multisim-电路仿真-5-单相桥式整流电路
晶闸管单相桥式整流电路设计与仿真(MATLAB)

引言整流电路(Rectifier)尤其是单相桥式可控整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统等其他领域。
因此对单相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
第一章容及设计内技术要求一设计内容及技术要求计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛应用于电力电子电路(系统)的分析和设计中。
计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析能力和设计能力,避免因为解析法在近似处理中带来的较大误差,还可以与实物试制和调试相互补充,最大限度的降低设计成本,缩短系统研制周期。
可以说,电路的计算机仿真技术大大加速了电路的设计和实验过程。
通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的而基本方法。
1、晶闸管单相全控整流电路,参数要求:电网频率 f=50HZ电网额定电压:U=380V电网电压波动:正负10%阻感负载电压:0--190V2、设计内容(1)制定设计方案;(2)主电路的设计及主电路元件的选择(3)驱动电路和保护电路设计及参数计算(4)绘制电路原理图(5)总体电路原理图及说明3、设计的总体要求(1)熟悉matlab/simulink/powersystem中的仿真模块用法和功能(2)根据设计电路搭建仿真模型(3)设置参数并进行仿真(4)给出不同触发角时对应ud、id、i2和iVT1的波形。
multisim-电路仿真-5-单相桥式整流电路

单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真。
2、原理说明
整流电路的任务是将交流电变成直流电。
完成这一任务的主要是靠二极管的单向导通作用,因此二极管是构成整流电路的关键元件。
在小功率整流电路中,常见的主要有单相半波、全波、桥式和倍压整流电路。
单相桥式整流电路的作用是将交流电网电压变成整流电路要求的交流电压,是要求直流供电的负载电阻,四只整流二极管接成电桥形式,故有桥式整流电路之称。
3、仿真模拟验证
(1)单相桥式整流电路
(2)单相桥式整流、电容滤波电路
由于电抗元件在电路中有储能作用,并联的电容器C在电源供给的电压升高时,能把部分能量储存起来,而当电源电压降低时,就把电场能量释放出来,使负载电压比较平滑,即电容具有平波的作用。
内容总结
(1)单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真
(2)单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim软件模拟仿真
(3)2、原理说明
整流电路的任务是将交流电变成直流电
(4)完成这一任务的主要是靠二极管的单向导通作用,因此二极管是构成整流电路的关键元件。
整流电路matlab仿真

实验一:单相桥式全控整流电路的性能研究一、实验目的1.加深理解单相桥式全控整流电路的工作原理2.研究单相桥式变流电路整流的全过程3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。
二、预习内容要点1. 单相桥式全控整流带电阻性负载的运行情况2. 单相桥式全控整流带阻感性负载的运行情况3. 单相桥式全控整流带具有反电动势负载的运行情况三、实验仿真模型1、电路结构单相桥式全控整流电路的电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
2、建模在MATLAB新建一个Model,命名为dianlu1,同时模型建立如下图所示单相桥式阻感负载整流电路四、实验内容及步骤1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
以延迟角30°为例(1)器件的查找以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。
(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为20Ω,电感设为0.1H;4.双击示波器把Number of axes设为5,同时把History选项卡下的Limit data points to last 前面的对勾去掉;5.晶闸管参数保持默认即可(4)仿真波形及分析1.当供电给纯电阻负载a.触发角α=0°c. α=90°从图中可以看出输出电压Ud的电压波形相对延迟角为30度时的波形向后推迟了,同理可以得出输出电压Ud的平均值变小了。
单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。
(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通。
假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。
电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。
晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
单相桥式全控整流电路MATLAB仿真实验报告(下)

一、单相桥式全控整流电路(电阻性反电势)1.电路结构与工作原理(1)电路结构TidE(2)工作原理1)若是感性负载,当u2在正半周时,在ωt=α处给晶闸管VT1加触发脉冲,VT1导通后,电流从u2正端→VT1→L→R→VD4→u2负端向负载供电。
u2过零变负时,因电感L的作用使电流连续,VT1继续导通。
但a点电位低于b点,使电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是经VT1和VD2续流,则ud=0。
2)在u2负半周ωt=π+α时刻触发VT3使其导通,则向VT1加反压使之关断,u2经VT3→L→R→VD2→u2端向负载供电。
u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
此后重复以上过程。
2.建模3.仿真结果分析α=30°单相全控桥式反电势负载(电阻性)α=60°单相全控桥式反电势负载(电阻性)α=90°单相全控桥式反电势负载(电阻性)4.小结若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。
为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。
这样,相当于触发角被推迟,即α=δ。
二、单相桥式全控整流电路(阻感性反电势)1.建模2.仿真结果分α=30°单相全控桥式反电势负载(阻感性)α=60°单相全控桥式反电势负载(阻感性)α=90°单相全控桥式反电势负载(阻感性)3.小结当电枢电感不足够大时,输出电流波形断续,为此通常在负载回路串接平波电抗器以减小电流脉动,延迟晶闸管导通时间;如果电流足够大,电流就连续。
(完整word版)单相桥式全控整流电路Matlab仿真(完美)资料

目录完美篇单相桥式全控整流电路仿真建模分析 (2)(一)单相桥式全控整流电路(纯电阻负载) (2)1。
电路的结构与工作原理 (2)2。
建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (14)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (14)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。
2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。
二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂.(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。
四个晶闸管都不通.假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。
(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通.电流沿a →VT1→R →VT4→b →Tr 的二次绕组→a 流通,负载上有电压(u d=u 2)和电流输出,两者波形相位相同且u T1.4=0。
此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u 2。
晶闸管VT1、VT4—直导通到ωt =π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。
(3)在u 2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。
此时,u T2。
3=u T1.4= 1/2 u 2。
基于Multisim的5V直流电源仿真及现象分析

基于Multisim 的5V 直流电源仿真及现象分析摘要:5V 直流稳压电源是最为常见的直流电源类型,而对于初学者,在实际制作过程中,一旦电路出现故障,通常无法快速找出问题所在。
因此,电路设计前利用Multisim 软件进行电路现象仿真,对于实验中快速判断故障源,解决电路问题具有重要意义。
关键词:直流电源;Multisim ;仿真;故障中图分类号:TP391文献标识码:A 文章编号:2095-0439(2019)03-0142-03(安徽医学高等专科学校医学技术系安徽合肥230001)直流电源是电子产品设计中必备的供电模块。
在实验室环境下,最常用的方法是利用变压器、整流电路、滤波电路、稳压电路进行的直流电源的设计。
本电路虽然简单,但是对于初学模拟电路课程的学生来说,在实际电路设计及故障排查方面,还是会出现各种各样的问题。
如果借助Multisim 进行电路现象仿真,总结仿真现象及数据值,将对学生在电源电路设计及制作上起到重要的指导作用,避免不必要的实验时间消耗,且便于帮助学生排查故障,顺利完成实验设计[1]。
一、实验原理直流电源模块总的来说包括整流电路、滤波电路和稳压电路三个部分[2]。
整流电路通常采用单相桥式整流电路,如图1所示,输入电压为日常用电220V ,变压器变比约为25,变压器二次侧电压9V 左右,经桥式整流电路整流二极管D1、D4和D2、D3的分别导通,使电阻上获得均为正向流动的电流,将交流电变为直流电,R1开路情况下电压理论值约为8.1V 。
由于整流电路输出电压脉动较大,因此需要后续滤波电路进行滤波。
对于小功率场合,滤波电路通常为滤波电容,通过电容的充放电,达到降低整流输出电压脉动的目的。
电容通常选择容值较大的低频电解电容,以期获得较为平滑的电压曲线。
为得到平滑的负载电压,通常选择C ≥(3~5)T/(2R L )[3]。
若电阻R L 为50Ω,取C ≥5T/(2R L ),则工频情况下C ≥1000μF ,此处取C =1000μF 。
单相桥式全控整流multisim

电力电子技术基础课程设计学院:专业:班级:姓名:学号:年月日题目单相桥式全控整流电路仿真一、实验目的:1.学习和掌握Multisim软件的使用。
2.通过对单相桥式全控整流电路的仿真,更好的理解单相桥式全控整流电路。
3.学会使用单片机驱动晶闸管。
二、实验内容:用Multisim软件进行仿真,根据电力电子技术教材中的主电路搭建仿真模型,并用80C51或80C52单片机编写驱动程序,完成两种负载形式的仿真(纯电阻负载+阻感负载,电源电压:交流100V/50Hz;触发角α=0°、30°、60°、90°为例)三、实验用设备仪器及材料:Multisim软件;仿真器件:四、实验原理图:五、实验方法及步骤:第一步:根据电路原理图画出multisim仿真图。
第二步:打开Keil 4,新建项目工程,编写触发脉冲的程序,编写完成后下载,生成hex文件,保存工程。
第三步:打开multisim,点击工作栏上的MCU-MCU 8051-MCU代码总管,单击选中你的项目,添加你的hex文件。
第四步:开始仿真。
六、仿真电路图及参数设置电阻负载电路图:阻感负载电路图:七、仿真结果分析α=0°时的电阻及阻感负载仿真图:α=30°时的电阻及阻感负载仿真图:α=60°时的电阻及阻感负载仿真图:α=90°时的电阻及阻感负载仿真图:八、单片机参考程序α=90°时的单片机程序:#include<reg51.h>int a=0;void main(){TMOD=0x10; // 方式1 TH1=(65536-833)/256;TL1=(65536-833)%256;EA=1;ET1=1;TR1=1;while(1){if(a==24)a=0;}}void IsrT1() interrupt 3{TH1=(65536-833)/256;TL1=(65536-833)%256;a++;if(a==6){P1=0x01;}if(a==8){P1=0x00;}if(a==18){P1=0x02;}if(a==20){P1=0x00;}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相桥式整流电路
1、实验目的
了解单相桥式整流电路的运行原理,并用Multisim 软件模拟仿真。
2、原理说明
整流电路的任务是将交流电变成直流电。
完成这一任务的主要是靠二极管的单向导通作用,因此二极管是构成整流电路的关键元件。
在小功率整流电路中,常见的主要有单相半波、全波、桥式和倍压整流电路。
单相桥式整流电路的作用是将交流电网电压1V 变成整流电路要求的交流电压
22V sin t ,L R 是要求直流供电的负载电阻,
四只整流二极管14D ~D 接成电桥形式,故有桥式整流电路之称。
3、仿真模拟验证
(1)单相桥式整流电路
(2)单相桥式整流、电容滤波电路
由于电抗元件在电路中有储能作用,并联的电容器C在电源供给的电压升高时,能把部分能量储存起来,而当电源电压降低时,就把电场能量释放出来,使负载电压比较平滑,即电容具有平波的作用。