数与一次函数的综合,在(1)中注意待定系数法的应用,在(2)中求得D点坐标是解题的关键,在(3)中注意数形结合思想的应用.23.【分析】(1)本题需根据菱形的性质和直角三角形全等的判定方法即可证出结论.(2)本题需利用解直角三角形求出菱形的边长,再根据菱形的面积公式即可求出结果.【解答】(1)证明:∵四边形ABCD是菱形,∴BC=CD,∠ABC=∠ADC,∵∠ABC+∠CBE=180°,∠ADC+∠CDF=180°,∴∠CBE=∠CDF,∵CE⊥AB,CF⊥AD,∴∠CEB=∠CFD=90°,∴△CBE≌△CDF;(2)解:∵四边形ABCD是菱形,∴∠BAD=2∠CAE=60°,BC∥AD,∴∠CBE=∠BAD=60°,∵sin∠CBE=,∴BC=,∴S=AB×CE=BC×CE=.菱形ABCD【点评】本题主要考查了菱形的性质,解题时要注意解直角三角形和三角形全等的判定的综合应用.浙江省中考数学模拟检测试卷(含答案)一、选择题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不绐分)1.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.12.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.3.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为72=0.3,S D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,则甲的成绩更稳定乙4.下列计算中正确的是()A.(a+b)2=a2+b2B.a2•a3=a5C.a8÷a2=a2D.a2+a3=a55.如图,△ABC和△DBC均为等腰三角形,∠A=60°,∠D=90°,AB=12,若点E、F、G、H分别为边AB、AC、CD、BD的中点,则四边形EFGH的面积为()A.36(+1)B.18(+1)C.12(+1)D.9(+1)6.关于x的一元二次方程x2+2x+3m=0有两个不相等的实数根,则m的取值范围是()A.m<B.m≤C.m>﹣D.m≤7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.8.下列命题为假命题的是()A.若a=b,则a﹣2019=b﹣2019B.若a=b,则C.若a>b,则a2>abD.若a<b,则a﹣2c<b﹣2c9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有▱ADCE中,DE的最小值是()A.4B.6C.8D.10二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:(2a+1)a﹣4a﹣2=.12.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.13.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则弧DE的长为.14.如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转90°得到的,且过点A(m,6),B(﹣6,n),则△OAB的面积为.15.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.16.如图,在菱形ABCD中,∠DAB=45°,AB=4,点P为线段AB上一动点,过点P作PE⊥AB交AD于点E,沿PE将∠A折叠,点A的对称点为点F,连接EF、DF、CF,当△CDF为等腰三角形时,AP的长为.三、解答题(本题有8小题,共80分)17.(10分)(1)计算:|﹣|+2﹣1﹣3tan45°(2)先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.18.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.19.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?20.(8分)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.21.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.(1)甲的速度是米/分钟;(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;(3)乙出发后多长时间与甲在途中相遇?(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?22.(10分)某五金商店准备从机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用900元正好可以购进50个甲种零件和50个乙种零件.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出该五金商店本次从机械厂购进甲、乙两种零件有哪几种方案?23.(10分)如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接AD、CD、OC.填空①当∠OAC的度数为时,四边形AOCD为菱形;②当OA=AE=2时,四边形ACDE的面积为.24.(14分)已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.浙江省中考数学押题卷一、选择题(本题有10小题,每小题4分,共40分每小题只有一个选项是正确的,不选、多选、错选,均不绐分)1.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.1【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.【点评】此题主要考查了有理数比较大小,正确把握两负数比较大小的方法是解题关键.2.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为72=0.3,S D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,则甲的成绩更稳定乙【分析】根据必然事件的概念、可能性的意义、众数和中位数及方差的定义逐一判断即可得.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,此选项错误;B.天气预报“明天降水概率50%”,是指明天有一半的可能性会下雨,此选项错误;C.数据6,6,7,7,8的中位数是7,众数是6和7,此选项错误;2=0.3,S D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,由甲的方差小值甲的成绩更稳定,此选项正确;乙故选:D.【点评】本题主要考查概率的意义,解题的关键是掌握必然事件的概念、可能性的意义、众数和中位数及方差的定义与意义.4.下列计算中正确的是()A.(a+b)2=a2+b2B.a2•a3=a5C.a8÷a2=a2D.a2+a3=a5【分析】分别利用完全平方公式以及同底数幂的乘除法运算法则化简求出即可.【解答】解:A、(a+b)2=a2+b2+2ab,故此选项错误;B、a2•a3=a5,正确;C、a8÷a2=a6,故此选项错误;D、a2+a3无法计算,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及同底数幂的乘除法运算法则等知识,正确掌握运算法则是解题关键.5.如图,△ABC和△DBC均为等腰三角形,∠A=60°,∠D=90°,AB=12,若点E、F、G、H分别为边AB、AC、CD、BD的中点,则四边形EFGH的面积为()A.36(+1)B.18(+1)C.12(+1)D.9(+1)【分析】由已知条件得到△ABC是等边三角形,△DBC等腰直角三角形,求得BD=6,连接AD 交BC于O,推出四边形EFGH是平行四边形,得到四边形EFGH是矩形,根据三角形的中位线的性质得到EH=AD=3+3,HG=BC=6,于是得到结论.【解答】解:∵△ABC和△DBC均为等腰三角形,∠A=60°,∠D=90°,∴△ABC是等边三角形,△DBC等腰直角三角形,∵AB=12,∴BC=12,∴BD=6,连接AD交BC于O,∵AB=AC,BD=CD,∴AD⊥BC,BO=CO,∴AD=AO+OD=6+6,∵点E、F、G、H分别为边AB、AC、CD、BD的中点,∴EH∥AD,EH=AD,FG∥AD,FG=AD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,∵AD⊥BC,∴EH⊥BD,HG⊥AD,∴EH⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形,∵EH=AD=3+3,HG=BC=6,∴四边形EFGH的面积=18(+1),故选:B.【点评】本题考查的是三角形的中位线的性质,等腰三角形的性质,中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.关于x的一元二次方程x2+2x+3m=0有两个不相等的实数根,则m的取值范围是()A.m<B.m≤C.m>﹣D.m≤【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m不等式,求出m的取值范围.【解答】解:∵a=1,b=2,c=3m,∴△=b2﹣4ac=22﹣4×1×3m=4﹣12m>0,解得m<.故选:A.【点评】考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.下列命题为假命题的是()A.若a=b,则a﹣2019=b﹣2019B.若a=b,则C.若a>b,则a2>abD.若a<b,则a﹣2c<b﹣2c【分析】根据等式的性质、不等式的性质进行判断即可.【解答】解:A、若a=b,则a﹣2019=b﹣2019,是真命题;B、若a=b,则,是真命题;C、若a>b,当a>0时,则a2>ab;a<0时,a2<ab,是假命题;D、若a<b,则a﹣2c<b﹣2c,是真命题;故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解等式的性质、不等式的性质,属于基础定义,难度不大.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【分析】由抛物线开口方向得到a>0,然后利用抛物线的对称轴得到b的符号,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0可对③进行判断;利用抛物线的对称轴方程得到b=﹣2a,加上x=﹣1时,y>0,即a﹣b+c>0,则可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;。
2022年浙江省杭州市中考数学一模试卷及解析

2022年浙江省杭州市中考数学一模试卷一、选择题(本大题有10个小题,每小题3分,共30分),在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)cos60︒的值等于( )A .12B .22C .32D .332.(3分)下列计算正确的是( )A .224x x x +=B .236()a a -=C .2(2)2-=D .222()a b a b -=-3.(3分)若6032α'∠=︒,则α∠的余角是( )A .2968'︒B .2928'︒C .11968'︒D .11928'︒4.(3分)若反比例函数(k y k x=为常数,且0)k ≠的图象经过点(1,2)A -,那么该函数图象一定经过点( )A .(2,1)-B .(2,1)--C .(1,2)--D .(1,2)5.(3分)如图,//AB CD ,若70C ∠=︒,28E ∠=︒,则(A ∠= )A .52︒B .48︒C .42︒D .40︒6.(3分)数据90,90,60,80的方差是( )A .80B .100C .150D .6007.(3分)如图,AB 是O 中的一条弦,半径OD AB ⊥于点C ,交O 于点D ,点E 是弧AEB 上一点.若46OAB ∠=︒,则(E ∠= )A .46︒B .44︒C .23︒D .22︒8.(3分)四边形ABCD 的对角线AC ,BD 交于点O .若OA OB OC OD ===,则该四边形( )A .可能不是平行四边形B .一定是矩形C .一定是菱形D .一定是正方形9.(3分)如图,在Rt ABC ∆中,90ACB ∠=︒,分别以该直角三角形的三边为边,并在直线AB 同侧作正方形ABMN 、正方形BQPC 、正方形ACEF ,且点N 恰好在正方形ACEF 的边EF 上.其中1S ,2S ,3S ,4S ,5S 表示相应阴影部分面积,若31S =,则1245(S S S S +++= )A .2B .3C .23D 35210.(3分)在平面直角坐标系中,二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的图象经过点(2,)A m ,当1x 时,1y m +;当1x >时,y m ,则(a = )A .1-B .14-C .14D .1二、填空题(本大题有6个小题,每小题4分,共24分).11.(4分)分解因式:24a -= .12.(4分)在平面直角坐标系中,将点(3,4)A -向左平移3个单位后所得的点的坐标是 .13.(4分)若不等式组的解集为1x x n⎧⎨>⎩的解为x n >,则n 的取值范围是 . 14.(4分)在ABC ∆中,40B ∠=︒,34C ∠=︒,以B 为圆心,以BA 长为半径画弧,交BC 边于点D ,连接AD ,则DAC ∠= 度.15.(4分)有两辆车按1,2编号,洪、杨两位老师可任意选坐一辆车,则两位老师同坐2号车的概率为 .16.(4分)如图,点E 是矩形ABCD 边BC 上一点,沿AE 折叠,点B 恰好落在CD 边上的点F 处.设(1)BE x x EC=>, (1)若点F 恰为CD 边的中点,则x = .(2)设DF y FC=,则y 关于x 的函数表达式是 .三、解答题(本大题有7个小题,共66分).解答应写出文字说明、证明过程或演算步骤。
【真题汇编】2022年浙江省杭州市中考数学备考真题模拟测评 卷(Ⅰ)(含详解)

2022年浙江省杭州市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列各式中正确的是( ) A .2a 2 + 3a 3 = 5a 5 B .( 12ab )3=16 a 3b 3 C .( x - y )( x + y )( x 2- y 2)= x 4- y 4 D .(a + b - c )2= (c - a - b )2 2、如图,在四边形ABCD中,90,A AB AD ︒∠===,M N 分别为线段,BC AB 上的动点(含端点,但点M 不与点B 重合),点,E F 分别为,DM MN 的中点,则EF 长度的最大值为( )AB .2.5C .5D .3.5 3、如图,点E 是BC 的中点,AB BC DC BC ⊥,⊥,AE 平分BAD ∠,下列结论∶①90AED ∠=︒②ADE CDE ∠=∠③DE BE =④AD AB CD =+,四个结论中成立的是( ) ·线○封○密○外A .①②④B .①②③C . ②③④D .①③4、如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位.在第2020分钟时,这个粒子所在位置的坐标是( )A .(4,45)B .(45,4)C .(44,4)D .(4,44)5、正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点A 6的坐标是( )A .()31,32B .()32,33C .()64,32D .()63,646、8的相反数是( )A .18B .18-C .8D .8-7、下列计算正确的是( )A .3a +2b =5abB .6y ﹣3y =3C .7a +a =7a 2D .3x 2y ﹣2yx 2=x 2y 8、如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC .若∠A=28°,则∠ACB 的度数是( ) A .28° B .30° C .31° D .32°9、某市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过10m 3,则按每立方米1.5元收费;若每月用水超过10m 3,则超过部分按每立方米3元收费,如果某居民户今去年12月份缴纳了36元水费,那么这户居民去年12月份的实际用水量为( ) A .7m 3 B .12m 3 C .17m 3 D .24m 310、下列实数中,无理数是( ) ABC .17D .3.14159 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、计算:()()522373a a a a -⋅+⋅- =______________. 2、多项式2213x x --的常数项是_____ 3、如果多项式x 2+mx+9=(x+3)2,那么m=___. 4、如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有()3n n ≥盆花,每个图案中花盆总数为S ,按照图中的规律可以推断S 与()3n n ≥的关系是_____. ·线○封○密○外5、0.0000000202-用科学记数法表示为___________.三、解答题(5小题,每小题10分,共计50分)1、已知三角形的三边长分别是x ,x −1,x+1.求x 的取值范围。
2022年浙江省杭州市中考数学模拟试卷附解析

2022年浙江省杭州市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是( )A .23B .1C .2D . 322. 如图:所示,AB 是⊙O 的直径,根据下列条件,不能判定直线 AT 是⊙O 的切线的是( ) A .∠TAC=45°,AB=AT B .∠B=∠ATBC .AB= 3,AT= 4 , BT= 5D .∠B= 52°,∠TAC= 52°3.已知△ABC 中,∠C = Rt ∠,co sA=13,则sinB 的值等于 ( ) A .13 B .1 C .223D .306 4.已知某种品牌电脑的显示器的寿命大约为4210 小时,这种显示器工作的天数为d(天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )5.如图,矩形ABCD 沿AE 折叠,使点 D 落在BC 边上的F 点处,如果∠BAF= 60°,那么∠DAE 等于( )A . 15°B .30°C .45°D .60°6.甲,乙,丙,丁四位同学拿尺子检测一个窗框是否为矩形.他们各自做了如下检测后都说窗框是矩形,你认为正确的是( )A .甲量得窗框两组对边分别相等B .乙测得窗框的对角线长相等C .丙测得窗框的一组邻边相等D .丁测得窗框的两组对边分别相等且两条对角线也相等7.下列方程是一元二次方程的是( )A .12=+y xB .()32122+=-x x x C .413=+x x D .022=-x 8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D .9.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点10.方程组525x y x y =+⎧⎨-=⎩的解满足方程0x y a ++=,那么a 的值是( ) A .5 B .-5 C .3 D .-311.下列说法正确的是( )A . 如果一件事情发生的机会是 99. 9%,那么它必然发生B . 即使一件事情发生的机会是0.0l%,它仍然可能发生C . 如果一件事情极有可能发生,那么它必然发生D . 如果一件事情不太可能发生,那么它就不可能发生12.为了做一个试管架,在长为cm(6cm)a a >的木板上钻3个小孔(如图),每个小孔的直径为2cm ,则x 等于( )A .34a -cmB .34a +cmC .64a -cmD .64a +cm13. 32.37 1.333=323.7 2.872,30.0237 )A .13.33B .28.72C .0.1333D .0.2872 14. 下列说法不正确的是( )A .8 和-8 互为相反数B .8 是-8 的相反数C .-8 是8 的相反数D .-8 是相反数二、填空题15.若函数y=(m+1)231m m x++是反比例函数,则m 的值为 .-216. 如图,△ABC 中,AC= 6,BC= 9,在 BC 上取点 D ,使△ABC ∽△DAC ,那么 BD = .17.已知⊙O 的半径OA=1,弦 AB 、AC 的长分别是2、3,则∠BAC 的度数为 .18.在对100个数据进行整理分析的频数分布表中,各组的频数之和等于______,各组的频率之和等于_______.19.如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.20.用计算器探索:已知按一定规律的一组数:1231920.如果从中选出若干个数,使它们的和大于3,那么至少要选 个数.21.若x x x x -⋅-=--32)3)(2(成立,则x 的取值范围为 .22.在△ABC 中,若AC 2+AB 2=BC 2,则∠B+∠C= 度.23.已知一个长方形的边长为a 、b ,它的周长为14,面积为10,则a 2b+ab 2的值为 .三、解答题24.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.25.如下图,已知△ABC,用尺规作△DEF,使得ABC DEF∆≅∆(不用写出作法,但要保留作图痕迹).ACB略.26.如图AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.A B C D27.借助计算器计算下列各题:31= ;33++= ;123+= ;3331233331234+++= . 由上面的各题,你发现了什么规律?试用含n的算式表示这个结果.28.借助计算器计算下列各题:31= ;3312+= ;333123++= ;(433331234+++= ;……从上面计算结果,你发现了什么规律?请把你发现的规律用一个等式来表示.29.若a没有平方根,且|1|2a+=,求2a的倒数与3a的相反数的差.127930.用四张大小完全相同的长方形纸片拼成的图形如右图所示. 若已知长方形的长为 5 cm,宽为2cm,求图中空白部分的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.C5.A6.D7.D8.A9.B10.A11.B12.C13.D14.D二、填空题15.16.517.75°或15°18.100,119.320.521.≤x22.2≤39023.70三、解答题24.略25.26.解∵BC=AC-AB=5-2=3,∴BD=3BC=3×3=9 ,∴AD=AB+BD=2+9=11 27.各空分别填 1,3,6,10.由上面的各题,发现有如下规律:3(1) 122n nn n +++=+++=28.(1) 1 (2) 3 (3) 6 (4) 10 3123n n++=++++ 29.127930.9 cm2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年浙江省杭州市中考数学模拟考试试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
一、选择题
1.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )
2.下列事件中,是必然事件的为( ) A .我市夏季的平均气温比冬季的平均气温高;
B .每周的星期日一定是晴天;
C .打开电视机,正在播放动画片;
D .掷一枚均匀硬币,正面一定朝上.
3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( ) A .
12
B .
14
C .
16
D .
18
4.已知BC ∥DE ,则下列说法不正确的是( ) C . A. 两个三角形是位似图形 B .点A 是两个三角形的位似中心 C . AE :AD 是位似比 D . 点B 与点 D ,点 C 与点E 是对应位似点
5.若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅球的直径约为( ) A .10 cm B .14.5 cm C .19.5 cm D .20 cm 6.一个扇形的弧长是20πcm,面积是240πcm 2,那么扇形的圆心角是( )
A .120°
B .150°
C .210°
D .240°
7. 一架飞机在无风的情况下每小时飞行 1200千米,若逆风飞完长为x 千米的航线用 3小时,而顺风飞完这条航线只需 2小时. 根据题意列方程,得1200120032
x x
-=-.这个方程所表示的意义是( )
A .飞机往返一次的总时间不变
A
.
B
. C .
.
B .顺风与逆风飞行,飞机自身的速度不变
C .飞机往返一次的总路程不变
D .顺风与逆风的风速相等 8.下列说法正确的个数为( )
①一个数的倒数一定小于这个数;②一个数的倒数一定大于这个数;③0 除以任何数都得0;④两个数的商为 0,只有被除数为 0. A .0 个
B .1 个
C .2 个
D .3 个
9.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是( )
A .4.5~7.5
B .7.5~10.5
C .10.5~13.5
D .13.5~16.5
二、填空题
10.如图所示,某区十二中内有一铁塔 BE ,在离铁塔 150 m 远的 D 处,用测角仪测得塔顶的仰角为α=35°,已知测角仪的高 AD =1.52m ,那么塔高 BE= m .(精确到0.1 m)
11.在△ABC 中,∠C=90°,BC=4,sinA=
3
2
,则AC= . 12.若方程x 2-4x+m=0有两个相等的实数根,则m 的值是____ ___.
13.图中1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图象填空: (1)分别写出1l 与2l 的函数解析式: 1l : ,2l : ;
(2)当销售量 件时,该公司开始盈利(销售收入大于销售成本).
14.一个不等式的解集如图所示,则这个不等式的正整数解是____________.
15.在一次体育测试中,10名女生完成仰卧起坐的个数如下:48,52,47,46,50,50,51,50,45,49,则这次体育测试中仰卧起坐个数的众数是 .
16.在写有1,2,3,4,5,6,7,8,9的九张卡片中随机抽取一张,是奇数的概率是 . 17. 分解因式24x -= .
18.如图所示,△DEF 是△ABC 绕点O 旋转后得到的,则点C 的对应点是点 ,线段AB 的对应线段是线段 ,∠B 的对应角是 .
19.观察下面的等式,①111122⨯=-;②222233⨯=-;③333344⨯=-;④44
4455
⨯=-……第n
个等式可表示为 .
20.一个长方体有 条棱,有 个面,有 个顶点.
21.一个班共有44人,全部报名参加了学校组织的兴趣活动小组,参加数学兴趣活动小组的有38人,参加物理兴趣活动小组的有35人,则既参加数学兴趣活动小组又参加物理兴趣活动小组的有 人.
三、解答题
22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率
m n
0.65
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当n 很大时,摸到白球的频率将会接近 .(精确到0.1) (2)假如你摸一次,你摸到白球的概率()P =白球 . (3)试估算盒子里黑、白两种颜色的球各有多少只?
23.如图,用连线的方法找出图中每一物体所对应的主视图.
24.如图,正方形的边长为 20,菱形的边长为5,它们相似吗?请说明理由.
25.有一座抛物线型拱桥,正常水位时桥下面宽为20 m,拱顶距水面4 m(1)在如图所示的直角坐标系中求出该抛物线的解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于 l8m,求水面在正常水位基础上上涨多少,就会影响过往船只?
26.在四边形ABCD中,∠A,∠B,∠C,∠D的外角度数之比为4:7:5:8,求四边形各内角的度数.
27..
(1)已知△ABC,求作:①BC边上的中线;②BC边上的高;③∠B的平分线;
(2)已知线段a,c,∠α,求作:△ABC,使BC=a,AB=c,∠ABC=∠α(不必写出作法).
28.a 为何值时,分式方程311
a a x +=+无解?
29. 观察下列计算过程:
2
113131144222
-
=-==⨯; 2
118241199333-=-==⨯;
2
111535111616444-
=-==⨯;
你能得出什么结论?用得到的结论计算:22
22
11
11
(1)(1)(1)(1)2320062007-
--
-.
30.有一正方形的纸片,可将它剪成如图所示的四个小正方形,用同样的方法,每一个小正方形又能剪成四个更小的正方形. 这样连续做 5 次后,共能得到多少个小正方形?
【参考答案】
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题
1.
A
2.
A
3.
B
4.
C
5.
B
6.
B
7.
D
8.
B
9.
C
二、填空题
10.
106.6
11.
52 12.
4
13.
(1)y=100x ,y=50x+200;(2)4
14.
1,2
15.
50
16.
9
5
17. (2)(2)x x +-18.
F ,DE ,∠E
19.
11n n
n n n n ⨯=-
++20. 12,6,8 21.
29
三、解答题 22.
(1)0.6,(2)0.6,(3)白球24个,黑球16个.
23.
如图中虚线所示.
24.
不相似,因为对应角不相等.
25.
(1)由已知得,顶点坐标(10,4).∴可设抛物线的解析式2
(10+4y a x =-), 把点 A(0,0)代入得2
(010)40a -+=,∴125
a =-, ∴抛物线的解析式:2
1(10+425
y x =-
-)
(2)由已知得,当 x=1 时,1925y =
,即当水面在正常水位基础上上涨1925
m 就会髟响过往船只. 26.
∠A=120°,∠B=75°,∠C=105°,∠D=60°
27.
略
28.
3
1
0-==a a 或.
29.
2
1111n n n n n -+-
=⨯
,1004
2007 30.
1024 个。