八年级数学上册 第13章实数

合集下载

北师大版八年级上册数学《用计算器开方》实数PPT教学课件

北师大版八年级上册数学《用计算器开方》实数PPT教学课件

解:(1) 5 1 3.236 067 978;
(2) 6 7 π 3.339 148 045;
6 7 π> 5 1.
2.利用计算器求下列各式的值(结果保留4个有效数字)
(1) 800; (3) 0.58 ;
(2)3 22;
5
(4)3 0.432 ;
解:(1)≈28.28; (3)≈0.7616;
导入新课 观察与思考
试着在自己的计算器里输入同样的算式
想一想开方运算 要用到哪些键?
讲授新课
一 用计算器开方
对于开平方运算,按键顺序为: 被开方数 =
对于开立方运算,按键顺序为: 被开方数 =
例1:用计算器计算:
5.89
(1)
;
2
(2) 3 7 ;
3
(3)
1285 .
Байду номын сангаас
解:(1)
5.89, 显示 2.426 932 22;
SHIFT
33
■ 3=
的大小. 显示结果
1.442
2
■ 2 = SD
1.414
所以 3 3> 2 .
随堂练习
利用计算器比较下列各组数的大小:
按键顺序
SHIFT
(1) 3 11 ;
■11=
5.
■ 5 = SD
显示结果 2.224 2.236
所以 3 11< .5
随堂练习
按键顺序
(2)
5
8;
5
5 1.SHIFT
(2)
(2÷7) , 显示 0.658 633 756;
(3)
-1285, 显示 -10.871 789 69.
二 用计算器比较数的大小

最新新人教版八年级数学上册第十三章《实数》导学案知识讲解

最新新人教版八年级数学上册第十三章《实数》导学案知识讲解

.
2.
知道正数有两个平方根,它们互为相反数, 0 的平方根是 0,负数没有平方根 .
学习重难点 : 1. 重点:平方根的概念 .
2.
难点:归纳有关平方根的结论 .
预习案
一,知识准备
1. 填空:如果一个
的平方等于 a,那么这个
叫做 a 的算术平方根, a 的算术平方根记作
.
2. 填空:
(1) 面积为 16 的正方形,边长=
0 的平方根有
个,平方根是
负数
平方根
探究案
1、 计算下列各式的值 :
( 1)
( 2)-
( 3)±
( 4 )-
2、 平方根起源于正方形的面积,若一个正方形的面积为
A ,那么这个正方形的边长为多少?
训练案
1、判断下列说法是否正确
(1)5 是 25 的算术平方根(

5 25
( 2)

的一个平方根(

6 36
正数的立方根是
数,负数的立方根是
数, 0 的立方根是

例 2、求满足下列各式的未知数 x :
( 1) x 3 0.008
1、计算: 3 1 2 3 8
训练案
xy
2、已知 x-2 的平方根是 4 , 2x y 12 的立方根是 4,求 x y 的值 .
4、符号 3 a 中, 3 是
3

a 中的
不能省略。
2、 ∵ 22 =
∴ 4 的算术平方根是

3、∵正数 a 的算术平方根是 a
∵ ( 3)2 = 4
9

的算术平方根是

16
∵ 4 的算术平方根是 2

最新人教版初中数学教材目录(全)

最新人教版初中数学教材目录(全)

最新人教版初中数学教材目录(全)七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据库的收集整理与描述(9)八年级上册(62)第11章全等三角形(11)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)七年级上册第一章有理数1.1 正数和负数阅读与思考用正负数表示加工允许误差1.2 有理数1.3 有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4 有理数的乘除法观察与思考翻牌游戏中的数学道理1.5 有理数的乘方数学活动小结复习题1 第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话2.2 整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2 第三章一元一次方程3.1 从算式到方程阅读与思考“方程”史话3.2 解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1 多姿多彩的图形阅读与思考几何学的起源4.2 直线、射线、线段阅读与思考长度的测量4.3 角4.4 课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4 部分中英文词汇索引七年级下册第五章相交线与平行线5.1 相交线5.2 平行线5.3 平行线的性质5.4 平移数学活动小结复习题5第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用数学活动小结复习题6第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1 二元一次方程组8.2 消元8.3 再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组9.4 课题学习利用不等关系分析比赛(1)数学活动小结复习题9第十章实数10.1 平方根10.2 立方根10.3 实数数学活动小结复习题10部分中英文词汇索引八年级上册第十一章一次函数11.1 变量与函数信息技术应用用计算机画函数图象11.2 一次函数阅读与思考科学家如何测算地球的年龄11.3 用函数观点看方程(组)与不等式数学活动小结复习题11第十二章数据的描述12.1 几种常见的统计图表12.2 用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁12.3 课题学习从数据谈节水数学活动小结复习题12第十三章全等三角形13.1 全等三角形13.2 三角形全等的条件阅读与思考为什么要证明13.3 角的平分线的性质数学活动小结复习题13第十四章轴对称14.1 轴对称14.2 轴对称变换信息技术应用探索轴对称的性质14.3 等腰三角形实验与探究三角形中边与角之间的不等关系数学活动小结复习题14第十五章整式15.1 整式的加减15.2 整式的乘法15.3 乘法公式阅读与思考杨辉三角15.4 整式的除法15.5 因式分解观察与猜想x2+(p+q)x+pq型式子的因式分解数学活动小结复习题15八年级下册第十六章分式16.1 分式16.1 分式的运算阅读与思考容器中的水能倒完吗16.1 分式方程数学活动小结复习题16第十七章反比例函数17.1 反比例函数17.1 实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1 勾股定理18.2 勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1 平行四边形19.1 特殊的平行四边形实验与探究巧拼正方形19.1 梯形观察与猜想平面直角坐标系中的特殊四边形数学活动小结复习题19第二十章数据的分析20.1 数据的代表20.2 数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式乘除阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1 一元二次方程22.2 降次──解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计数学活动小结复习题23第二十四章圆24.1 圆24.2 与圆有关的位置关系24.3 正多边形和圆阅读与思考圆周率π24.4 弧长和扇形面积实验与研究设计跑道数学活动小结复习题24第二十五章概率初步25.1 概率25.2 用列举法求概率阅读与思考概率与中奖25.3 利用频率估计概率阅读与思考布丰投针实验25.4 课题学习键盘上字母的排列规律数学活动小结复习题25九年级下册第二十六章二次函数26.1 二次函数实验与探究推测植物的生长与温度的关系26.2 用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3 实际问题与二次函数数学活动小结复习题26第二十四章相似27.1 图形的相似27.2 相似三角形观察与猜想奇妙的分形图形27.3 位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1 锐角三角函数阅读与思考一张古老的三角函数28.2 解直角三角形数学活动小结复习题28第二十九章投影与视图29.1 投影29.2 三视图阅读与思考视图的产生与应用29.3 课题学习制作立体模型数学活动小结复习题29。

八年级数学上册 第13章实数复习练习题(无答案) 人教新课标版

八年级数学上册 第13章实数复习练习题(无答案) 人教新课标版

第13章 实数复习练习题一、填空题1.94的平方根是 ;0.216的立方根是 .实数27的立方根是 3的平方根是 ;4的算术平方根是 ;2的算术平方根是2.计算:64=_ .64的立方根是 ;81的平方根是 。

3.算术平方根等于它本身的数是 ;立方根等于它本身的数是 .4 1.414= 4.472,=________=________.5.若195+x 的立方根是4,则34x +的平方根是 .41的平方根是________.6.一个正数a 的算术平方根减去2等于7,则a = ;的平方根是 。

7.已知一个正数的两个平方根分别是2a -2和a -4,则a 的值是 .8.已知一个正数的两个平方根是32x -和56x +,则这个数是 .9.如果正数m 的平方根为1x +和3x -,则m 的值是 .10.如果A 的平方根是2x -1与3x -4,求5A +3的立方根是 .11.若02783=+x ,则x = .________.12.52-的绝对值是__________,52-的倒数是_________;12-的相反数是_______1330a -=,则a 与3的大小关系是________;14.则x 的取值范围是 _;则x 的取值范围是 .15.当a _在实数范围内一有意义.16.使有意义的x 的取值范围是 .若3x -1有意义,则x 的取值范围是_ .17.x 应满足的条件是 .18.使a 有意义的a 的取值范围为 .式子x x 1+有意义的x 取值范围是 。

19.若212-+-x x 有意义,则x 的取值范围 。

20.比较大小:______21.若两个连续的整数,a b 满足a b ,则1ab的值为 .22.已知a 、b 为两个连续的整数,且a b <<,则a b += 。

23.在数轴上表示 a 的点到原点的距离为 3,则 a -3= .24.若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y =________.25.一个自然数的算术平方根为a,则比它大4的自然数的算术平方根为_____.26.一个数的立方根是m ,则这个数是 .27.若0)1(32=-++b a ,则_______4=-b a .计算:2)4(3-+-ππ的结果是__.28.16的算术平方根是 ,的平方根是 .29 .3b -=0= 。

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14.13 《实数》计算题(专项练习)(巩固篇100题)一、解答题12.计算:(+1|+(5-2π)03.(1);(2)已知()2x 1- =4,求x 的值.4.已知:,x y 为实数,且3y <,化简:3y -5.计算:(1)110101(1)(3)2π-⎛⎫-+-+ ⎪⎝⎭(226213.14+6+2π-⎛⎫-- ⎪⎝⎭()7.计算:()23- 8.计算(1(2(x <2y <0)92 .10.计算:(2)(1+(12. 11.计算:12.计算:(1+(2)+1)213.计算:21-21-2-⎛⎫ ⎪⎝⎭14.计算:+2)2+2﹣215.计算:()202011-+16.计算: 21)3)(3--17.18.计算:(1﹣3|(2)1)2+)2﹣21)) 19.计算下列各式: (1)√6×(√3+√2)-2√3; (2)4√15÷√3−√20+5√15.20.计算:20-11-23+())()21.计算:|−2|+(−1)2012×(π−3)0−√8+(−2)−2222)023.(1)计算:2(1(2)求x 的值:3641)270x +-=(24.计算:(3(2. 25.已知x,y =,求4x yy x +-的值.26.计算:(1(2)2(11)-.27.已知4. (1)求x 、y 的值;28.计算:;(23;(3)(22017×(22016-2-(0(4)(a +b -.29.计算:|1.30(22π-+.31.计算:(13;(2)32.计算:33.已知 x y(1)x yy x+的值;(2)2x 2+6xy +2y 2的值.34.计算(1)0(2)((2 35.化简:(1(2(10+|﹣2|﹣(12)﹣136.计算下列各式(1) (2)371+ 38.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23+39.计算(1)﹣(2)1))﹣(1﹣2.40.计算:41.计算:(1)−√83+√16−|√3−2|;(2)(√12+3√3)×√3; (3)12×(√2+√3)−34×(√2−√27);(4)(−12)2×√(−2)2+12×√1253;42432(2 +44.计算:22 |1|3-⎛⎫-- ⎪⎝⎭45.计算:|3﹣1)2018.46.计算1.47.计算:2(3)21)-+⨯--.482318 49.计算:⎛⎝;12⎛⎫⎪⎝⎭.50.计算:(1)11(251233312713++.52.计算:(1)(2)201811-+53.计算:(1)21(2)--;(2)2(3254.计算:(1;(2)12)﹣12|;(3)2)2;(4)2020•2021. 55.计算(1|1(2)2|(3(4|3562.57.计算题:2--;(2)58.完成下列各题.(1)计算:())0311-+(2)计算:(()201412π1-+-.(3)(041-.(4)计算:())3212523-⎛⎫-+--+ ⎪⎝⎭.(5)计算:122323---.(6)1382+.(7)计算:2112-⎛⎫- ⎪⎝⎭.59.计算:2(71)+--60()0221( 3.14().2π-+---⨯61()()2202021--- 62.计算(12236 (2)220201020.2513163.计算:(1)- (2)(3) (4)64.计算:(1) (2) ()012018π+--6566.计算:4÷672020(1)-.68.计算:1||3+-69. 计算:+2|-2|;(-1)2018. 70.计算:(1)(√8+√3)×√6√10−√15√5; (2)2√12×(3√48−4√18−3√27)(3)√72−√32√8(√5−√2)(√5+√2); (4)(π−1)0+(−12)−1+|5−√27|−2√371.计算:(−3)2−(12)−1+(−2019)0.72.计算:201( 3.14)2π-⎛⎫-- ⎪⎝⎭.73.计算:(1)9×(﹣23)﹣3|(22+74.计算1). 75.计算:(1)(10+|2(﹣1)2018﹣13(2)(x+y )2﹣x (2y ﹣x ) 76.计算:(1(20,0)a b >>(3(477.78.计算:(1)⎛ ⎝;(2|1 79.计算:(1)()20201821--⨯--;(2)()()()221a a a a +--+.80.计算:(1)|﹣3|12+(﹣2)2 . |2.81.(12| (2)求x 的值:(2x ﹣1)2=9.822(317)0x y -+=的值.83.计算:()()20211211π--++.84.计算:(﹣1)2008+π0﹣(13)﹣185.计算:86.计算:3(1)|1-+ 87.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)(2212-+88.02018)(1)|1π+-+.89.计算:(1) (2)(÷(3)0,0)a b >> 90.计算:(1321(2)(10)4---⨯- (2)225(24)-⨯--91.解下列方程:(1) 9(3-y )2=4; (2) 2732-3x ⎛⎫ ⎪⎝⎭+125=0.9221)+ 93.计算:(1) (2)01)1)(3) (4)0(3)|1---.94.计算:(1)|-5|+(-2)2-1;95.计算: 96.计算:(1)(22-97 98.计算下列各题(1)⎛÷ ⎝ (2)2- 99.(1);(2)(3);(4)100.计算:(12018(1)- (23参考答案1.-11 4【分析】先将二次根式化简,再根据实数的运算法则求得计算结果.=111 30224 ---++==-11 4.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是二次根式、绝对值等考点的运算.2.【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.解:(+1|+(5-2π)0=1+1=【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.3.(1)13-;(2) x1=3,x2=-1.【分析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.解:(1-2-13=-13;(2)(x-1)2=4,x-1=±2,x-1=2,x-1=-2.解得:x1=3,x2=-1.【点拨】此题主要考查了平方根和立方根的应用,灵活利用平方根和立方根的概念是解题关键.4.-1.【分析】根据所给的已知式子,由二次根式有意义的条件,可求x 取值范围,得到x ,然后求出y 的取值范围,然后根据二次根式的性质求解即可.解:由题意可知: 10x -≥且10x -≥1x ∴=3<-y x 3∴<y3∴-y34=---y y()()34=-+--+y y34=-++-y y1=-5.(1)3(2)18﹣﹣【分析】(1)先算乘方和开方,然后合并同类二次根式即可;(2)先算乘方、乘法、除法,然后合并同类二次根式即可.解:(1)原式=(﹣1)+1+21)=(﹣1)+1+2=3(2(2+12-=4﹣+12﹣=18﹣﹣【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.6.11【解析】试题分析:根据二次根式的相关公式,零指数幂的规定,绝对值的意义以及负整数指数幂的相关规则,分别对算式的各个部分进行化简和运算,然后再对所得到的中间结果进行进一步的运算即可.试题解析:()2013.1462π-⎛⎫-+-+ ⎪⎝⎭ =2-1+6+4=117.4.5【分析】先计算平方、开平方和开立方,再计算加减.解:解:原式=9—32-3 =4.5【点拨】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.8.(1) 203;(2)-21xy 解:试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简. 试题解析=203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 9.-2.【解析】【分析】根据二次根式、三次根式的化简方法计算,再合并同类项.2,=332,=-2.【点拨】本题考查实数的综合运算能力.解决此类题目的关键是熟练掌握二次根式、三次根式的化简.10.(2) 2+【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.解:(1)原式===(2)原式=1-5+1+5=2+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(1) 2(2)-30. 【分析】(1)先算除法,再算减法.(2)先化简,再利用平方差公式计算.解:(1)原式=2(2)原式=((4=-30.【点拨】本题考查根式化简,能够掌握平方差公式是解题关键.12.(1);(2)7-【分析】(1)先分别进行化简,然后再合并同类二次根式即可;(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.解:(1)原式==;(2)原式=5231-+-=7-【点拨】本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.13.1【解析】【分析】按顺序先分别进行立方根的运算、绝对值的化简、负指数幂的运算,然后再按运算顺序进行计算即可.解:原式=-2×(-3)1-4=1【点拨】本题考查了实数的运算,涉及了立方根、负整数指数幂等,熟练掌握各运算的运算法则是解题的关键.14.29 4【分析】按顺序分别利用完全平方公式展开,化简二次根式,利用负指数幂进行计算,然后再按运算顺序进行计算即可.解:原式﹣14=294. 【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1532【分析】首先计算乘方、负整数指数幂、算术平方根、立方根和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:解:()202011-+)1=1212+-+ 1=1212+- 32【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.3-【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.解:解:原式=4-[32-2]=4-[32-2]-4=4--4=3-【点拨】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.17【分析】根据二次根式的混合运算法则进行计算.解:解:原式143+=(14327+=-==【点拨】本题考查二次根式的运算,解题的关键是掌握二次根式的运算法则.18.(1)﹣6;(2)9.【解析】【分析】(1)先进行二次根式的乘法运算,再把二次根式化为最简二次根式和去绝对值,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(13|3﹣3=﹣6;(2)3﹣﹣2(2)=3﹣﹣6﹣=9.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1) 3√2;(2) 3√5.【解析】【分析】(1)先利用分配律进行计算,然后再合并同类二次根式即可;(2)按顺序进行二次根式的除法运算、化简二次根式,然后再合并同类二次根式即可.解:(1)原式=3√2+2√3-2√3=3√2;(2)原式=4√5-2√5+√5=3√5.【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.5【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答解:解:原式4313=-++5=【点拨】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则21.解:原式=。

北师大版八年级上册数学实数课件

北师大版八年级上册数学实数课件
把下列各数分别填入相应的集合内:
0.3737737773……
实数:有理数和无理数统称为实数。
有理数集合
无理数集合
• 请把下列各数分别填入相应的集合内:
正数集合
负数集合
2,实数分类:
• ①分类标准:是否是有理数。
实数
有理数 无理数
• ②分类标准:符号正负。
实数
正实数 0
负实数
• 课堂练习:课本40页,知识技能:1
与 互为倒数


想一想
1.
的绝对值是
2. a 是一个实数,它的相反数是
a的绝对值是 当a≠0时,它的倒数是
5,实数与数轴:
(1) 如图,OA=OB
数轴上的 点A对应的
数是什么? 它介于哪
两个整数之间?
1
-2
-1
O
(2) 如果将所有实数都 标到数轴上,那么数轴 被填满了吗?
B 1A 2
实数与数轴上的点的对应关系:
3.在数轴上作出 对应的点.
7,课堂小结
通过今天的学习,说说你的收获和体会?
8,课后作业:
1.课本习题2.8
2.求
的相反数和绝对值.
8,板书设计
6,实数
1,实数概念与分类。
3,实数与相反数,倒数,绝 对值。
2,实数运算律。
4,实数与数轴。
• 谢谢观赏!


再见!

3,实数的运算律
1.在有理数范围内能进行哪些运算? 用哪些运算律?那么在实数范围内呢?
2.判断下列各式成立吗?
结论:有理数的运算及运算律对实数仍然适用。
• 4,倒数,相反数,绝对值。
在实数范围内 ,相反数、倒数、绝对 值的意义 ,和有理数范围内的相反数、倒 数、绝对值的意义完全一样。

4.3 实数(第1课时)(课件)八年级数学上册(苏科版)

4.3  实数(第1课时)(课件)八年级数学上册(苏科版)

(2)分数(如− 、 、 )


(3)无理数(如 、 、 )
这些点没有“填满”数轴
这些点没有“填满”数轴
再添加像π、0.1010010001⋯这样的无理数
数轴上所有表示有理数、无理数的点把数轴“填满”了
概念学习
实数的概念:
有理数和无理数统称为实数.
即实数可分为有理数和无理数.
A.无理数都是无限小数
B.无限小数都是无理数
C.带根号的数都是无理数
D.无理数与数轴上的点是一一对应的
2. 和数轴上的点一一对应的是
( D )
A.整数
C.无理数
B.有理数
D.实数
新知巩固
3.关于 ,下列说法正确的是( D )A.是整数
C.是有理数
B.是分数
D.是无理数
4. 下列各数中无理数有 ( B )
活动二 画图 在方格纸中分别画出长度为 、 、 ⋯ ⋯的线段.



数学实验室
活动三 用图
(1)按如图所示的方法画下去,想一想所画出的图形形状.
(2)分别求出图中线段a1、a2、a3、a4、a5、⋯ ⋯的长.
a2=
a1=
a3=
1
a5=
a4=
(3)在数轴上分别标出表示数a1、a2、a3、a4、
小组讨论、交流,说说自己的想法.
数学实验室
活动一 读图 如图,方格纸中的小正方形边长为1,求出下列线段的长:
(1) 线段AB的长是________.

A
(2) 线段AC的长是________.

(3) 线段DE的长是________.

B
C
D

北京市西城区学探诊 人教版八年级数学上册 第13章实数

北京市西城区学探诊  人教版八年级数学上册  第13章实数

第十三章 实数测试1 平方根学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2B .0C .81D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 10.要切一块面积为16cm 2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题 11.25111的平方根是______;0.0001算术平方根是______:0的平方根是______. 12.2)4(-的算术平方根是______:81的算术平方根的相反数是______.13.一个数的平方根是±2,则这个数的平方是______. 14.3表示3的______;3±表示3的______.15.如果-x 2有平方根,那么x 的值为______. 16.如果一个数的负平方根是-2,则这个数的算术平方根是______,这个数的平方是_____. 17.若a 有意义,则a 满足______;若a --有意义,则a 满足______. 18.若3x 2-27=0,则x =______. 二、判断正误19.3是9的算术平方根.( ) 20.3是9的一个平方根.( ) 21.9的平方根是-3.( ) 22.(-4)2没有平方根.( ) 23.-42的平方根是2和-2.( ) 三、选择题24.下列语句不正确的是( )A .0的平方根是0B .正数的两个平方根互为相反数C .-22的平方根是±2D .a 是a 2的一个平方根 25.一个数的算术平方根是a ,则比这个数大8数是( )A .a +8B .a -4C .a 2-8D .a 2+8 四、解答题26.求下列各式的值:(1)325 (2)3681+(3)25.004.0-(4)121436.0⋅27.要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?拓展、探究、思考28.x 为何值时,下列各式有意义?.1)4(;)3(;)2(;2)1(2--x x x x29.已知a ≥0,那么2)(a 等于什么?30.(1)52的平方根是________; (2)(-5)2的平方根是________,算术平方根是________; (3)x 2的平方根是________,算术平方根是________; (4)(x +2)2的平方根是________,算术平方根是________. 31.思考题:估计与35最接近的整数.测试2 立方根 学习要求了解立方根的含义;会表示、计算一个数的立方根.课堂学习检测一、填空题1.一般的,如果______,那么这个数叫做a 的立方根或三次方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.1平方根(34课时)学习目标:1、 理解数的算术平方根的概念,并会用符号表示。

2、 理解平方与开平方是互为逆运算。

3、 会求一些非负数的算术平方根。

自学指导:认真学习课本68—71页的内容,完成下列要求:1、a 中被开方数a 的范围怎样。

0的算术平方根的意义。

2、完成例1,注意例1的书写格式。

3、学习例3的内容,注意50与7是怎样比较的。

4、自学后完成展示内容,20分钟后进行展示。

展示内容:1、 ∵ 22 = ∴ 4的算术平方根是 即 ∵ 2)43( = ∴ 169的算术平方根是 即 2、∵正数a 的算术平方根是a ,∴2的算术平方根是 ∵4的算术平方根是2,∴4 = 3、求下列各数的算术平方根:⑴ 0.0025 ⑵ 121 ⑶ 23 ⑷ 2(3)- ⑸ 74、求下列各式的值: (1)1 (2)259(3)()2-5、计算下列各式:(1)49 — 49 (2)1691 —144 + 81(3)25×3616、求下列各等式中的正数x(1)2x = 169 (2) 42x — 121 = 0 7、比较下列各组数的大小。

(1)140与12 (2)215—与0.5 13.3 平方根(35课时)一、学习目标 1、 理解平方根的概念 2、 了解开平方的定义 3、 掌握平方根的性质 二、自学指导认真阅读72-74页内容,完成下列要求:1、 说明:一个正数a 的算术平方根有__个,平方根有__个,并且互为____,0的平方根是___。

2、 负数有没有平方根,为什么? 3、 注意根号前的符号4、 自学20分钟后,进行展示活动 三、展示内容1、 填表:2、 计算下列各式的值:(1) (2)- (3)± (4)-3、 平方根起源于正方形的面积,若一个正方形的面积为A ,那么这个正方形的边长为多少?4、 判断下列说法是否正确(1)5是25的算术平方根( ) (2)65是3625的一个平方根( )(3)()42-的平方根是-4( )(4)0的平方根与算术平方根都是0( ) 5、下列各式是否有意义,为什么?(1) -3(2)3-(3)()22-(4)10216、求下列各式的x 的值:(1)2x =25 (2)2x -81=0 (3)252x =36 (4)22x -18=013.2 立方根(36课时)学习目标:1、理解并掌握立方根的概念,会用符号表示一个数的立方根。

2、会求一个数的立方根。

自学指导:自学课本77—78页内容,完成下列要求:1、理解立方根的概念,理解立方与开立方是互为逆运算。

2、独立完成77页探究内容,组内合作交流,归纳出正数、负数、0的立方根的特点。

3、理解3a -与—3a 的相等关系。

4、自学后完成展示内容,20分钟后进行展示。

展示内容:1、如果一个数的立方根等于 ,那么这个数叫做 的 或 。

2、求一个数的 的运算,叫做 。

与 互为逆运算。

3、正数的立方根是 数,负数的立方根是 数,0的立方根是 。

4、符号3a 中,3是 ,3a 中的 不能省略。

5、3a - —3a6、课本79页练习1、3、4题.7、求下列各数的立方根: (1)—8 (2)6427(3) ±125 (4) 81×9 8、求下列各式的值。

(1)—327102(2)—36427— (3)3064.0- (4)3121081⨯- (5)—3112598- 13.3实数(37课时)学习目标:1、了解实数的意义,能对实数按要求进行分类。

2、了解实数范围内,相反数、倒数、绝对值的意义。

3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。

学习重点:理解实数的概念。

学习难点:正确理解实数的概念。

一、学前准备有理数有理数二、探究新知1、归纳:任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,____________小数又叫无π=也是无理数理数, 3.14159265结论:_______和_______统称为实数你能举出一些无理数吗?2、试一试把实数分类像有理数一样,无理数也有正负之分。

例如π是____无理数,,π-是____无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:实数3、我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______ 这样,无理数可以用数轴上的点表示出来(2)总结①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______4、讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是______,这里a 表示任意____________。

一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______ 三、学以致用例1、把下列各数分别填入相应的集合里:2273.141,,,,,1.414,0.020202,7378π----正有理数{ } 负有理数{ }正无理数{ } 负无理数{ }2、下列实数中是无理数的为( )A. 0 B. 3.5-3、的相反数是 ,绝对值4、绝对值等于 的数是 , 的平方是5、6、求绝对值练习:一、判断下列说法是否正确:1.实数不是有理数就是无理数。

( )2.无限小数都是无理数。

( )3.无理数都是无限小数。

( )4.带根号的数都是无理数。

( )5.两个无理数之和一定是无理数。

( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

( )二、填空1、2、3、比较大小=_________4、四、总结反思这节课你有什么新发现?知道了哪些新知识?无理数的特征:1.圆周率及一些含有的数2.开不尽方的数3.有一定的规律,但循环的无限小数注意:带根号的数不一定是无理数五、自我测试1、把下列各数填入相应的集合内:有理数集合{ } 无理数集合{ } 整数集合{ } 分数集合{ } 实数集合{ }2、下列各数中,是无理数的是()A. 1.732- B. 1.414 C. D. 3.143、已知四个命题,正确的有()⑴有理数与无理数之和是无理数⑵有理数与无理数之积是无理数⑶无理数与无理数之积是无理数⑷无理数与无理数之积是无理数A. 1个B. 2个C. 3个D.4个4、若实数a满足1aa=-,则()A. 0a> B. 0a< C. 0a≥ D. 0a≤5、下列说法正确的有()⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数⑷比正实数小的数都是负实数⑸非负实数中最小的数是0A. 2个B. 3个C. 4个D.5个6、⑴2的相反数是_________ ,绝对值是_________⑶若(22x=,则x=_________⑵π-=_______7x=_____13.3实数(38课时)1、了解实数的运算法则及运算律,会进行实数的运算2、明确有理数与实数的对比一、自学指导自学课本84-96页内容1、回顾复习有理数的绝对值2、小组交流课本84戊思考题,归纳实数的相反数和绝对值的结果3、明白有理数的运算法则及运算性质在进行实数的运算中,同样适用二、展示内容1、写出下列各数的相反数:(1)-6(2)-3.14(3)一2、||=___;若|a |=,则a=___.3、计算下列各式的值:(1)(+)-(2)3+2(3)(-)-2(-)4、课本86页1、2、3、4课题:实数复习(39课时)一、知识结构乘方−−−−→←互为逆运算开方⎪⎩⎪⎨⎧−−→−−−→−立方根平方根开立方开平方实数无理数有理数→⎭⎬⎫二、知识回顾算术平方根的定义:平方根的定义:平方根的性质:立方根的定义:练习:1、—8—64c2、大于17-而小于11的所有整数为 几个基本公式:(注意字母a 的取值范围)2)(a = ; 2a = = ; 33)(a = ; 3a -=练习:的值求、若332,01a a a +<; ,求、若2n m <无理数的定义: 实数的定义:实数与 上的点是一一对应的 练习:1、判断下列说法是否正确: 1.实数不是有理数就是无理数。

( ) 2.无限小数都是无理数。

( ) 3.无理数都是无限小数。

( ) 4.带根号的数都是无理数。

( )5.两个无理数之和一定是无理数。

( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

( )7.平面直角坐标系中的点与有序实数对之间是一一对应的。

( )2、把下列各数中,有理数为 ;无理数为3737737773.085094320225233、、、、、、、、、---π(相邻两个3之间的7逐渐加1个)三、知识巩固1、x 取何值时,下列各式有意义(1)x -4 : ;(2)34x +: ;(3)212-+x x :2、4)3(92=-y ()01253273=++x 3232223--++-四、知识提高1、已知732.13≈,477.530≈,(1)≈300 ;(2)≈3.0 ; (3)0.03的平方根约为 ;(4)若77.54≈x ,则=x练习:已知442.133≈,107.3303≈,694.63003≈,求(1)≈33.0 ; (2)3000的立方根约为 ;(3)07.313≈x ,则=x2、若()x x -=-222,则x 的取值范围是 3、已知c b a 、、位置如图所示,试化简:(1)()22c b a c b a a --+-- (2)()22a b c b c b a -+-+-+4、已知115+的小数部分为m ,115-的小数部分为n ,则=+n m五、当堂反馈1、下列说法正确的是( )A 、16的平方根是4±B 、6-表示6的算术平方根的相反数C 、 任何数都有平方根D 、2a -一定没有平方根 2、若335=-m ,则=m3、若0=+x x ,则x 的取值范围是 ;()x x -=-4433,则x 的取值范围是4、已知x x y 21121-+-+=,求y x 32+的平方根⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧_________________________________________________________________________________实数5、已知等腰三角形的两边长b a ,满足()013325322=-+++-b a b a ,求三角形的周长6、如果一个数的平方根是1+a 和72-a ,求这个数 (选作)1、若b a ,为实数,则下列命题正确的是( ) A 、22,b a b a >>则若 B 、22,b a b a >>则若C 、22,b a b a >>则若D 、22,0b a b a a >>>则且若 2、已知a a a =-+-43,求a 的值。

相关文档
最新文档