内模控制器设计
根据内模基本知识的PID控制控制控制控制器参数整定仿真实验

基于内模原理的PID控制器参数整定仿真实验1.内模控制内模控制器(IMC)是内部模型控制器(Internal model controller)的简称,由控制器和滤波器两部分组成,两者对系统的作用相对独立,前者影响系统的响应性能,后者影响系统的鲁棒性。
它是一种实用性很强的控制方法,其主要特点是结构简单、设计直观简便,在线调节参数少,且调整方针明确,调整容易。
特别是对于鲁棒及抗扰性的改善和大时滞系统的控制,效果尤为显著。
因此自从其产生以来,不仅在慢响应的过程控制中获得了大量应用,在快响应的电机控制中也能取得了比PID更为优越的效果。
IMC设计简单、跟踪性能好、鲁棒性强,能消除不可测干扰的影响,一直为控制界所重视内模控制( Internal Model Control IMC ) 是一种基于过程数学模型进行控制器设计的新型控制策略。
其设计简单、控制性能良好,易于在线分析。
它不仅是一种实用的先进控制算法,而且是研究预测控制等基于模型的控制策略的重要理论基础,也是提高常规控制系统设计水平的有力工具。
值得注意的是,目前已经证明,已成功应用于大量工业过程的各类预测控制算法本质上都属于IMC类,在其等效的IMC结构中特殊之处只是其给定输入采用了未来的超前值(预检控制系统),这不仅可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析和改进提供了有力的工具。
内模控制的结构框图如图1:图1-1 内模控制的结构图其中,IMC G —内模控制器;p G —实际被控过程对象;m G —被控过程的数学模型; d G —扰动通道传递函数。
(1)当0)(,0)(≠=s G s R d 时,假若模型准确,即)()(s G s G m p =,由图可知,)]()(1)[()]()(1)[()(IMC IMC s G s G s G s G s G s G s Y m d d -=-=p ,假若“模型可倒”,即)(1s G m 可以实现,则可令)(1)(IMC s G s G m =,可得0)(=s Y ,不管)(s G d 如何变化,对)(s Y 的影响为零。
4讲 内模控制IMC与Smith预估器

越大响应越慢,操作变量变化柔和。
若
r 1,如对 r 2 ,滤波器:
1 f ( s) 2 2 s 2s 1
(10)
取
0.5
可使ISE最小
(2)若输入为斜坡响应无差,则 f 必有附加条件
利用式(8)
d ~ 由 [G p ( s)G IMC ( s)] s 0 0 得 ds
f ( s ) 为低通滤波器, 有理化调整; 目的是使 GIMC 变为有理;
则闭环 y ( s) 及 e( s) :
~ [ G ( s ) G ( s )] ~ ~ P P 式中 e H (s) GP f (s) 为灵敏函数 , ~ m GP ( s)
~ G P f ( s)[1 em ] y( s) [r ( s) Gd d ( s)] Gd d ( s) ~ 1 G P f ( s )e m ~ H ( s)[1 em ] [r ( s) Gd d ( s)] Gd d ( s) (5) ~ 1 H ( s )e m ~ 1 GP f ( s) e( s ) r ( s ) y ( s ) [r ( s) Gd ( s) d ( s)] ~ 1 G P f ( s )e m ~ 1 H ( s) [r ( s) Gd ( s) d ( s)] ~ (6) 1 H ( s )e m
~ 1 Ts 1 s 0 不可实现的预测 e ; 过程模型的逆: G p K
Ts 1 ~ 1 选IMC控制器: G IMC ( s) G p f K (s 1)
取 T ,则 GIMC 为超前环节 当模型匹配时,闭环响应: e s e s y( s) r ( s) [1 ]d ( s) s 1 s 1
基于内模控制的直流电机速度控制器设计

基于内模控制的直流电机速度控制器设计潘世丽【摘要】为了提高直流电机速度控制精度和消除负载转矩扰动对系统性能的影响,应用线性鲁棒调节输出理论,引入内模原理设计出动态状态反馈控制器。
在MATLAB/Simulink仿真并搭建模块验证其算法的有效性,实验证明,在电机参数微小摄动的情况下,能够满足速度跟踪和干扰抑制,体现出直流电机控制系统的参数鲁棒性。
【期刊名称】《国网技术学院学报》【年(卷),期】2018(021)001【总页数】4页(P22-25)【关键词】直流电机;内模控制;动态状态反馈控制器【作者】潘世丽【作者单位】硅湖职业技术学院,江苏昆山215332;【正文语种】中文【中图分类】TP150 引言直流电机只有在精确稳定转速,或者负载变化时能快速调节到要求的速度条件下,工作装置才能正常稳定工作。
因此,对于电机的转速控制和干扰抑制的研究有很重要的理论和现实意义[1]。
在现实中,由于直流电机参数在标称值附近都有一定的摄动,因此设计出一类控制器使得直流电机速度控制系统具有参数鲁棒性,能够使其在电机参数摄动时,依然能够保持良好的速度跟踪和扰动抑制具有十分重要的现实意义。
1 内模控制原理Garcia和Morari提出了具有模型、控制、反馈环节的内模控制(Internal Model Control,IMC)结构,如图 1所示[2]。
在这种结构中,控制器的输出既输出到控制对象,也送到内部模型,系统的实际输出与内部模型的输出之差经过反馈回路与设定值综合后作为控制器的输入。
图1中虚线框内是整个控制系统的内部结构,可用模拟硬件或计算机软件来实现。
由于该结构中除了有控制器以外,还包含了过程模型G,内模控制因此而得名。
图1 内模控制结构框图2 直流电机状态空间模型电机产生的转矩Te与电枢电流i和气隙磁通φ 成正比[3]:又φ正比于激励电流If,于是式(1)可改写为:对于励磁电流为常数,k1k2If合并成电机转矩系数 kT。
6.内模控制

这里 f 为IMC滤波器。选择滤波器的形式,以保证 内模控制器为真分式。
对于阶跃输入信号,可以确定Ⅰ型IMC滤波器的形式
1 f ( s) (Tf s 1)r
对于斜坡输入信号,可以确定Ⅱ型IMC滤波器的形式为
rTf s 1 f ( s) (Tf s 1)r
Tf ——滤波器时间常数。
4.采用理想控制器构成的系统,对模型误差极为敏感,鲁棒性、 稳定性变差。
2. 内模控制器的设计
步骤1 因式分解过程模型
ˆ G ˆ G ˆ G p p pˆ 包含了所有的纯滞后和右半平面的零点,并 式中,G p ˆ 为过程模型的最小相位部分。 规定其静态增益为1。G p
步骤2 设计控制器
GIMC ( s ) 1 ˆ ( s) G p f ( s)
过程无扰动Leabharlann 图6-3过程有扰动
例3-2 考虑实际过程为
R( s)
D( s)
10s 1 5s 1
1 G( s) e 10 s 10s 1
1 10 s 1
e
10 s
Y (s)
1 e 8s 10s 1
内部模型为
ˆ ( s) G 1 e8 s 10s 1
讨论(1)当 K 1 , T 2 , 1 时,滤波时间常数取不同值 时,系统的输出情况。(2)当 K 1 , T 2 ,由于外界干扰 使 由1变为1.3,取 Tf 不同值时,系统的输出情况。
1~4曲线分别为 Tf 取0.1、0.5、1.2、2.5时,系统的输 出曲线。
图6-2
2.若对象含有s平面右半平面( RHP)零点,
ˆ 1 ( s) 中含有RHP极点,控制器本身不稳定,闭 则 GIMC (s) G p 环系统不稳定。
基于内模原理的PID控制器参数整定仿真实验

基于内模原理的PID控制器参数整定仿真实验之迟辟智美创作1.内模控制内模控制器(IMC)是内部模型控制器(Internal model controller)的简称,由控制器和滤波器两部份组成,两者对系统的作用相对自力,前者影响系统的响应性能,后者影响系统的鲁棒性.它是一种实用性很强的控制方法,其主要特点是结构简单、设计直观简便,在线调节参数少,且调整方针明确,调整容易.特别是对鲁棒及抗扰性的改善和年夜时滞系统的控制,效果尤为显著.因此自从其发生以来,不单在慢响应的过程控制中获得了年夜量应用,在快响应的机电控制中也能取得了比PID更为优越的效果.IMC设计简单、跟踪性能好、鲁棒性强,能消除不成测干扰的影响,一直为控制界所重视内模控制(Internal Model Control IMC) 是一种基于过程数学模型进行控制器设计的新型控制战略.其设计简单、控制性能良好,易于在线分析.它不单是一种实用的先进控制算法,而且是研究预测控制等基于模型的控制战略的重要理论基础,也是提高惯例控制系统设计水平的有力工具.值得注意的是,目前已经证明,已胜利应用于年夜量工业过程的各类预测控制算法实质上都属于IMC类,在其等效的IMC结构中特殊之处只是其给定输入采纳了未来的超前值(预检控制系统),这不单可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析和改进提供了有力的工具.内模控制的结构框图如图1:图1-1 内模控制的结构图其中,IMC G —内模控制器;p G —实际被控过程对象;m G —被控过程的数学模型;d G —扰动通道传递函数.(1)那时0)(,0)(≠=s G s R d ,假若模型准确,即)()(s G s G m p =,由图可知,)]()(1)[()]()(1)[()(IMC IMC s G s G s G s G s G s G s Y m d d -=-=p ,假若“模型可倒”,即)(1s G m 可以实现,则可令)(1)(IMC s G s G m =,可得0)(=s Y ,不论)(s G d 如何变动,对)(s Y 的影响为零.标明控制器是克服外界扰动的理想控制器.(2)那时0)(,0)(≠=s R s G d ,假若模型准确,即)()(s G s G m p =,又因为0)(=s D ,则0)(ˆ=s D,有 )()()()(1)()()()(IMC s R s R s G s G s R s G s G s Y m ===pp , )()]()(1[)()()()(IMC IMC s G s G s G s R s G s G s Y d p p -+=.当模型没有误差,且没有外界扰动时,其反馈信号0)()()]()([m p =+-s D s U s G s G ,标明控制器是)(s Y 跟踪)(s R 变动的理想控制器2.基于IMC 的控制器的设计2.1 因式分解过程模型式中,)(S G +m 包括了所有的纯滞后和右半平面的零点,并规定其静态增益1.)(S G m -为过程模型的最小相位部份.2.2 设计IMC 控制器这里F(S)为IMC 滤波器.选择滤波器的形式,以保证内模控制器为真分式.对阶跃输入信号,可以确定Ⅰ型IMC 滤波器的形式为:对斜坡输入信号,可以确定Ⅱ型IMC 滤波器的形式为: f T 为滤波时间常数,r 为整数,选择原则是使)(IMC s G 成为有理传递函数.因此,假设模型没有误差,可得设0)(=s G d 时,)(*)()()(s F s G s R s Y +=m .标明:滤波器F(s)与闭环性能有非常直接的关系.滤波器中的时间常数f T 是个可调整的参数.时间常数越小,Y(s)对R(s)的跟踪滞后越小.事实上,滤波器在内模控制中还有另一重要作用,即利用它可以调整系统的鲁棒性.其规律是,时间常数f T 越年夜,系统鲁棒性越好.2.3 与Smith 预估控制器相比力由图1-1内模控制的结构图,可以与Smith 预估控制器相比力.Smith 预估赔偿是在系统的反馈回路中引入赔偿装置,将控制通道传递函数中的纯滞后部份与其他部份分离.其特点是预先估计出系统在给定信号下的静态特性,然后由预估器进行赔偿,力图使被延迟了的被调量超前反映到调节器,使调节器提前举措,从而减少超调量并加速调节过程.如果预估模型准确,该方法能后获得较好的控制效果,从而消除纯滞后对系统的晦气影响,使系统品质与被控过程无纯滞后时相同.在下图所示的单回路控制系统中,控制器的传递函数为D(s),被控对象传递函数为Gp(s)e-s ,被控对象中不包括纯滞后部份的传递函数为Gp(s),被控对象纯滞后部份的传递函数为e-s.图1.2 史密斯赔偿后的控制系统此时系统的传递函数为:由上式可以看出,系统特征方程中含有纯滞后环节,它会降低系统的稳定性.史密斯赔偿的原理是:与控制器D(s)并接一个赔偿环节,用来赔偿被控对象中的纯滞后部份,这个赔偿环节传递函数为Gp(s)(1-e-s),为纯滞后时间,赔偿后的系统如图1.3所示.图1.3 史密斯赔偿后的控制系统 +D(s)G p (s)e - s _R(s)U(s)C(s)由控制器D(s)和史密斯预估器组成的赔偿回路称为纯滞后赔偿器,其传递函数为由上式可以看出,经过赔偿后,纯滞后环节在闭环回路外,这样就消除纯滞后环节对系统稳定性的影响.拉氏变换的位移定理说明e-s 仅仅将控制作用在时间座标上推移了一个时间,而控制系统的过度过程及其它性能指标都与对象特性为Gp(s)时完全相同,其控制性能相当于无滞后系统2.4 比力IMC 和Smith 预估控制两种控制战略假设实际系统的s s s G 10e 1101)(-+=,在MATLAB 中利用simulink 构造IMC 和Smith 预估控制两种结构图,并对控制器存在和不存在模型误差的情况进行分析控制效果.IMC 控制器结构:图1.4 IMC 控制系统Smith 预估控制结构:(1) 当IMC 控制器和Smith 预估控制器不存在模型误差时,输出的波形如下图:由上图可知,在不存在模型误差的情况下,IMC 控制和Smith 预估控制器都能取得较好的控制效果,使输出值最终趋于稳定.同时smith 预估控制器调节速度较快,可是会有少许的超调量,而IMC 控制则上升时间比力长,可是波形比力平稳的趋于稳定.(2) IMC 控制器存在模型误差时,输出的波形如下图:由上图可知,在存在模型误差的情况下,IMC 控制器虽会发生超调,可是最终曲线稳定,使输出值最终趋于稳定.(3)Smith 预估控制器存在模型误差时,输出的波形如下图:由上图可知,在Smith 预估控制器存在模型误差的情况下,其实不能取得良好的控制效果,最终波形发散,不能趋于稳定,说明Smith 预估器对控制器与模型的误差有着严格的要求,对存在的模型误差不能够及时消除.假设实际系统的s s s s G 42e )18(12)(-++-=,在MATLAB 中利用simulink 构造IMC 和Smith 预估控制两种结构图,并对控制器存在和不存在模型误差的情况进行分析控制效果.取Tf=2,4,6进行仿真,当不存在模型误差时,simulink框图如下:仿真结果如下图:从上面Tf 的分歧取值的仿真结果可以看出,Tf 越年夜,闭环输出响应减慢,可是到达稳定的时间会缩短,Tf 值越小,闭环输出响应越快,随着Tf 增加调节时间也随之增加.当IMC 控制器存在模型误差的时候,仿真结果如下图: 从仿真结果曲线可知,尽管存在模型误差,招致最终的输出曲线会有少量的超调,可是最终曲线都趋于稳定,说明IMC 控制器对存在的模型误差能够有较好的克服能力.3.基于IMC 的PID 控制器的设计3.1 具有内模控制结构的PID 控制器图1可以等价变换为如图2所示的简单反馈控制系统图1-2 IMC 的等价结构框图基于图2的内环反馈控制器有:系统输入输出关系可以表达为:系统扰动的输入输出关系可以表达为:由以上三个式子可以获得系统的闭环响应为:系统的反馈信号为:如果模型准确, 即)()(s G s G m p =, 无外部扰动, 即0)(=s d , 则模型的输入'y 与过程的输出y 相等, 此时反馈信号为零.这样, 在模型不确定和无未知输入的条件下, 内模控制系统具有开环结构.这就清楚地标明, 对开环稳定的过程而言, 反馈的目的是克服过程的不确定性.在工业实际过程控制时, 克服扰动是控制系统的主要任务, 而模型的不确定性是难免的.此时, 在图1-1所示的IMC 结构中, 反馈信号)(s d 就反映了过程模型的不确定性和扰动的影响,从而构成了闭环控制结构.理想的PID 控制器具有如下的形式:(1)由上图可得虚线框内等价的反馈控制器和内模控制器之间有如下关系:(2)内模控制器可分为三步进行设计.首先,暂不考虑系统的鲁棒性和约束,设计一个稳定的理想控制器;其次,引入滤波器,通过调整滤波器的结构和参数来获得期望的静态品质和鲁棒性;最后,对系统的抗干扰性进行验证.通常内模控制器的设计过程如下:第一步:把模型分解为全通部份和最小相位部份,即(3)式(3)中()M G s +是一个全通滤波器传递函数,对所有频率ω满足|()|0M G j ω=.在()M G s +中包括了所有时滞和右半平面零点.()M G s -是具有最小相位特征的传递函数,即()M G s -稳定且不包括预测项.第二步:模型误差的鲁棒性设计为抑制模型误差对系统的影响,增加系统的鲁棒性,在控制器中加入一个低通滤波器F( s) ,一般F( s) 取最简单形式如下:(4)式中阶次n 取决于的阶次以使控制可实现,为时间常数.这样两步设计所得的内模控制器为:(5)将式(5)代入式(1),得(6)当过程模型已知时,根据上式和PID 控制算式,由s 多项式各项幂次系数对应相等的原则,求解可得基于内模控制原理的PID 控制器各参数. 与单回路控制系统相比力,由于系统在结构上多了一个副回路,所以提高了系统抑制二次干扰的能力,可用信噪比来衡量系统的抗干扰能力.式(2)可以转化为下式:)()()(1)()(1)(m s F s G s G s F s G s G ---=m m c (7) 在S=0时,F (s )=1,)(m )(G m s G s =-,则有∞==0|)(s s G c .可以看到控制器的零频增益为无穷年夜.因此可以消除由外界阶跃扰动引起的余差.这标明尽管内模控制器自己没有积分功能,但由内模控制的结构保证了整个内模控制可以消除余差.设计 如果给定的被控对象形式为()1s M P M K G s e T s τ-=+,其中s e τ-的近似为1212s s e s τττ--=+,那么原被控对象近似为(12)()(1)(12)M M M K s G s T s s ττ-=++,根据以上的分析,我们可以获得()(1)(12)M M M K G s T s s τ-=++,()12M G s s τ+=-. 根据以上公式,推算内模控制器和PID 参数之间的关系: 由此可以得出2(2)M P M T K K τλτ+=+,2I M T T τ=+,2(2)M D M T T T ττ=+. 因此,在整个整定过程中,只有滤波器的时间常数λ需要调整,其他所有控制器的参数如比例增益P K ,积分时间I T 和微分时间D T 都与λ有关.关于λ的取值问题: 一般情况下,考虑形如()()()s P N s G s e D s τ-=的高阶加纯滞后过程,此处()N s 和()D s 为s 的多项式.该式的过程模型一般用来近似多变量系统中某个特定过程变量在一个或更多的其它过程变量处于边环控制状态下对一个控制作用的响应.当()N s 没有s 平面右侧零点时,对上述过程而言,其内模控制器可以由下式给出:()()()(1)IMC D s G s N s s γλ=+.此处γ为()()N s D s 的相对阶次,即()N s 的阶次与()D s 的阶次之差. 假设被控对象为:s s s s G 10e 180)151(2)(-+-=,采纳simulink 进行仿真实验.分别取Tf=20,40,60进行仿真,计算出Kp,TI,Td 后,simulink 框图如下:当Tf 值分歧时,控制量仿真曲线结果如下图:当Tf 值分歧时,输出仿真曲线结果如下图:仿真曲线分析:由每种系统在分歧滤波器时间常数Tf 的值下的仿真结果图可以看出,Tf 值越年夜,闭环输出响应越慢,操纵量的变动缓和.Tf 值越小,闭环输出响应越快,能使闭环系统更快到达稳定.实际上,Tf 取值不能太年夜也不能太小,要权衡响应速度与稳定性之间的关系.与图 2-2比力图像基本一致,由于s τ-e 是取的近似,所以 IMC-PID 调节与 IMC 调节不能完全一致,图像有一些偏差与变动,但系统仍能取得较好的控制效果,输出曲线最终稳定在1.令被控对象参数发生变动,进行仿真来检验系统的鲁棒性能.对我们所研究的被控过程的数学模型为s s s s G 10e 180)151(2)(-+-=,取Tf=60,但令被控对象的参数发生变动,再利用MATLAB 进行仿真,分析输出曲线.Tf=60时,系统的simulink 框图如下:Tf=60 ,令K 减少25%时的系统的simulink 框图为:Tf=60 ,令T 减少25%时的系统的simulink 框图为:仿真曲线为:仿真曲线分析:在滤波器时间常数Tf取值合理的情况下,被控对象参数发生变动25%,仍能坚持较好的性能,具有较好的静态响应速度,曲线能在短时间内到达稳定,具有良好的鲁棒性.3.4 总结内模控制具有良好的鲁棒性能,当实际生产过程参数发生变动时,系统均能在可以容忍的时间范围内到达稳态值,而且无较年夜振荡,只是静态过渡时间有所不同;可是分歧ε还是会影响到系统响应的,ε越小,单元阶跃响应超调量越年夜,ε越年夜,超调量越小.从以上内模PID 控制器的设计过程可以看出,只有滤波器的时间常数是需要整定的参数,方法比力简单,而且在系统特性变动的情况下具有很强的鲁棒性和抗干扰能力,输出超调很小或基本无超调,理论分析和仿真结果均标明控制量变动十分平稳,有利于现场执行机构的呵护.该方法为广泛使用的PID 控制器的参数整定提供了新的方法,具有较高的工程应用价值.。
内模控制

然后在反馈和输人通道上增加反馈滤波器
和输人滤波器
,通过调整滤波器的结构和参数,使系统获得所期望的性能。 下面就对开环稳定过程进行离散内模控制器设计。
考虑一般情况,令被控对象为有纯滞后的非最小相位过程,则过
程模型可分解为两部分:
控制器取为: 设计时为保持闭环系统零稳态偏差特性,需满足:
可实现因子可取为:
经输人滤波器
后再送至控制器。
经柔化后的输人参考轨迹的一般形式为:
即
第4章 内模控制 4.6 简化模型预测控制(SMPC) 内模控制是一种极具理论价值的基于模型的控制策略,但其工程实
现因涉及模型求逆和滤波器合理设计等问题,设计过程较为复杂,尤
其是对于多输人多输出过程,实施难度更大。 1987年以后,Arulalan等人提出了一种简化模型预测控制(SMPC),其
对象输入为:
闭环系统输出为:
闭环系统误差为:
其中:
第4章 内模控制
对于模型无差,即 em (s) 的 0特殊情况,上式可简化为:
以上两式表明:对于无模型失配的情形,闭环传递函数
除了
中必须包含所有的滞后和右半
平面零点,且 必须有足够的阶次来避免物理上的不可实
现外,其他都是可以任意选择的。因此,闭环响应可以直接设
第4章 内模控制 4.3.3 设计示例
4.3.3.1 一阶加纯滞后过程
4.3.3.2 高阶过程
情形A.无右半平面(RHP)零点
情形B.具有右半平面(RHP)零点
第4章 内模控制
4.4 内模控制器设计——离散过程
当过程模型采用离散脉冲传递函数形式时,内模控制系统的性质仍
然成立。在离散时间条件下,设计内模控制器也仍然分为两步进行: 首先是设计一个稳定的理想控制器;
内模控制

第二章 基本概念............................................................................................................. 4
2.1、 鲁棒性与鲁棒控制 .......................................................................................... 4
3.2、前馈控制器 Q 的设计 ....................................................................................... 9
3.3、反馈滤波器 F................................................................................................... 10
1.2、发展现状
经过十多年的发展,IMC 方法不仅已扩展到了多变量和非线性系统,还产生了 多种设计方法,较典型的有零极点对消法、预测控制法、针对 PID 控制器设计的 IMC 法、有限拍法等。IMC 与其他控制方法的结合也是很容易的,如自适应 IMC,采用 模糊决策、仿人控制、神经网络的智能型 IMC 等.值得注意的是,目前已经证明,已 成功应用于大量工业过程的各类预测控制算法本质上都属于 IMC 类,在其等效的 IMC 结构中特殊之处只是其给定输入采用了未来的超前值(预检控制系统),这不仅 可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析和改 进提供了有力的工具。
内模控制器设计 : 摘 要 将内模控制器和传统的 Smith 控制器进行比较对照,总体论述内模控
基于内模控制的工业控制系统仿真器鲁棒PID控制器设计

基于内模控制的工业控制系统仿真器鲁棒PID控制器设计王佳伟;杨亚非;钱玉恒;赵新宇【摘要】内模控制是一种基于被控对象数学模型的新型控制器设计方法,所设计的控制器具有鲁棒性强、参数整定方便等优点,已经在一些工业场合中得到了应用.为了提高学生对于内模控制方法的理解水平,该文首先简要介绍了内模控制的基本原理和内模PID控制器设计方法,介绍了工业系统仿真器实验平台的构成,并推导了其数学模型的表达式,然后利用内模控制原理为其设计了鲁棒PID控制器,通过仿真软件进行了实验验证,结果证明了内模控制方法的有效性.【期刊名称】《实验技术与管理》【年(卷),期】2015(032)001【总页数】4页(P120-123)【关键词】内模控制;工业控制系统仿真器;鲁棒PID;控制器设计【作者】王佳伟;杨亚非;钱玉恒;赵新宇【作者单位】哈尔滨工业大学飞行器控制实验教学中心,黑龙江哈尔滨 150001;哈尔滨工业大学飞行器控制实验教学中心,黑龙江哈尔滨 150001;哈尔滨工业大学飞行器控制实验教学中心,黑龙江哈尔滨 150001;哈尔滨工业大学飞行器控制实验教学中心,黑龙江哈尔滨 150001【正文语种】中文【中图分类】TP271内模控制(internal model control,IMC)是一种基于过程数学模型设计的新型控制策略,被广泛应用于现代控制系统,是一种实用的先进控制算法。
内模控制的特点是设计简单,参数整定直观、方便,鲁棒性强,并且对纯滞后有补偿作用,所在工程控制领域受到重视[1-4]。
近年来,内模控制已被应用于多变量系统和非线性系统。
基于内模控制原理设计的PID控制器在鲁棒性上要优于一般的PID控制器,是目前一种流行的鲁棒PID控制器设计方法。
工业控制系统仿真器可以模拟现代工业中使用的许多设备,例如:主轴传动机构[5]、单轴转台[6-8]、输送带[9-10]、机床[11-13]、自动装配机器[14-15],模拟这些设备的控制性能以及加入摩擦、改变齿轮间隙[16-17]或加入扰动后系统的响应情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.内模控制原理
内模控制系统结构如图所示
内模控制的核心有三部分: 内部模型,用以预测被控对象的输 出并加以较正; 内模控制器,调节控制量使生产过 程的输出跟踪控制系统的给定值; 滤波器,改善控制系统的鲁棒性。
内模控制器的设计思路:使 其传递函数为被控对象传递函数 的逆
即:
F max 1
6.内模控制器鲁棒性分析
含有不确定性的被控对象模型可以 用以下两种方法描述: Gp (s) Gm (s) Gm (s)
G p (s) Gm (s)[1 w(s) (s)]
|| (jw) || 1,W ( s) 为加权函数
模型加法和乘法摄动的关系为
Gm (s) Gm w(s) (s)
Gc (s) G (s) * F (s)
F ( s) 1 (1 s) n
1 m
通过上述IMC设计步骤后,闭环系 统的输出和
误差分别为:
Y (s) Gm ( s ) F ( s)[1 E p ( s)] 1 Gm ( s ) F ( s ) E p ( s ) H ( s)[1 E p ( s)] 1 H ( s) E p ( s) [ R( s) D( s)] D( s )
如果模型与对象完全匹配:误差为零; 若模型与对象不完全匹配:
误差将包含模型失配信息,从而有利于 系统鲁棒性的设计。
2.内模控制的主要性质
(1) 对偶稳定性:如果模型是精确的 ,内 模控制内部稳定的充要条件是 Gm (s) 和 G p (s) 都是稳定的。 (2) 理想控制器的特性:当过程 G p (s) 稳定 1 (s) 且模型精确 ,使 Gc (s) Gm ,且 模型的逆存在并可实现时 ,在所有时 间内和任何干扰作用下 Y (s) R(s) 。
当模型完全匹配时
Y (s) Gm (s)F (s)[R(s) D(s)] D(s) H (s)[R(s) D(s)] D(s)
E(s) [1 Gm (s) F (s)]*[ R(s) D(s)] J (s)[R(s) D(s)]
H ( s ) = Gm (s) F (s)
4.内模控制器的设计步骤
第一步设计一个稳定的理想控制器, 而不考虑系统的鲁棒性和约束; 第二步引入一个滤波器,通过调整 滤波器的结构,使控制其物理可实现, 通过参数调整来获得期望的动态品质和 鲁棒性。
步骤1. 过程模型的分解:
Gm (s) Gm (s) * Gm (s)
步骤2 . IMC控制器设计
3.内模控制器的设计方法
问题:
(1) 当对象含有时滞特性时 ,控制器物理上是不可 实现的 ; (2)当对象模型严格有理,而控制器非有理; (3) 当对象模型含有右半平面零点 ,致控制器本身 不稳定,从而使闭环系统也不稳定 ; (4) 由理想控制器构成的控制系统,对于模型误差极 为敏感 ,当模型不匹配时,无法确保闭环稳定性。
由图1可得
Gc (s) G (s)
1 m
Gc (s) F (s)G p (s) Y ( s) R(s) 1 Gc (s) F (s)(G p (s) Gm (s))
1 Gc ( s) F ( s)Gm ( s) Y ( s) D( s) 1 Gc ( s) F ( s)(G p ( s) Gm ( s))
H ( s ) 除了Gm (s) 中必须包含所有的滞后和右半平面
零点外,还要求 F ( s ) 必须有足够的阶次来满足 Gc (s) 物理上的可实现,其它都是可以任意选择。
5.滤波器的设计
F ( s) 1 (1 s) n
n的取值应保证内模控制器为有理
决定了闭环系统的响应特性
鲁棒性很强
B(s) [G p (s) Gm (s)]U (s) D(s)
当模型匹配,即
G p (s) Gm (s)
B ( s ) D( ) 1 Gc ( s) F ( s)Gm ( s) ( R( s) D( s)) 1 Gc ( s) F ( s)(G p ( s) Gm ( s))
特别地,对于非最小相位系统,因为 Gm (s) 中包含不稳定零点,它们往往具有高通性质, 为此必须增加 的值以克服它们的影响,而 的增加又提高了系统的鲁棒性。
所以
Y (s) Gc ( s ) F ( s )G p ( s ) 1 Gc ( s ) F ( s )(G p ( s ) Gm ( s )) R( s)
1 Gc ( s ) F ( s )Gm ( s ) D( s) 1 Gc ( s ) F ( s )(G p ( s ) Gm ( s ))
u1 Gc * r
Gc * Gm * u1 u2 1 Gc * Gm
y p Gmu1 Gu1 Gpu2
对象稳定,要系统稳定,则要虚线 框环节稳定。根据小增益理论
|| Gc (s)Gm (s) || 1
|| Gc (s)Gm (s)W * (s) || 1
结论:
(1) IMC系统的本质是一种开环控制系统 ; (2)当 G (s) G 1 * F (s)
c m
k || GmW ( s) ( s) || 1 n (s 1)
由于引入了低通滤波器,系统所能允许的不确定 性大大增加,而随着滤波器参数
的增加而增大,
也就是系统的鲁棒稳定性越好
[ R( s) D( s)] D( s )
1 Gm ( s ) F ( s ) E ( s) R( s) Y ( s) [ R( s ) D( s)] 1 Gm ( s) F ( s) E p ( s) 1 H ( s) [ R( s) D( s)] 1 H ( s) E p ( s)