《电机学(下)》同步电机复习提纲要点

合集下载

《电机学》课程复习要点

《电机学》课程复习要点

《电机学》课程复习要点课程名称:《电机学》适用专业:电气工程及其自动辅导教材:《电机学》(第5版)汤蕴璆主编第一章绪论内容:了解本课程的主要内容和电机在国民经济各行各业中的作用,明确《电机学》课程在自动化专业中的地位,从而明确学习目的;了解本课程的性质、任务、特点和电机理论的一般分析方法,了解电机的分类、主要作用。

要求:熟练掌握电机理论中常用的基本电磁定律;铁磁材料的特性。

第二章变压器内容:单相变压器运行原理、三相变压器连接法和联结组别、标幺值概念及用标幺值进行各种运算要求:了解三相变压器磁路系统、三相变压器绕组接法和磁路系统对电动势波形的影响;理解单相变压器空载运行物理现象及电势、电流分析;变压器工作特性;掌握变压器基本工作原理结构,原理图各量参考方向的规定;额定值;单相变压器负载;熟练掌握单相变压器空载及负载运行时基本方程式、等效电路、相量图、功率关系及相关运算、标幺值概念及用标幺值进行上述各种运算。

第三章直流电机内容:直流电机磁场及电枢反应、电机的可逆原理、直流电机的基本工作原理和结构、直流电机单叠绕组。

要求:理解直流电机空载和负载时的磁场及电枢反应、电机的可逆原理;掌握直流电机的基本工作原理和结构、直流电机单叠绕组;熟练掌握直流电机电枢电动势、电磁转矩和电磁功率、直流电动机的运行原理、电动机惯例、基本方程式、机械特性、工作特性及相关运算。

第四章交流电机共同问题内容:交流电机的电枢绕组、交流绕组的绕制方法、交流绕组感应电动势、交流绕组建立的磁动势。

要求:了解交流电机的电枢绕组、理解交流绕组的绕制方法、掌握交流绕组感应电动势及交流绕组建立的磁动势。

第五章感应电机内容:感应电机的结构、基本工作原理、额定值、三相感应电机磁动势、磁场、工作特性及运行原理。

要求:了解感应电机的结构、基本工作原理、额定值;理解三相感应电机磁动势、磁场和工作特性;掌握三相感应电动机堵转时运行特性、转子转动时运行特性、频率折算和转子绕组折算、三相感应电动机参数测定;熟练掌握感应电动机基本方程式组、等值电路、功率与转矩平衡关系及相关运算。

《电机学》复习要点

《电机学》复习要点

一、主要内容磁场、磁感应强度,磁场强度、磁导率,全电流定律,磁性材料的B-H 曲线,铁心损耗与磁场储能,电感,电磁感应定律,电磁力与电磁转矩。

二、基本要求牢固掌握以上概念对本课程学习是必须的。

三、注意点1、欧姆定律:作用于磁路上的磁动势等于磁阻乘以磁通m F Φ=Λ,1m m S R l μΛ==2、2222m SfN S N l X L N l μμωωπω==Λ== 3、随着铁心磁路饱和的增加,铁心磁导率µFe 减小,相应的磁导、电抗也要减小。

一、主要内容额定值,感应电动势、电压变比,励磁电流,电路方程、等效电路、相量图,绕组归算,标幺值,空载实验、短路实验及参数计算,电压变化率与效率。

三相变压器的联接组判别。

三相变压器绕组的联接法和磁路系统对相电势波形的影响。

二、基本要求熟练掌握变压器的基本电磁关系,变压器的各种平衡关系。

三种分析手段:基本方程式、等效电路和相量图。

正方向确定,基本方程式、相量图和等效电路间的一致性。

理解变压器绕组的归算原理与计算。

熟练掌握标幺值的计算及数量关系。

熟悉变压器参数的测量方法,运行特性分析方法与计算。

掌握三相变压器的联接组表示与确定。

三、注意点1、变压器的额定值对三相变压器来说电压、电流均为线值,功率是三相视在功率,计算时一定要注意。

三相变压器参数计算时,必须换成单相数值,最后结果再换成三相值。

2、励磁阻抗的物理意义,与频率和铁心饱和度的关系。

3、变压器的电势平衡、磁势平衡和功率平衡(功率流程图)。

4、变压器参数计算(空载试验一般在低压侧做,短路实验一般在高压侧做。

在哪侧做实验,测出来的就是哪侧的数值,注意折算!)5、变压器的电压调整率和效率的计算(负载因数1I β*=)。

6、单相变压器中励磁电流、主磁通和感应电势的波形关系,三相变压器的铁心结构和电势波形。

7、联接组别的判别。

8、变压器负载与二次侧接线方式要一致,若不一致,必须将负载∆-Y 变换。

直流电机一、主要内容直流电机的励磁方式,直流电机绕组参数与特点,空载磁场,负载时的直轴和交轴电枢反应分析,电枢绕组的感应电动势,电压和功率平衡,电枢绕组的电磁转矩,转矩平衡。

电机学课程复习重点

电机学课程复习重点

《电机学》课程复习重点本门课程掌握以下知识点:一、电机和变压器的磁路常采用硅钢片制成,它的导磁率高,损耗小,有饱和现象存在。

二、软磁材料、、硬磁材料的概念:答:铁磁材料按其磁滞回线的宽窄可分为两大类:软磁材料和硬磁材料。

磁滞回线较宽,即矫顽力大、剩磁也大的铁磁材料称为硬磁材料,也称为永磁材料。

这类材料一经磁化就很难退磁,能长期保持磁性。

常用的硬磁材料有铁氧体、钕铁硼等,这些材料可用来制造永磁电机。

磁滞回线较窄,即矫顽力小、剩磁也小的铁磁材料称为软磁材料。

电机铁心常用的硅钢片、铸钢、铸铁等都是软磁材料。

三、磁路和电路的不同点。

1)电流通过电阻时有功率损耗,磁通通过磁阻时无功率损耗;2)自然界中无对磁通绝缘的材料;3)空气也是导磁的,磁路中存在漏磁现象;4)含有铁磁材料的磁路几乎都是非线性的。

四、直流电机电刷放置的原则在确定直流电机电刷的安放原则上就考虑:(1)应使电机正、负电刷间的电动势最大:(2)应使被短路元件的电动势最小,以利于换向。

两者有一定的统一性,一般以空载状态为出发点考虑电刷的安放。

因此,电刷的合理位置是在换向器的几何中性线上。

无论叠绕组还是波绕组,元件端接线一般总是对称的,换向器的几何中性线与主极轴线重合,此时电刷的合理位置是在主极轴线下的换向片上。

五、一台直流电动机,磁路饱和。

当电机负载后,电刷逆电枢旋转方向移动一个角度。

试分析在此种情况下电枢磁动势对气隙磁场的影响。

答电刷移动后,电刷不在几何中性线上,同时存在交轴电枢磁动势和直轴电枢磁动势。

交轴电枢磁动势使气隙磁场发生畸变,因磁路饱和,还有去磁作用,使每极磁通减少。

对电动机而言,电刷逆旋转方向移动后,直轴电磁磁动势方向相反,电枢反应起去磁作用,使每极磁通减少。

六、变压器铁芯的作用;为什么它要用0.35mm 厚、表面涂有绝缘漆的硅钢片迭成。

铁心: 构成变压器的磁路,同时又起着器身的骨架作用。

绕组: 构成变压器的电路,它是变压器输入和输出电能的电气回路。

同步电机学

同步电机学
12
2. 漏电抗与同步电抗
(1)漏电抗
U→I
→Id→Fad→Φad →Ead →Iq→Faq→Φaq →Eaq
Φs →Es RaI
※ 漏磁感应电动势:Es =-j Xs I ※ Ra、Xs —— 定子每相绕组的电阻、漏电抗。
13
2. 漏电抗与同步电抗
(2)隐极同步电机的同步电抗
※ Xc = Xs+Xa —— 同步电抗。 (3)凸极同步电机的同步电抗
5
二、同步电机的电枢反应
➢ 电枢反应的去磁或增磁,对电机的运行性能产生影响。 ➢ 电枢反应的性质(交磁、去磁或增磁)取决于空载电动
势E0 和负载电流 I 的之间的相位差 ,称为内功率因
数角。
U1
为了便于分析,将转子磁极的 轴线确立为直轴,用d表示; 将通过两个磁极之间,与直轴 正交的轴线确立为交轴,用q
所以
Ea =-jXa I ※ Xa —— 电枢反应电抗。
10
1. 电枢反应电抗
(2)凸极同步电机
特点:气隙不均匀。 同样的 Fa →产生不同的Φa →对应不同的 Xa 。 如果磁路不饱和:将 I 分解为两个分量。
E0
Iq
I
d Id
直轴分量:Id = I sinΨ 交轴分量:Iq = I cosΨ
I = Id+Iq —— 双反应理论。
V2
N
+ If
Uf

W2
表示。
W1
S
V1
U2
6
a) =0º
用 时 空 相 矢 图 分
析 b) =90º
电 枢 反 应
7
用 c) =-90º
时 空 相 矢 图 分 析 电 枢 反 应

电机学同步电机部分知识点总结

电机学同步电机部分知识点总结
隐极机一般用汽轮机拖动,凸极机用水轮机拖动。
二、 对称负载时的电枢反应
1. 同步电机空载时,气隙磁场就是由励磁磁动势所产生的同步旋转的主磁场, 在定子绕组中只感应有空载电动势,因为定子电流为 0,所以端电压就等于 空载电动势。带上对称负载以后,定子绕组流过负载电流时,电枢绕组就会 产生电枢磁动势以及相应的电枢磁场,若仅考虑其基波,则它与转子同向、 同速旋转,它的存在使空气隙磁动势分布发生变化,从而使空气隙磁场以及 绕组中的感应电动势发生变化,这种现象称为电枢反应。
因此,与之对应有直轴电枢反应电抗和交轴电枢反应电抗,再把电枢反应电 抗与漏抗相加,可得直轴同步电抗和交轴同步电抗。
四、同步发电机的参数及测定 1.不饱和同步电抗和饱和同步电抗:不饱和同步电抗的数值要比饱和同步电抗的 数值大得多。(因为饱和时,磁阻大,电抗就小)(有一规律:气隙大,磁阻就大, 电抗就小) 2.漏抗的测定和保梯电抗(电抗三角形) (1)负载特性:当电枢电流及功率因数均为常数时,端电压与励磁电流之间的 关系曲线 U=f(If)称为负载特性。
同步电机的基本原理和运行特性
一、 同步电机(电机转子的转速和旋转磁场转速相同)的结构
转子上装有磁极和励磁绕组。当励磁绕组通以直流电流后,电机内就产生转 子磁场。同步电机的磁极通常装在转子上,而电枢绕组放在定子上,通常称为旋 转磁极式电机。
旋转磁极式同步电机的转子有隐极和凸极两种结构,隐极电机的气隙均匀, 凸极电机的气隙不均匀(极弧下较小,而极间较大)。
6. 由内功率因数角判断同步电机的运行方式。
三、 隐极+凸极同步发电机的分析方法
1.电枢反应电抗的物理意义:电枢反应磁场在定子每相绕组中所感应的电枢反应 电动势 ,可以把它看作相电流所产生的一个电抗电压降,这个电抗便是电枢 反应电抗 。 2.同步电抗: = + ,包含两部分,一部分对应于定子绕组的漏磁通,另 一部分对应于定子电流所产生的电枢反应磁通。在实用上,我们通常不把它们分 开,而是把 + 当作一个同步电抗来处理。

电机学主要知识点复习提纲

电机学主要知识点复习提纲

电机学主要知识点复习提纲一、直流电机A. 主要概念1. 换向器、电刷、电枢接触压降2 U b2. 极数和极对数3. 主磁极、励磁绕组4. 电枢、电枢铁心、电枢绕组5. 额定值6. 元件7. 单叠、单波绕组8. 第1节距、第2节距、合成节距、换向器节距9. 并联支路对数a10. 绕组展开图11. 励磁与励磁方式12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通13. 电枢磁场14. 〔交轴、直轴〕电枢反应及其性质、几何中性线、物理中性线、移刷15. 反电势常数C E、转矩常数C T16. 电磁功率P em电枢铜耗p Cua励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2可变损耗、不变损耗、空载损耗17. 直流电动机〔DM 〕的工作特性 18. 串励电动机的“飞速”或“飞车”19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动;启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动B. 主要公式: 发电机:P N =U N I N(输出电功率)电动机:P N =U N I N ηN (输出机械功率) 反电势:60E a E E C npN C a Φ==电磁转矩:em a 2T aT T C I pN C aΦπ==直流电动机〔DM 〕电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12()()a f a f a a a fa aa f em Cua CufP UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++12em Cua Cuf em Fe mec adP P p p P P p p p =++=+++DM 的转矩方程:20d d em T T T J tΩ--= DM 的效率:21112100%100%(1)100%P P p p P P P p η-∑∑=⨯=⨯=-⨯+∑ 他励DM 的转速调整率: 0NN100%n n n n -∆=⨯DM 的机械特性:em 2T j a j a a )(T ΦC C R R ΦC UΦC R R I U n E E E +-=+-=. 并联DM 的理想空载转速n 0:二、变压器 A. 主要概念1. 单相、三相;变压器组、心式变压器;电力变压器、互感器;干式、油浸式变压器 2. 铁心柱、轭部3. 额定容量、一次侧、二次侧4. 高压绕组、低压绕组5. 空载运行,主磁通Φ、漏磁通Φ1σ及其区别,主磁路、漏磁路空载电流、主磁通、反电动势间的相位关系,铁耗角6. Φ、i、e正方向的规定。

电机学期末复习总结要点

电机学期末复习总结要点

《电机学》期末复习材料第三篇 交流电机理论的共同问题 1、同步电机的结构:定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。

转子——直流励磁,是一个恒稳磁极。

极对数p 与转速n 之间的关系是固定的,为601pn f =2、异步电机的结构:定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。

转子——三相对称短路绕组,产生一个旋磁磁通。

【三相对称:空间上差120度电角度;时序上差120度电角度。

】 3、电角度与机械角度:电角度:磁场所经历的角度称为电角度。

机械角度:转子在空间所经历的几何角度称为机械角度。

电角度⨯=p 机械角度 4、感应电势:①感应电势的频率:601pn f =②感应电势的最大值:m m m f lv B E φπ==(τφl B P m =)③每根导体感应电势的有效值:m m m d f f E E φφπ22.222===5、极距:①概念:一个磁极在空间所跨过的距离,用τ来表示。

(了解整距、短距、长距)②公式:pzpD22==πτ 6、线圈电势与节距因数: ①节距因数:190sin 90)1(cos 11≤⎥⎦⎤⎢⎣⎡︒⨯=⎥⎦⎤⎢⎣⎡︒⨯-=ττy y k y物理意义:表示了短距线圈电势的减少程度。

②分布因数:12sin2sin ≤=a q aqk q 物理意义:表示了分布绕组电势的减少程度。

③绕组因数:q y w k k k = ④合成电势:w m k fN E φ44.4= ⑤槽距角:zp a 360=电角度 ⑥每极每相的槽数:pmz q 2=【练习1】一台三相同步发电机,Hz f 50=,min /1000r n =,定子铁芯长cm l 5.40=,定子铁芯内径cm D 270=,定子槽数72=z ,101=y 槽,每相串联匝数144=N ,磁通密度的空间分布波的表示式为xGs B sin 7660=。

试求:(1)绕组因数w k ;(2)每相感应电势的有效值。

《电机学》复习资料

《电机学》复习资料

电机学备考部分CHM 一.电机的分类1. 1)机械能转换为电功率---发电机 2)电功率转换为机械能---电动机3)电功率转换为另一种形式的电功率---变压器、交流机、变频机、移相机 4)不以传递能量为主要职能,在电气机械系统运行起调节、放大、控制2.按电流种类:直流电机、交流电机3.按原理和运动方式1)没有固定同步速度---直流电机 2)静止设备---变压器3)作为电动机运行时,速度较同步速度小;作为发电机运行时,速度较同步速度大---异步电机4)速度等于同步速度---同步电机5)速度可以在宽广的范围内随意调节,可以从同步速度下调至同步速度以上---交流换向器电机【同步速度指的是定子的旋转磁场】二.电机的磁路和磁路定律电在电机中主要以路的形式出现,即由电机内的线圈(或绕组)构成电机的电路磁在电机中是以场的形式存在,常把磁场简化磁路处理1.电机的电磁基本理论1)线圈中流过电流将产生磁场(右手螺旋),穿过线圈的磁通形成磁链,一个线圈通过单位电流所产生的磁链为该线圈的电感。

2)线圈流过正弦交流电时,线圈电感常用相应的电抗表示wl x l =(w 为交变频率) (施加电压↑ 磁通磁路越大 磁路越饱和 磁阻↑ 电抗↓)3)电磁感应定律:若线圈中磁链发生变化,线圈感应出电动势(线圈感应电动势趋于阻碍磁链变化)三.变压器1)标幺值=实际值/基值(基值一般取额定值) 2)测定参数⑴空载实验 (计算励磁电阻电抗,r1、x1很小可忽略)电路等效图:计算公式:000i u z =020i p a r =a a r z x 202-=一般加压于低压侧,原因:空载实验测得是励磁电抗和电阻,励磁电流大些才能测出,并且在低压侧操作比较安全⑵短路实验 等效电路图:计算公式:kki u k z 11=kki p k r 2=k k k r z x 22-= 一般加压于高压侧,原因:短路实验所测的是k r 和k x ,所以励磁电流要比较小;若加在低压侧,就算1i 很小,但2i 也很大,而2x 2r 很小,避免大电流烧坏绕组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电机学(下)》同步电机复习提纲第二十章同步电机概述1.同步电机的定子——称电枢,电枢铁心嵌放三相对称绕组;转子——称主磁极,由直流电励磁,分为隐极式和凸极式【P193图20-2】;隐极转子:气隙均匀,多用于高速电机,如:汽轮发电机,通常极对数1,由于转速高,汽轮发电机直径较小、长度较长;凸极转子:气隙不均匀,多用于低速电机,如:水轮发电机均采用凸极式,特点是直径大、长度短;转子除励磁绕组外,还常装有与感应电机笼型绕组相似的闭合绕组,在发电机称为阻尼绕组,在电动机称为起动绕组。

2.同步电机定子三相对称绕组通进三相对称电流产生的旋转磁场,与转子旋转磁极的转速恒为同步速,定、转子旋转磁场轴线之间的夹角为转矩角,通常认为【P195图20-6】——称为功率角,是转子磁场轴线超前于定、转子合成磁场轴线的夹角;当,相当于转子磁极拖着定、转子合成旋转磁场转,转子输入的机械功率转变为定子输出的电功率——发电机运行状态;此时机械转矩为驱动转矩、电磁转矩为制动转矩;当,相当于定、转子合成旋转磁场拖着转子磁极转,定子输入的电功率转变为转子输出的机械功率——电动机运行状态;此时电磁转矩为驱动转矩、机械转矩为制动转矩;当,相当于转子与合成旋转磁场轴线重合,电机内没有有功功率转换——空载运行状态;电磁转矩为零。

3.同步电机的励磁系统有:直流励磁机励磁、交流整流励磁、晶闸管自励恒压励磁等4.同步电机的额定值(铭牌数据):、——指电枢(定子)线电压、线电流;——发电机的额定容量,指三相视在功率;——指额定运行时的输出三相有功功率,故对发电机是电功率、对电动机是机械功率;∴单位:、发电机:电动机:单位:同步电机的转子转速n与电枢电流频率f、电机极对数p存在严格不变的关系:——称为同步速,单位:(转/分钟);我国电网频率,故:1,3000;2,1500;3,1000 .......第二十一章同步发电机运行原理(一)同步发电机空载运行和负载时的电枢反应1.同步发电机空载运行——励磁绕组通入直流励磁电流,原动机拖动转子磁极以同步速旋转,定子电枢绕组开路。

空载时只有建立的励磁磁势,产生空载磁通,以速度切割定子三相对称绕组感生三相空载电势;2.同步发电机接上三相对称负载后,电枢三相对称绕组通过三相对称电流,产生一个旋转磁势,称为电枢磁势,的转速也为同步速;即、均与转子转速、转向相同,故不会在转子绕组感应电势。

3..空载时气隙磁场中只有,负载时多了;因此:负载时电枢磁势对气隙磁场的影响——称为电枢反应4.电枢反应的性质与内功率因数角有关,定义:——电枢电流落后于的夹角。

直轴(d轴)——转子主磁极轴线,即的轴线;交轴(q轴)——与直轴正交的轴线;时为交轴磁势,产生交轴电枢反应;交轴电枢反应的作用:使气隙磁场发生畸变,主极磁场超前于气隙合成磁场,电磁转矩为制动性质,原动机克服电磁转矩做功,机械能转变为电能。

时为直轴磁势,产生直轴去磁电枢反应;作用:纯去磁。

时为直轴磁势,产生直轴增磁电枢反应;作用:纯增磁。

当为任意角时,可把分解为一个交轴分量和一个直轴分量,其中产生交轴电枢反应,产生直轴电枢反应;因此:时电枢反应性质:交轴+直轴去磁;时电枢反应性质:交轴+直轴增磁;5.时-空统一相量图——把时间相量和空间相量合并在一起【P199图21-2】;时间相量:、、;空间相量:、在时-空统一相量图中:与同相、与同相;(二)同步发电机数学模型1.隐极发电机①电磁关系:定子转子采用发电机惯例,定子绕组的上述感应电势与定子端电压平衡(忽略电枢绕组电阻):其中:——隐极机电枢反应电势;——隐极机电枢反应电抗,对应于电枢反应的作用;——漏磁通感生的漏电势;——定子绕组漏电抗,对应于电枢漏磁场的作用;——转子主磁通在定子感生的励磁电势,对应于主磁场的作用;②电势方程(注:公式中所有电量均是相值):其中:——隐极同步电机的同步电抗③相量图和等效电路如【p202图21-9】:其中:由于是转子磁场感生的;可看成是定、转子合成磁场感生的,因此与之间的夹角就是功率角【P208图21-18】;——功率角(超前于的角度)——内功率因数角(落后于的角度);——功率因数角(落后于的角度);2.凸极发电机由于气隙不均匀,需采用“双反应理论”的分析方法;双反应理论——把电枢电流、电枢磁势、电枢反应电抗、同步电抗都分解为直轴(d轴)和交轴(q轴)分量分别进行计算,再把结果叠加起来。

①电磁关系:定子转子定子绕组的上述感应电势与定子端电压平衡(忽略):其中:、、、——分别为直轴电流、直轴电枢磁势、直轴电枢反应电势、直轴电枢反应电抗;、、、——分别为交轴电流、交轴电枢磁势、交轴电枢反应电势、交轴电枢反应电抗;②凸极发电机电势方程(注:公式中所有电量均是相值):其中:——凸极同步电机的直轴同步电抗;——凸极同步电机的交轴同步电抗;电抗的大小与磁导成正比,由于直轴气隙比交轴小故磁导比交轴大,所以;隐极机由于气隙均匀,相当于。

上式变为:——隐极机电势方程;可见,隐极机可看成是凸极机当时的特例。

③凸极机相量图如【P205图21-13、图21-14】:由于d轴就是励磁磁通的方向,比落后,q轴与d轴垂直(正交),∴一定在q轴方向;∵相量,∴大小、;④利用凸极机相量图可采用几何方法求、、:由【P205图21-14】可见:忽略,过的矢端作的垂线与q轴相交;所组成的直角三角形中,角的邻边长度为、对边长度为;因此:;由【P205图21-13】可见:忽略,其中:;⑤此外由图21-14可见,凸极机的对边与q轴相交所组成的直角三角形,其斜边并不是而是,称为虚拟电动势,与此方程对应的等效电路如【P206图21-15】;由图21-14:;由于、、同相,故大小为:;且由该直角三角形可知,忽略:对于隐极机:∵,∴;书上例题:p206例21-1;例1:一台凸极同步发电机,,,Y接法,滞后,已知,忽略。

试求额定负载下运行时发电机的、、及。

解:∵,∴;(三)同步发电机功率方程和转矩方程1. 功率平衡方程(假设励磁损耗由另外电源供给):①机械方面的功率平衡:;其中:——由原动机输入的机械功率;——机械转变为电的那部分功率,称为电磁功率;——空载损耗,它包括机械损耗、铁耗,有时还需考虑杂散损耗;②电方面的功率平衡:;其中:——定子绕组铜耗;——发出的电功率;常忽略,则:因此:(隐极机)注:凡功率符号为大写P,凡损耗符号为小写p;2.转矩平衡方程把机械方面的功率平衡方程两边除以同步角速度,可得同步发电机的转矩平衡方程:其中:————原动机输入的驱动机械转矩;————电机的空载损耗转矩;————制动性质的电磁转矩;其中:;单位:(弧度/秒);转矩单位:(牛顿.米);第二十二章同步发电机的特性同步发电机在对称负载下运行时,=常数、常数。

在可测量的、、三个量中,保持其中一个不变,另两者之间的关系即表示一种特性:不变、——空载特性;不变、——短路特性;为常数不变、——负载特性;其中的负载特性称为零功率因数负载特性;不变、——外特性;不变、——调整特性;此外还有效率特性——1.空载特性——与磁化曲线形状相似:【P209图22-1】当较小时磁路未饱和,空载特性是直线,饱和后成为曲线;直线部分的延长线称为气隙线。

通常额定相电压点设计在空载特性的拐弯点;2.短路特性短路时,忽略发电机只剩内部同步电抗压降与平衡,故是纯感性的,∴,对隐极机:;对凸极机:由于,则,;∴可见无论隐极、凸极机:又由于时的电枢反应是直轴去磁的,即磁通较小电机不饱和,∴因此:——短路特性是一条直线,【P209图22-2(b)】。

且由于磁通较小、感应电势较小,故不大,所以同步发电机三相稳态短路没有危险。

3.利用空载特性和短路特性可求、的不饱和值:【P211图22—6】由于短路时磁路不饱和,空载特性是直线即气隙线,短路特性也是一条直线;因此,在图中对应同一励磁电流,从空载特性气隙线上查、从短路特性上查;据及可知,与的比值就是、的不饱和值:;4.、饱和值的近似求法【P212图22—7】:在空载特性饱和段取点,对应于该点找同一励磁电流下的短路电流;则:5.短路比定义——产生空载额定电压与额定短路电流所需的励磁电流之比;由【P212图22—7】:可见:书上P212例22-16.零功率因数负载特性:①由于,负载为纯感性,电机本身的阻抗也是纯感性(忽略),故,,电枢反应为直轴去磁;故此时的同步机方程:②在空载特性与零功率因数负载特性之间,存在一个特性三角形【P210图22-5】据上述同步机方程:在空载特性上∵,当时,励磁电流对应图中段,即段用于建立空载相电压;在负载特性上∵,∴当时,,励磁电流对应图中段;其中:段仍用于建立空载相电压,段用于建立漏电抗压降,段用于补偿直轴电枢反应的去磁作用;由此可得:————比实际的电枢漏抗略大,称为坡梯电抗由于不变,故特性的大小不变,当三角形的E点在空载特性上移动时,F点的轨迹就是零功率因数负载特性;当三角形的水平边移到与横坐标重合时,F点点对应短路点。

7.用转差法求、的不饱和值原动机把同步机拖到接近同步速、转子励磁绕组开路、定子加三相对称低压(其相序应使电枢旋转磁场与转子转向相同)、示波器录下电枢电压U和电枢电流I 波形,如【P213图22-8】;则:;8.外特性:实验测得各种负载下的外特性如【P214图22-10】:令电机工作在、点,然后减少发电机的负载,可见:随着负载电流的减少,纯阻负载端电压上升;感性负载上升得更多;容性负载则下降;当减为零时,。

定义同步发电机的电压调整率:9.调整特性:调整特性是不变、的曲线;由外特性可知:当负载为纯阻或感性时,随着增大是要下降的,且感性比纯阻负载下降更多;现随着增大要保持不变,则只好加大励磁电流,且感性比纯阻负载加大更多;同理,容性负载随着增大是要上升的,现随着增大要保持不变,则只好减小励磁电流;如【P214图22-12】。

10.效率特性据同步发电机功率平衡方程:;其中:总损耗效率第二十三章(一)同步发电机投入电网并联运行1.并联条件为了避免投入电网时产生冲击电流以及产生冲击转矩,并联时应使【P217图23-1】中开关Q两端的电压差为零,即发电机与电网的瞬时值必须一直保持相等;因此并联条件:发电机与电网相序、电压波形、频率一致;与大小相等、相位相同;2.并联方法:发电机投入并联所进行的调节和操作过程,称为整步过程由于电压波形设计时已保证,电机转向和相序已标明;故整步过程只需实现与大小、相位相同、频率相等;①准确整步法:把发电机调整到完全符合并联条件再投入电网灯光熄灭法【P218图23-3】:合闸条件:三灯全灭;当与大小不等或相位不等时,三灯等亮;当频率不等时,三灯同时出现时亮时暗;灯光旋转法【P219图23-4】:合闸条件:一灯灭、两灯等亮;当与大小不等或相位不等时,三灯均亮但亮度不等;当频率不等时,灯光旋转;②自整步法:操作简单,但有一定冲击电流即加上直流励磁,依靠电磁转矩把转子牵入同步;(二)同步发电机的功角特性1.凸极同步发电机的功角特性忽略,凸极机相量图如【P220图23-6】:其中:其中:其中:、其中:、其中:————凸极同步发电机的功角特性【P220图23-7】其中:——基本电磁功率,随作正弦变化,与励磁电势成正比,当时,达到最大值;——附加电磁功率,随作正弦变化;即使电机没有励磁即,只要凸极效应存在即,就存在,当时,达到最大值;3.隐极同步发电机的功角特性由于隐极机,故附加分量,只有基本分量;∴————隐极同步发电机的功角特性;书上P221例23-1(三)有功功率调节和静态稳定同步发电机投入并联的目的,就是要向电网输出功率,电机并联到(无穷大)电网上运行后,其端电压和频率均与电网一致不能变;1.同步发电机有功功率的调节增加原动机的输入功率P1(如调节汽轮机的汽门或水轮机的水门),可使同步发电机的功率角增大,从而输出的电磁功率增大。

相关文档
最新文档