大分子自组装的研究进展交流

大分子自组装的研究进展交流
大分子自组装的研究进展交流

基于环糊精和客体分子包结络合作用的拓

扑凝胶研究进展

(注:本文第1,2部分为通过学习该领域的相关知识以及所了解的基本概念和主要研究内容的介绍,第3部分为自己对Ito教授小组的研究内容的理解、最新研究内容的简介和自己部分观点的阐述。)

摘要:本文通过对大分子自组装基本概念的学习和了解,主要介绍了环糊精与聚合物的包结络合作用的原理。同时结合当前的一些研究热点,重点叙述了采用环糊精与有机无机聚合物,利用包结络合原理制备出具有“八字形”交联拓扑结构的聚轮烷凝胶的研究进展。

关键词:大分子自主装;环糊精;聚轮烷;拓扑交联

Abstract: In this paper, we learn the basic concepts of macromolecular self-assembly and mainly describe the inclusion complex principle of cyclodextrin with other polymers. Combined with some of the current research, we focus on reviewing the topologi cal gel with “figure-of-eight” cross-linking which was prepared by use of cyclodextrin and organic and inorganic polymers through the principle of inclusion complex.

Keyword: macromolecular self-assembly; cyclodextrin; polyrotaxane; topological cross-linking

1前言

分子自组装是最普遍的物理化学现象,是构建生命体系的基本途径,如蛋白质的折叠、DNA的双螺旋结构,到病毒的形成、细胞的生成,甚至器官组织的形成,无一不是自组装在发挥着巨大的作用[1]。从化学意义上来讲,自组装是处于平衡状态下的各单元间通过非共价键(包括库仑力、范德华力、疏水相互作用、π-π堆叠作用力、氢键)的作用自发形成稳定的、结构明确有序的聚集体的过程[2]。

大分子自组装有两重含义:一是以小分子为组装单元来构建超分子聚合物;二是以大分子为组装单元来构建有序组装体。它是超分子化学和高分子化学的交叉领域,是创造具有纳米或亚微米尺度的结构新物质的简单和清洁的途径。当前,通过“大分子自组装”来得到新型的组装功能材料己成为材料研究的一大热点[3]。

2环糊精与聚合物的包结络合作用

环糊精(cyclodextrin,简称CD)是由D-吡喃型葡萄糖单元以1,4-糖苷键首尾连接而成的一系列的环状低聚糖的总称,通常含有6~12个葡萄糖单元。其中目前研究的较多的是含有6、7、8个葡萄糖单元的CD分子,分别叫做α-CD、β-CD 和γ-CD,拥有更多葡萄糖单元的CD也被制备得到了,然而由于它们过于昂贵而限制了其发展以及应用。由于连接葡萄糖单元的糖苷键不能自由旋转,使CD分子的环状结构不是圆筒状而是上宽下窄略呈锥形的两端开口、中空的圆环,如图1所示。其中,CD分子的伯羟基均处于锥形的小口的一面(主面),而其仲羟基均处于锥形的大口的一面(次面)。其分子内空腔的表面由糖苷键上的氧原子及C3、C5上的氢原子构成,所以内腔呈疏水环境;而外侧面由于羟基的聚集而呈亲水性。因而其内腔疏水而外部亲水的特性使其可依据范德华力、疏水相互作用力、主客体分子间的匹配作用等与许多有机和无机分子形成包合物及分子组装体系[4]。

图1. CD的结构示意图

CD的空腔由于边缘羟基的氢键网络作用而具有一定的刚性,客体分子与CD 空腔之间的尺寸匹配决定了主一客体所形成的络合物的稳定性。α-,β-,γ-CD

的空腔容积分别是0.174nm3,0.262 nm3,和0.427nm3,大尺寸的客体分子无法进入CD的空腔,而尺寸过小的客体分子则不能与其形成稳定的包结络合物。一般来说,α-CD的空腔尺寸适合包结单环芳烃,也可与偶氮苯类的衍生物形成稳定的包结物,如与甲基橙的稳定常数达到9×103;β-CD的空腔尺度与萘环的尺度相匹配,同时它还适合球形或筒状分子,如金刚烷,二茂铁;γ-CD与花、葱、菲等三环芳烃结合最稳定[5]。

轮烷是环状分子和线形分子通过非共价键连接在一起的超分子体系,线形分子的两端用大基团封闭。没有封端的此类超分子络合物称为假轮烷。分子轮烷中一般包含1- 2个CD单元,而含有多个CD单元的轮烷则被称为聚轮烷。形成聚轮烷的首要前提是线形分子需要具有一定长度的分子轴,这也是决定聚轮烷聚合度的条件之一。作为聚轮烷封端前的产物,不同结构的假聚轮烷也被广泛的构筑和研究,其中最为常见的就是用高分子链穿过一定数量的CD形成的假聚轮烷。

Harada等最早报道了在水溶液中将多个CD单元串在高分子链上得到假聚轮烷的工作。不同尺寸的CD对不同结构的高分子链具有很好的选择性,其中PEO 适合与α-CD形成假聚轮烷[6]。β-CD可以和不同链长的PPG在水溶液中反应得到不同产率的假聚轮烷[7],γ-CD则可以和聚二甲基硅氧烷[8]以及聚异丁烯[9]形成包结络合物。而α-CD由于空腔的尺寸原因不能与PPG包结络合,同样,β-CD 和γ-CD也不能与PEO生成包结络合物。

Harada等以2,4-二硝基氟苯对双端氨基PEO(NH2-PEO-NH2)与α-CD形成的假聚轮烷进行封端,再用环氧氯丙烷将α-CD彼此交联起来,除去封端剂和分子轴后,得到了含有α-CD的“分子管”[10]。刘育等利用相似的办法制备了Pt 桥联的β-CD双“分子管”[11]。

3基于CD和客体分子包结络合作用的拓扑凝胶

所谓拓扑结构是指由点和线所组成的点状交联结构。而拓扑结构凝胶是一种具有拓扑交联结构的新型高性能凝胶,具有很好的抗拉伸性、低黏度和高溶胀能力,如图2所示。拓扑凝胶具有“8字形”交联结构,并且能够在分子链上滑动,形成“滑轮效应”。最早的拓扑凝胶是由Ito教授的小组于2001年合成的聚轮烷凝胶,并发表在Advanced Materials杂志上[12]。聚轮烷分子的主链是聚乙二醇像

线一样穿过α-CD,主链两端以大基团封住,使得α-CD不脱落。然后用化学交联剂将α-CD交联,形成“8字形”交联结构。并且该交联结构可在聚乙二醇主链上滑动,起到滑轮作用。

d

图2.a是由α-CD和PEG形成的聚轮烷;b是“8字形”交联剂:共价键交联的α-CD;c是稀少的聚轮烷通过共价键交联的CD制得的聚轮烷凝胶的机理图,在同一个聚轮烷中氰基酰氯能够交联两个、三个或者更多的CD;d是制备的拓扑凝胶不同溶胀度的照片。

“8字形”交联剂的滑动行为是拓扑凝胶区别于其他传统凝胶的特征,使拓

扑凝胶显现出特有的力学性能。这种“滑轮效应”将应力平均分配到分子链上,调整链间作用力,使凝胶的宏观力学性能得到很大的提高,如图3所示。

图3.化学凝胶和聚轮烷凝胶在拉伸变形的情况下概念模型的比较,a)因为交联剂使形变压力局部集中没有达到均匀分散,化学凝胶被破坏了逐渐形成了短分子链;b)聚轮烷凝胶的大分子链能够通过八字形交联剂平衡拉伸应力,避免发生应力集中。

同样是Ito教授领导的小组,于2009年最新一期Macromolecules杂志上发表了他们最新的关于拓扑凝胶的研究成果[13]。他们采用聚二甲基硅氧烷(PDMS)和γ-CD成功的制备出新型的有机无机杂化拓扑凝胶,制备过程图机理1所示。首先,将双羧酸端基的PDMS(PDMS-BC)与对硝基苯酚(DCC)溶于二氯甲烷中,在室温下放置一夜。这样PDMS-BC的双羧酸端基会与DCC发生置换反应,形成DCC封端的PDMS(PDMS-BNP)。这样可以使得PDMS两端疏水,更易与γ-CD发生包结络合作用。将反应好的PDMS-BNP与γ-CD在水中超声60分钟,并且在室温下搅拌3天,形成假聚轮烷(Pseudo-polyrotaxane)。然后将制备好的假聚轮烷与过量的三苯甲酸胺类衍生物(MTHDA),在乙腈溶剂中室温下反应3天,从而发生置换反应,将假聚轮烷的端基置换为MTHDA,这样γ-CD 就不能从主链上脱离下来,形成聚轮烷(SiPR)。

机理1. 由PDMS和γ-CD制备聚轮烷以及拓扑凝胶的合成步骤其中,MTHDA的n为二甲基的数量,n的值为2,4和6,不同条件下制备出的SiPR的性能和产率如表1所示。可以看出,当n=6时,SiPR的产率较高,而且也比其它产物的溶解性能要好,便于后期拓扑凝胶的制备。不同产物溶解物

照片如图4所示。可以看出a、b样品,即n=6是产物溶解性较好。

表1 不同条件下制备出SiPR的性能及产率

图4 不同SiPR产物的溶解性照片:a和b为分别为n=6的产物在二甲基甲酰胺(DMF)和DMF/LiCl中的溶液;c为n=4在DMF/LiCl中的溶液;d为PDMS-BNP和γ-CD的DMF/LiCl 悬浊液;e为PDMS-BNP的DMF/LiCl悬浊液。

将制备好的SiPR与己二异氰酸酯(HDI)溶解在二甲基乙酰胺(DMAc)/LiCl 溶液中,并在100℃下反应14小时,最终制备出具有滑环8字结构的拓扑凝胶。HDI与γ-CD发生反应,从而将不同分子链上的两个γ-CD相连接,形成8字型结构。由于γ-CD可以在PDMS主链上滑动,因此这种交联结构可以在受到外力作用时,动态的分配应力,因此使得体系的力学性能大大提高。

图5. 傅里叶红外变换光谱图:a为PDMS-BNP;b为γ-CD;c为SiPR。值得注意的是图中

有明显的羟基和羰基的伸展峰。

文章中用红外光谱清晰的表征出SiPR具有PDMS-BNP和γ-CD的特征峰,证明SiPR被成功的制备出,如图5所示。其中,PDMS-BNP在1774cm-1显示出特征峰,该峰为端基的羰基峰。而SiPR在1774cm-1的羰基峰小时,在1653 cm-1出现一个酰胺基峰,证明了假聚轮烷的BNP端基被置换为MTHDA,即封端成功。而且在红外光谱中可以看出γ-CD的羟基峰出现在3300cm-1,但是在SiPR

中的羟基峰却移到了3347 cm-1处,这应该是由于渗透作用造成的。

图6. γ-CD、假聚轮烷和聚轮烷的热失重分析,升温速度为5℃/分钟,在氮气的保护下。

作者采用热重分析法对γ-CD、假聚轮烷和聚轮烷的热分解性能进行了对比,如图6所示。其中γ-CD和PDMS的分解温度分别为280℃和410℃。因此,SiPR 在330℃前后两个平台的失重被判定为前面是γ-CD,而后面的是PDMS的热分解。但是,很明显可以看出在SiPR中的γ-CD的分解温度很明显要低于纯的γ-CD,这点并没有在假聚轮烷中出现。这可能是由于在SiPR中的γ-CD,由于其聚集的无序性造成其热稳定性下降,所以要比结晶的纯γ-CD的热降解温度低。

本人认为Ito教授的研究小组对于基于CD和客体分子包结络合作用的拓扑凝胶研究具有独创性,以及进行了深入而系统的探讨。2001年该组首次提出拓扑凝胶的概念,2009年在最新的文章中,他们又首次提出了γ-CD与无机聚合物的包结络合作用制备拓扑凝胶的方法。但是,在他们一系列的工作中,我并没有看到他们有关“8字形”滑链交联结构的系统而明确的表征,尤其是每个大分子主链上如PDMS主链上一般有几个γ-CD参与交联反应,是否会产生分子内γ-CD 交联的现象,分子内交联的比例是多少,以及对凝胶性能的影响,是否可以避免分子内交联等方面的研究工作也许是今后要需要进一步深入探讨和系统化研究

的方向。

参考文献

[1]张希, 沈家骢, 超分子科学:认识物质世界的新层面, 科学通报, 2003, 48(14):

1477 - 1478.

[2]沈家骢, 卫敏, 计剑, 超分子层状结构-组装与功能. 北京: 科学出版社. 2003.

1 - 68.

[3]刘育, 尤长城, 超分子化学. 天津:南开大学出版社, 2000.

[4]童林荟, 环糊精化学-基础与应用. 北京:科学出版社, 2001.

[5]Liu Y., Li L., Fan Z., Zhang H. Y., Wu X., Guan X. D., Liu S. X.,

Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calixarene Derivative, Nano Letter, 2002, 2(4):257-261

[6]Harada A., Kamachi M., Complex Formation between Poly(ethylene glycol) and

α-Cyclodextrin, Macromolecules, 1990, 23(10):2821-2823.

[7]Harada A., Okada M., Li J., Kamachi M., Preparation and Characterization of

Inclusion Complexes of Poly(Propylene glycol) with Cyclodextrins, Macromolecules, 1995, 28(24):8406-8411.

[8]Okumura H., Okada M., Kawaguchi Y., Harada A., Complex Formation between

Poly(dimethylsiloxane) and Cyclodextrins: New Pseudo-polyrotaxanes Containing Inorganic Polymers, Macromolecules, 2000, 33(12):4297一4298. [9]Harada A., Suzuki S., Okada M., Kamachi M., Preparation and Characterizations

of Inclusion Complexes of Polyisobutylene with Cyclodextrins, Macromolecules, 1996, 29(17):5611-5614.

[10]H arada A., Li J., Synthesis of a Tubular polymer From Threaded Cyclodextrins,

Nature, 1993, 364(6437):516-518.

[11]L iu Y., You C. C., Zhang H. Y., Kang S. Z., Zhu C. F., Wang C., Bis(molecular

tube)s: Supramolecular Assembly of Complexes of Organo-selenium Bridged β-Cyclodextrins with Platinum(IV), Nano Letter, 2001, 1(11):613一616.

[12]Y asushi O., Kohzo I., The Polyrotaxane Gel: A Topological Gel by

Figure-of-Eight Cross-links, Advanced Materials, 2001, 13:485–487.

[13]K azuaki K., Katsunari I., Masatoshi K., Kohzo I., Organic-Inorganic Hybrid

Slide-Ring Gels: Polyrotaxanes Consisting of Poly(dimethylsiloxane) and γ-Cyclodextrin and Subsequent Topological Cross-Linking, Macromolecules, 2009, 42:7129–7136.

纳米粒子的自组装

纳米粒子的自组装 摘要:本文主要介绍了自组装的相关基础知识,并具体对纳米粒子的自组装进行了介绍,通过组装单元的类型对纳米粒子的自组装进行分类。组装单元有柔性的也有刚性的,有各向异性的也有各向同性的。分为各向同性刚性粒子的自组装、各向异性刚性粒子的自组装、各向异性柔性粒子的自组装以及各向同性柔性粒子的自组装这四类进行了详细介绍。 关键词:纳米粒子,自组装,刚性,柔性,各向同性,各向异性 1引言 组装在汉语释义中,是指把零散的部件组合在一起,使成为整体,组装的过程中,用到的是人力或者机械力。与日常生活中的“组装”不同,自组装(self-assembly)是指在非共价力的作用下,小分子、大分子或纳米粒子组合成规则有序的物体。这里的非共价力包括范德华力、氢键、静电作用、疏水作用、偶极相互作用等,称为自组装的驱动力,非共价力不是人手或者机械可以操控的,非共价力的操控需要人们对于物理化学的原理的理解和运用。自组装形成的规则有序的物体称为自组装体或者组装体(assembly),形成组装体的原料成为组装单元(building block),根据组装单元的不同,相应的就有小分子自组装、大分子自组装和纳米粒子的自组装。 图1.1是不同尺度物体生产的空间坐标轴,在坐标轴的右侧,常规加工可以制造各种尺寸大于0.1mm的物体,制造的技术已经非常成熟。微加工(microfabrication)则可以制造各种复杂形貌的微米物体(1-100μm),比如用双光线技术。在坐标轴的左侧,在零点几纳米到几纳米的尺度内,有机化学已经可以根据需要设计合成各种目标分子,技术已经非常成熟;在几个纳米到几百纳米范围内,高分子化学家则可以合成各种构造的高分子入梳形高分子,胶体化学家可以合成各种纳米晶体如八角状的纳米晶体,该尺度范围内,虽然还不能按照需要任意地制备物体,但是已经可以制造很多种不同结构不同形貌的物体,然而对于位于坐标轴中间的几十纳米到几个微米的尺度范围来说,该尺度大于化学合成所能制备的物体的上限,小于常规加工和微加工所能达到的下限,该尺度范围内的制造需要人们通过物理化学的原理的理解和使用来完成,这就是大分子自组装以及纳米粒子的自组装的任务所在。 图1.1 Fabrication of objects at all scales 大分子自组装经过三十年的发展,通过嵌段共聚物溶液自组装的方法可以制备二三十种

超分子科学研究进展

摘要超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一。本文介绍了近几年超分子科学研究中的热点和基本问题,愿为我国超分子科学的研究提供参考。 自然界亿万年的进化创造了生命体,而执行生命功能是生命体中的无数个超分子体系。对超分子的认识一直到20世纪中叶,特别是C. J. Pedersen、J. M. Lehn和D. G. Cram等人合成了大环分子(冠醚、穴状配体等),这些大环化合物能基于非共价键作用选择性地结合某些离子和有机小分子,这一主客体的创新成果获得1987年诺贝尔化学奖。1978年法国科学家J. M. Lehn等超越主客体化学的研究范畴,首次提出了“超分子化学”这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学”[1]。超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学,它主要研究分子之间的非共价键的弱相互作用,如氢键、配位键、亲水/疏水相互作用及它们之间的协同作用而生成的分子聚集体的组装、结构与功能。两个世纪以来,化学界创造了2 000万种分子,原则上都可在不同层次组装成海量的、取决于组装体结构具有特殊功能的超分子体系,由此可见,超分子化学开拓了创造新物质与新材料的崭新的无限的发展空间。事实上,自然存在着亿万个超分子体系居于生命体的核心位置,例如,在细胞内的生物化学过程都由特定超分子体系来执行,像DNA与RNA的合成、蛋白质的表达与分解、脂肪酸合成与分解、能量转换与力学运动体系等。因此超分子科学是研究生物功能、理解生命现象、探索生命起源的一个极其重要的研究领域。经过20多年的快速发展,在与材料科学、生命科学、信息科学、纳米科学与技术等其它学科的交叉融合中,超分子化学已发展成了超分子科学,被认为是21世纪新概念和高技术的重要源头之一[2,3]。 国际上超分子科学的研究开展得如火如荼,发达国家和地区,如欧盟、美国和日本等都投入了大量的人力和物力进行超分子科学方面的研究与开发。在国家自然科学基金委、科技部、教育部、中国科学院等相关部门的大力支持下,我国的科学工作者较早地开展了超分子科学研究,并做出了一大批有特色的工作。我们结合今年9月在长春举办的超分子国际香山科学会议及部分国内外同行的研究结果来介绍超分子科学研究的热点和基本问题,供国内同行参考。 1 层状超分子组装体 生物膜是细胞的关键组分,又是高效、神奇的超分子体系。它的模拟物就是层状组装体(包括单层膜、多层膜、复合膜等)。层状结构容易表征,是研究分子间作用力及组装方法最好的模型,又是走向实用化的器件原型,所以层状组装超薄膜的构筑与功能化一直是超分子科学研究的热点[2]。 1991年,G.Decher及其合作者报道了基于阴阳离子静电作用的聚电解质多层膜的制备,称为静电组装技术,拉开了层状组装薄膜研究的序幕[4]。静电组装技术被认为是一种构筑结构和功能可控的有机、无机和有机/无机复合薄膜的有效方法之一。在层状组装多层膜的构筑中,引入含有刚性介晶基团的双头离子能提高多层薄膜的稳定性和改善层间界面的有序度。基于静电组装技术,实现了包容卟啉、酞菁等有机分子,特殊的齐聚物、有机和无机微粒、生物大分子如蛋白质、酶、病毒以及树状分子等在内的物质的多功能较稳定复合薄膜的构筑。一种由金属烷氧基化合物来制备金属氧化物薄膜的组装技术,称为表面溶胶 凝胶技

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

基于环糊精包结络合作用的大分子自组装

摘要 本文综述了基于环糊精包结络合作用的大分子自组装的研究进展,包括: (1) 线型、梳型、多臂星型或超支化聚合物与环糊精或其二聚体自组装形成多聚轮烷(分子项链) 、多聚准轮烷、双多聚(准) 轮烷、分子管、双分子管、超分子凝胶及其应用; (2) 桥联环糊精与桥联客体分子自组装制备线型或超支化超分子聚合物; (3) 温度、pH 值、光及客体分子刺激响应智能体系; (4) 通过亲水性的环糊精线型均聚物与含金刚烷的疏水性聚合物之间的包结络合作用来制备高分子胶束及其空心球等。 关键词环糊精自组装包结络合 引言 环糊精(cyclodextrins , cycloamyloses , 通常简称为CDs) 是一类由D2吡喃葡萄糖单元通过α21 , 4 糖苷键首尾连接而成的大环化合物,常见的α2、β2和γ2环糊精分别有6、7 和8 个葡萄糖单元[1 ] 。其分子结构如图1 所示[2 ] 。由于每一个吡喃葡萄糖单元都是4C1椅式构象,整个分子呈截顶圆锥状腔体结构。 本文结合本课题组近期相关的研究工作,着重阐述基于环糊精包结络合作用的各种分子自组装行为。 2. CDs 包结络合作用的选择性 从本质上看, 主客体化学的基本意义源于酶和 底物间的相互作用, 这种作用常被理解为锁和匙 之间的相互匹配关系,即主体和客体分子间的构 互补和分子识别关系。显然, 作为主体的CDs 客 体分子形成包合物的一个基本要求是尺寸的匹配, 即、对体积的选择性。 一般来说,α2CD 的空腔尺寸适合包结单环芳烃(苯、苯酚等) ,也可与偶氮苯衍生物客体分子形成稳定的包结物,同时它更适合与筒状或球状客体分子。 3.自组装超分子聚合( Supramolecular Polymer) 超分子聚合物是单体单元之间经可逆的和方向 性的次价键相互作用连接而成的聚合物[31 ] 。超分 子聚合物的合成(超分子聚合) 涉及互补单体通过分

分子自组装的研究进展

分子自组装技术的研究进展 摘要:分子自组装在生物工程、分子器件、以及纳米科技领域已经有很广泛的应用。在未来的几十年里,分子自组装装作为一种技术手段将会在新技术领域产生重大的影响。本文介绍了分子自组装技术的基本原理、影响因素、目前的研究进展以及应用,最后展望了自组装技术的前景。 关键词:分子自组装;应用 Advances in Molecule Self-assembly Technology Abstract: Molecule self-assembly technology has been widely applied in biotechnology, molecular device, and nanotechnology. As a fabrication tool, molecular self-assembly technology will become tremendously important in the coming decades. In this article, mechanism, influence factors, some research advances and application of molecule self-assembly technology are reviewed. At the end, we prospect the future of this technology. Keywords: Molecule self-assembly; application 自组装[1](self-assembly,简称SA)是组分自主构筑成团或结构物的过程,自组装过程能使无序状态转变成有序状态。自组装技术主要分为定向自组装(Directed self-assembly)和分子自组装(Molecular self-assembly)。 分子自组装是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。通过分子自组装我们可以得到具有新奇的光、电、催化等功能和特性的自组装材料,特别是现在正在得到广泛关注的自组装材料在非线性光学器件、化学生物传感器[2]、信息存储材料以及生物大分子合成方面都有广泛的应用前景,受到研究者广泛的重视和研究。本文下面对分子自组装技术及研究进展进行综述。 1 分子自组装技术 分子自组装是指在热力学平衡条件下,分子与分子或分子中某一片段与另一片段之间利用分子识别,相互通过分子间大量弱的非共价键作用力,自发连接成具有特定排列顺序、结构稳定的分子聚集体的过程。这里的“弱非共价键作用力”

大分子自组装研究的进展

大分子自组装研究的进展 大分子自组装属于超分子化学与高分子化学的交叉研究领域,是研究高分子之间、高分子与小分子之间、高分子与纳米粒子之间或高分子与基底之间的相互作用,及其通过非共价键合而实现不同尺度上的规则结构的科学。自20世纪90年代起,大分子自组装就引起了国际学术界广泛的研究兴趣。除了嵌段共聚物外,人们陆续发现均聚物、齐聚物、离聚物、无规共聚物及接枝共聚物等都可作为“组装单元”,在一定条件下,通过各种弱相互作用(疏水、氢键、静电作用力等),自发形成形态多样的超分子有序结构。自组装体形成之后,通过化学修饰的方法,可使其形态“永久”保持。目前,大分子自组装已被视为构筑具有规则结构功能性纳米材料的主要途径之一生’〕作为一种“软物质”,高分子纳米材料具有广泛的潜在应用价值,比如可用作涂料、药物输送载体、纳米反应器、污水处理剂或作为合成规整结构纳米材料的模板等〔z.;l。获得大分子自组装体的常规途径是嵌段共聚物在选择性溶剂中胶束化,该过程的驱动力来自于某一链段的疏水性。近几年来,涌现出多种多样构建大分子自组装体的新途径,大大扩展了高分子胶束化的研究领域。 1超分子体系 20世纪30年代,德国Wolf等创造了“超分子’一词,用来描述分子缔合而形成的有序体系.1978年,法国fxhn等超越主客体化学的研究范畴,首次提出了“超分子化学’这一概念,他指出:“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学’,这无疑是一次重大的思想飞跃.此后经过近20多年的快速发展,超分子化学己远远超越了原来有机化学主客体体系的范畴,形成了自己的独特概念和体系:如分子识别、分子自组装、超分子器件、超分子材料等.在与生物、物理等其它学科的交义融合中,超分子化学己经发展成了超分子科学,被认为是21世纪新概念和高新技术的一个重要源头}s,e.以分子识别为基础、分子自组装为手段、组装体功能为口标的超分子科学体系研究的领域主要包括:超分子体系的反应J性、层状超分子自组装、界而超分子自组装、聚合物自组装、纳米超分子材料等.未来超分子体系的特征将体现为:信息性和程序性的统一,流动性和可逆性的统一,组合性和结构多样性的统一. 2分子自组装 分子自组装是自然界的一个普遍现象.许多生物大分子如DNA、病毒分子和酶等都是通过自组装过程,形成高度组织、信息化和功能化的复杂结构.在化学领域,分子自组装也是普遍存在的,如.b,体生长、液.b,形成、人工脂质双层的自发生成、金属配位化合物的合成、分子在表而上的有序排列等.分子自组装是指分子与分子之间靠非共价键作用力(包括库仑力、范德华力、疏水作用力、兀一兀堆叠作用力、氢键)形成具有一定结构和功能的聚集体的过程.该过程是自发的,不需要借助于外力}},HI.分子自组装的物理本质是永久多极矩、瞬时多极矩、诱导多极矩三者之间的相互作用.有两大类分子自组装:静态自组装和动态自组装,它们的区别主要在于是否涉及能量耗散.口前,大多数自组装的研究都集中在静态自组装.动态自组装涉及能量耗散,尚处于研究的初级阶段1I.分子自组装与定位组装不同,在定位组装过程中,人工对各个分子的安置具有相对较大的控制能力,在分子自组装中,分子的安置和排列可能跟定位组装一样重要,但是,一旦组装开始以后,其过程很大程度上由自然控制.

分子自组装原理及应用(精)

分子自组装原理及应用 毛薇莉无机专业MG0424012 【摘要】分子自组装在生物工程技术上的建模、分子器件、表面工程以及纳米科技领域已经有很广泛的应用。在未来的几十年中,分子自组装作为一种技术手段将会在新技术领域产生巨大的影响。在这篇文章里,我们介绍了分子自组装技术的定义、基本原理、分类、影响因素、表征手段等,并阐述了分子自组装技术目前的研究进展,展望了分子自组装技术的应用前景。 【关键词】分子自组装;自组装膜 1前言 分子自组装是分子与分子在一定条件下,依赖非共价键分子间作用力自发连接成结构稳定的分子聚集体的过程[1]。通过分子自组装我们可以得到具有新奇的光、电、催化等功能和特性的自组装材料,特别是现在正在得到广泛关注的自组装膜材料在非线性光学器件、化学生物传感器、信息存储材料以及生物大分子合成方面都有广泛的应用前景,受到研究者广泛的重视和研究。 2分子自组装的原理及特点 分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体[2]。分子自发地通过无数非共价键的弱相互作用力的协同作用是发生自组装的关键。这里的“弱相互作用力”指的是氢键、范德华力、静电力、疏水作用力、ππ堆积作用、阳离子π吸附作用等。非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性[3]。并不是所有分子都能够发生自组装过程,它的产生需要两个条件[4]:自组装的动力以及导向作用。自组装的动力指分子间的弱相互作用力的协同作用,它为分子自组装提供能量。自组装的导向作用指的是分子在空间的互补性,也就是说要使分子自组装发生就必须在空间的尺寸和方向上达到分子重排要求。 自组装膜的制备及应用是目前自组装领域研究的主要方向。自组装膜按其成膜机理分为自组装单层膜(Self- assembled monolayers , SAMs和逐层自组装膜(Layer -by – layer self-assembled membrane)。如图1所示,自组装膜的成膜机理是通过固液界面间的化学吸附,在基体上形成化学键连接的、取向排列的、紧密的二维有序单分子层,是纳米级的超薄膜。活性分子的头基与基体之间的化学反应使活性分子占据基体表面上每个可以键接的位置,并通过分子间力使吸附分子紧密排列。如果活性分子的尾基也具有某种反应活性,则又可继续与别的物质反应,形成多层膜,即化学吸附多层膜。自组装成膜较另外一种成膜技术LangmuirBlodgett(LB)成膜具有操作简单,膜的热力学性质好,膜稳定的特点,因而它更是一种具有广阔应用前景的成膜技术。另外,根据膜层与层之间的作用方式不同,自组装多层膜又可分为两大类,除了前面所述基于化学吸附的自组装膜外,还包括交替沉积的自组装膜。通过化学吸附自组装膜技术制得的单层膜有序度高,化学稳定性也较好。而交替沉积自组装膜主要指的是带相反电荷基团的聚电解质之间层与层组装而构筑起来的膜,这种 膜能把膜控制在分子级水平,是一种构筑复合有机超薄膜的有效方法。

分子自组装原理及应用

分子自组装原理及应用 分子自组装的原理及特点: 分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体。分子自发地通过无数非共价键的弱相互作用力的协同作用是发生自组装的关键。这里的“弱相互作用力”指的是氢键、范德华力、静电力、疏水作用力、ππ堆积作用、阳离子π吸附作用等。非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性。并不是所有分子都能够发生自组装过程,它的产生需要两个条件:自组装的动力以及导向作用。自组装的动力指分子间的弱相互作用力的协同作用,它为分子自组装提供能量。自组装的导向作用指的是分子在空间的互补性,也就是说要使分子自组装发生就必须在空间的尺寸和方向上达到分子重排要求。 自组装膜的制备及应用是目前自组装领域研究的主要方向。自组装膜按其成膜机理分为自组装单层膜(Self- assembled monolayers , SAMs和逐层自组装膜(Layer -by –layer self-assembled membrane)。如图1所示,自组装膜的成膜机理是通过固液界面间的化学吸附,在基体上形成化学键连接的、取向排列的、紧密的二维有序单分子层,是纳米级的超薄膜。活性分子的头基与基体之间的化学反应使活性分子占据基体表面上每个可以键接的位置,并通过分子间力使吸附分子紧密排列。如果活性分子的尾基也具有某种反应活性,则又可继续与别的物质反应,形成多层膜,即化学吸附多层膜。自组装成膜较另外一种成膜技术LangmuirBlodgett(LB)成膜具有操作简单,膜的热力学性质好,膜稳定的特点,因而它更是一种具有广阔应用前景的成膜技术。另外,根据膜层与层之间的作用方式不同,自组装多层膜又可分为两大类,除了前面所述基于化学吸附的自组装膜外,还包括交替沉积的自组装膜。通过化学吸附自组装膜技术制得的单层膜有序度高,化学稳定性也较好。而交替沉积自组装膜主要指的是带相反电荷基团的聚电解质之间层与层组装而构筑起来的膜,这种膜能把膜控制在分子级水平,是一种构筑复合有机超薄膜的有效方法。 分子自组装体系形成的影响因素: 分子自组装是在热力学平衡条件下进行的分子重排过程,它的影响因素也多种多样,主要有以下三个影响因素: 1 分子识别对分子自组装的影响 分子识别可定义为某给定受体对作用物或者给体有选择地结合并产生某种特定功能的过程,包括分子间有几何尺寸、形状上的相互识别以及分子对氢键、ππ相互作用等非共价相互作用力的识别。利用分子彼此间的识别、结合特征,从中挖掘高效、高选择性的功能。若将具有识别部位的多个分子组合,彼此便寻找最安定、最接近的位置,并形成超过单个分子功能的高次结构的聚集体。在有机分子自组装过程中控制组装顺序的指令信息就包含于自组装分子之中,信息依靠分子识别进行。目前分子识别进一步应用于临床药物分析、模拟酶催化以及化学仿生传感器。为定性分离和设计提供更多的信息,也为加速分子发现提供潜能。 2 组分对分子自组装的影响 组分的结构和数目对自组装超分子聚集体的结构有很大的影响。吴凡等利用扫描轨道电镜观测了4 十六烷氧基苯甲酸(T1)和3,4,5 三取代十六烷氧基苯甲酸(T3)分子在石磨上形成的自组装体系的结构,结果发现这两种分子的自组装排列结构有着很大的不同:T1分子形成的是有序的明暗相间的条陇状结构,而T3分子形成的是密堆积结构。这说明组分结构的微小变化或组分的数目变化可能导致其参与形成的自组装体结构上的重大变化。 3 溶剂对分子自组装的影响 绝大多数对自组装体系的研究都是在溶液中进行的,因而溶剂对自组装体系的形成起着关键作用。溶剂的性质及结构上的不同都可能导致自组装体系结构发生重大改变。任何破坏非共价键的溶剂,都可能会影响到自组装过程的进行,包括溶剂的类型、密度、pH值以及浓

大分子自组装的研究进展交流

基于环糊精和客体分子包结络合作用的拓 扑凝胶研究进展 (注:本文第1,2部分为通过学习该领域的相关知识以及所了解的基本概念和主要研究内容的介绍,第3部分为自己对Ito教授小组的研究内容的理解、最新研究内容的简介和自己部分观点的阐述。) 摘要:本文通过对大分子自组装基本概念的学习和了解,主要介绍了环糊精与聚合物的包结络合作用的原理。同时结合当前的一些研究热点,重点叙述了采用环糊精与有机无机聚合物,利用包结络合原理制备出具有“八字形”交联拓扑结构的聚轮烷凝胶的研究进展。 关键词:大分子自主装;环糊精;聚轮烷;拓扑交联 Abstract: In this paper, we learn the basic concepts of macromolecular self-assembly and mainly describe the inclusion complex principle of cyclodextrin with other polymers. Combined with some of the current research, we focus on reviewing the topologi cal gel with “figure-of-eight” cross-linking which was prepared by use of cyclodextrin and organic and inorganic polymers through the principle of inclusion complex. Keyword: macromolecular self-assembly; cyclodextrin; polyrotaxane; topological cross-linking 1前言 分子自组装是最普遍的物理化学现象,是构建生命体系的基本途径,如蛋白质的折叠、DNA的双螺旋结构,到病毒的形成、细胞的生成,甚至器官组织的形成,无一不是自组装在发挥着巨大的作用[1]。从化学意义上来讲,自组装是处于平衡状态下的各单元间通过非共价键(包括库仑力、范德华力、疏水相互作用、π-π堆叠作用力、氢键)的作用自发形成稳定的、结构明确有序的聚集体的过程[2]。

超分子自组装及其应用的研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73421 课程名称:超分子化学 论文题目:超分子自组装及其应用的研究进展 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:李文卓 二○一四年六月

超分子自组装及其应用的研究进展 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:分子自组装是近年来倍受重视的国际前沿课题,它将会极大促进信息、能源、生命、环境和材料科学等学科领域的发展,介绍了基于氢键、π键、配位键、双亲分子4种自组装体系,重点综述了这4种自组装体系在高分子合成领域中的最新进展,最后对超分子自组装的发展趋势做了展望。 关键字:超分子;自组装;应用;进展 Advances in supramolecular self-assembly and its applications WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract:Supramolecular self-assembly is a highly valued field in recent years, it will greatly promote the development of information, energy, life, environmental and materials science disciplines. This article describes four kinds of self-assembled system based on hydrogen bond, π bond, coordination bond and amphiphilic molecules. Mainly review its applications and research progress in the fields of supramolecular polymer synthesis. Finally make the prospects for its development. Key words: Supramolecular; self-assembly; application; Progress 1 超分子化学的概念 超分子化学简言之是研究各个分子间通过非共价键作用形成具有特定功能体系的科学。从而使化学从分子层次扩展到超分子层次。这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。也称为超分子化学(supermolecular chemistry)。超分子化学主要研究超分子体系中基元结构的设计和合成体系中弱相互作用。体系的分子识别和组装体系组装体的结构和功能以及超分子材料和器件等等。它是化学和多门学科的交叉领域。它不仅与物理学、材料科学、信息科学、环境科学等相互渗透形成了超分子科学,而更具有重要理论意义和潜在前景的是在生命科学中的研究和应用。例如生物体内小分子和大分子之间高度特异的识别在生命过程中的调控等。

[高分子材料] 同济大学杜建忠教授在均聚物自组装领域取得系列进展

聚合物自组装是一个重要的研究领域,对其基本规律的探索和理解有望对多个学科的发展产生影响。譬如,通过聚合物自组装可以得到实心胶束、空心囊泡、棒状胶束、纳米片、纳米管等多种多样的纳米结构,在药物载体、基因递送、癌症和其他疾病诊疗、分子催化、水处理等领域具有广泛的潜在应用前景。相比于合成较为复杂但广泛研究的嵌段共聚物,利用合成方法更为简单的均聚物作为自组装构筑单元的研究则较少有人涉及,也更有挑战性。一般认为,疏水作用在均聚物自组装中的作用会减弱,而分子间的非共价键作用如氢键、π-π作用、静电作用和偶极作用等对均聚物自组装则具有更加重要的影响。作为自组装领域的重要分支,建立均聚物自组装理论,利用新颖结构的均聚物构筑不同的纳米结构从而实现不同的功能,具有重要的理论意义与现实意义。 AHAHAGAHAGAGGAGAGGAFFFFAFAF

同济大学高分子材料系杜建忠教授课题组从2010年开始从事均聚物自组装的研究,取得了一系列原创性研究成果。近日,杜建忠教授在英国皇家化学会旗舰刊Chemical Science上发表了题为“Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-πinteraction”的研究论文(DOI:C8SC03995J),提出了利用均聚物自组装制备开口和尺寸可控纳米碗的策略。杜建忠教授为论文的通讯作者,其博士研究生孙辉为第一作者。 如图1所示,针对非对称纳米结构的设计与制备领域的巨大挑战,他们提出了利用均聚物自组装来解决问题的新途径。首先,他们设计并合成了一系列两亲性均聚物(PHAzoMA),并在聚合物侧链中引入可产生氢键作用的氨基醇,以及可产生π-π作用的偶氮苯基团。在自组装过程中,利用分子间氢键与π-π作用的协同效应,精确调控聚合物分子链的运动性,从而使组装体发生非均匀收缩,得到具有开口结构的纳米碗。他们还通过透射电镜监控了自组装的详细过程,捕捉了纳米碗形成的中间态,并提出了纳米碗的形成机理。更重要的是,通过改变聚合物的聚合度,可以精确控制纳米碗开口的尺寸。通过对比实验,他AHAHAGAHAGAGGAGAGGAFFFFAFAF

超分子化学综述

导语:超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。 发展:“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了。超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学。在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能。超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力。如范氏力(含氢键)、亲水或憎水作用等。1967年,Charles Pedersen偶然发现了冠醚这种新型的大分子化合物,十几年后,一个崭新的化学领域——超分子化学终于诞生了。进入90年代后,Surpramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,像高分子化学一样,已经得到世界各国化学家的普遍认同。在国内,一些高校和科研机构已做了相当多的工作,说明超分子化学正在迅猛发展。 下面就超分子稳定形成的因素、分子识别和自组装及超分子化合物的分类进行简单阐述。 超分子稳定形成的因素超分子稳定形成的因素,可从能量降低因素、熵增加因素及锁和钥匙原理来分析,通过这些分析,可加深对超分子和超分子化学的理解和认识,这比将超分子中分子间的结合力简单归结为非共价键更为具体、明确。 分子识别和自组装在超分子化学研究中,两个最重要的科学问题是分子识别和分子自 组装、分子间多种弱相互作用的加合效应和协同作用。分子识别是由于不同分子间的一种

分子自组装原理及应用(精)

分子自组装原理及应用 毛薇莉 无机专业 MG0424012 【摘 要】 分子自组装在生物工程技术上的建模、分子器件、表面工程以及纳米 科技领域已经有很广泛的应用。在未来的几十年中 ,分子自组装作为一种技术手段将 会在新技术领域产生巨大的影响。在这篇文章里 ,我们介绍了分子自组装技术的定 义、基本原理、分类、影响因素、表征手段等 ,并阐述了分子自组装技术目前的研究 进展,展望了分子自组装技术的应用前景。 【关键词】 分子自组装 ;自组装膜 - 、八 — 1前言 分子自组装是分子与分子在一定条件下 ,依赖非共价键分子间作用力自发连接 成结构稳定的分子聚集体的过程 [1] 。通过分子自组装我们可以得到具有新奇的光、 电、催化等功能和特性的自组装材料 ,特别是现在正在得到广泛关注的自组装膜材料 在非线性光学器件、化学生物传感器、信息存储材料以及生物大分子合成方面都有 广泛的应用前景 ,受到研究者广泛的重视和研究。 2 分子自组装的原理及特点 分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间的分子 识别,相互通过非共价作用形成具有特定排列顺序的分子聚合体 [2] 。分子自发地通过 无数非共价键的弱相互作用力的协同作用是发生自组装的关键。这里的“弱相互作 用力”指的是氢键、范德华力、静电力、疏水作用力、 n n 堆积作用、阳离子 吸附作用等。非共价键的弱相互作用力维持自组装体系的结构稳定性和完整性 并不是所有分子都能够发生自组装过程 ,它的产生需要两个条件 [4]:自组装的动力以 及导向作用。自组装的动力指分子间的弱相互作用力的协同作用 ,它为分子自组装提 供能量。自组装的导向作用指的是分子在空间的互补性 ,也就是说要使分子自组装发 生就必须在空间的尺寸和方向上达到分子重排要求。 自组装膜的制备及应用是目前自组装领域研究的主要方向。自组装膜按其成膜 机理分为自组装单层膜 (Self- assembled monolayers , SAMs 和逐层自组装膜 (Layer -by -layer self-assembled membrane)b 如图1所示,自组装膜的成膜机理是通过固 液界面间的化学吸附 ,在基体上形成化学键连接的、取向排列的、紧密的二维有序单 分子层,是纳米级的超薄膜。活性分子的头基与基体之间的化学反应使活性分子占据 基体表面上每个可以键接的位置 ,并通过分子间力使吸附分子紧密排列。如果活性分 子的尾基也具有某种反应活性 ,则又可继续与别的物质反应 ,形成多层膜,即化学吸附 多层膜。自组装成膜较另外一种成膜技术Langmuir Blodgett ( L B )成膜具有操作简单,膜的热力学性质好,膜稳定的特点,因而它更是一种具有广阔应 用前景的成膜技术。 另外,根据膜层与层之间的作用方式不同 ,自组装多层膜又可分为 两大类,除了前面所述基于化学吸附的自组装膜外 ,还包括交替沉积的自组装膜。 通过 化学吸附自组装膜技术制得的单层膜有序度高 ,化学稳定性也较好。而交替沉积自组 装膜主要指的是带相反电荷基团的聚电解质之间层与层组装而构筑起来的膜 ,这种 膜能把膜控制在分子级水平 ,是一种构筑复合有机超薄膜的有效方法。 n [3]。

超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法 1.1引言 超分子化学是研究基于分子间非共价键相互作用而形成的具有一定结构和功能分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等学科的交叉融合中,超分子化学已发展成超分子科学,是21世纪新概念和高技术的重要源头之一。相较于传统化学上所研究的共价键,超分子化学的研究对象是一些较弱且具有可恢复性的分子间相互作用,如氢键、金属配位、xπ堆积、疏水效应等,这些分子间弱相互作用是促进分子识别的关键,对超分子体系的分子识别和组装有着重要意义12。 超分子材料的性能取决于基本构筑单元的分子结构,在更大程度上依赖于这些构筑单元经过自组装得到的介观尺度聚集体的结构与相态,而自组装过程又是影响超分子聚集体结构及其功能的关键因素。超分子自组装过程的影响因素极其复杂,与传统凝聚态物质相比,超分子体系具有更高的流动性及环境依赖性,而正是体系热涨落及外部环境的约束性共同导致超分子体系的新行为,主宰体系演化的机制己从凝聚态物理传统的相互作用能量机制转变为动力学和熵效应的共同作用。外部影响因素或者体系自身的耗散作用能够驱动超分子体系自组装形成各种丰富的结构,从而具有不同的功能及应用范围。

超分子体系自身结构的特点使得体系演化速度慢、松弛时间谱分布宽4.例如,单链聚合物的空间尺度从化学键键长(100m)延伸到链旋转半径(103m),而相应的时间尺度从化学键的振动(10-15可延伸到整条聚合物链的松弛和扩散(105s)。如果考虑聚合物链之间的缠结效应,聚合物链的松弛时间会更长阿。超分子自组装过程也涵盖非常大的空间和时间尺度:超分子材料的形成需要从基本构筑单元的分子尺寸(10°m)过渡到典型有序功能结构的尺寸(10m),此外有序功能结构转变动力学往往发生在微秒或更长的时间尺度上10l对于超分子材料体系而言,由于实验手段的一些限制,许多情况下很难获得这些复杂分子结构在多个尺度上的结构及动力学性质。虽然计算机硬件和算法在近些年得到快速发展,计算机模拟已经成为在各个层面研究超分子自组装材料体系不可或缺的组成部分,但到目前为止还没有一种模拟方法能够同时描述超分子组装体系微观结构、介观组装形貌及宏观材料功能等多个尺度上的性质。因此建立有效的多尺度模拟方法,增强不同尺度模拟方法之间的衔接和信息传递是一项十分紧迫的任务,这也是发展多尺度模拟方法的核心目标。由于缺少单一的模拟方法应用于超分子材料体系的多尺度分析,因此发展多尺度模拟方法的主要任务是把不同尺度上的模拟方法进行完善,同时发展对这些单一尺度模拟方法进行有效连接的手段传统意义上的计算机模拟方法是 随着计算机的发明一起发展起来的。根据研究体系运动的确定性与否分为分子动力学方法21和蒙特卡罗方法1两大类。分子动力学方法是建立在经典力学基础之上,通过求解粒子的运动方程来模拟体系随

D-IL-01_主客体包结络合作用和大分子自组装

主客体包结络合作用和大分子自组装 江明,郭明雨,邹炯 教育部聚合物分子工程重点实验室,复旦大学高分子科学系,上海 200433 关键词:超分子化学,自组装,水凝胶,主客体作用,包结络合 在2007年全国高分子学术论文报告会上,我们提出:“在大分子自组装的研究中,可充分利用小分子的超分子化学的原理,引入新的超分子构造单元、利用构造超分子结构的驱动力实现大分子自组装,诱导大分子与小分子、大分子与金属纳米粒子以及与量子点等的组装,实现对组装体的结构、功能的控制。这将为大分子组装的进一步深入和发展,提供新的动力与机遇。”本文是我们近两年来基于这一思路的的研究结果的小结。 1.聚合物空心球的超分子表面修饰 由聚合物或表面活性剂形成的囊泡和空心球的表面修饰是开拓此类组装体应用的重要前提。然而,囊泡或空心球通常不能经受化学反应的苛刻条件。我们成功实现了完全基于超分子化学反应的聚合物空心球的内外壁修饰。为此,我们将作为主体分子的β-环糊精CD引入到半刚性聚合物链聚酰亚胺的两端,发现该聚合物在水溶液中可以形成单层空心球结构。作为主体分子的环糊精均匀地分布在空心球的内壁和外壁。进一步,我们利用端基金刚烷(Ada)修饰的不同分子量的PEG,通过CD 和Ada的主-客体包结络合作用来实现聚合物表面的PEG修饰。利用等温滴定量热法ITC和动态和静态激光光散射跟踪了这个过程。结果表明,选择适当Ada-PEG分子量(<2000),空心球的外壁和内壁都能定量地实现表面修饰,但从动力学上说,外壁的修饰远比内壁修饰为快。由此,我们进一步设计并实现了空心球的内外壁的不对称修饰。 2.基于低分子量PEG/α-CD的超分子凝胶 诸多文献研究表明,高分子量的PEG与α-环糊精在水溶液中可通过包结络合作用形成超分子凝胶。由于该凝胶具有温度响应的gel-sol转变行为和剪切变稀(shear-thinning)的性质,在药物的传输和释放领域具有非常好的应用前景,受到广泛关注。但是具有更好生物相容性的低分子量PEG(Mn≤2K)与α-环糊精却只能形成晶体沉淀而非凝胶。我们的研究发现,将低分子量PEG(Mn=1.1或2 K)的端基接上金刚烷,由于金刚烷的疏水作用,在水中形成胶束。在此胶束中再加入α- 纳米粒子与金环糊精,便形成超分子凝胶。同时,通过β-环糊精表面修饰的SiO 2

超分子聚合物的研究进展

超分子聚合物的研究进展 摘要:介绍了超分子聚合物领域的研究进展及其应用,阐述了其主要类别(如氢键超分子聚合物、配合物型超分子聚合物、π-π堆积超分子聚合物及离子效应超分子聚合物),最后讨论了超分子化合物研究过程中的表征方法。超分子聚合物的研究前景将朝着更大产率、更简便制备步骤及更新颖结构的方向发展。 The authors introduced the status quo in studies on supramolecular polymers and their applications, and expatiated main categories of the polymers, involving hydrogen bond supramolecular polymer, coordination complex supramolecular polymer, π-π stacking supramolecular polymer and ionic effect supramolecular polymer. The characterization methods adopted in the investigations of the supramolecular compounds were discussed. The high yield, simplified preparation process and novel structure are deemed as the major targets in the future research and development of the supramolecular polymers. 关键词:超分子超分子聚合物 一、超分子 “超分子”这一名词最早是在1937年WOLF公司第一次提出的,这一术语引起了社会极大的反响。而法国科学家LEHN 第一次系统性地研究并定义超分子,使他和PEDERSON C J ,CRAM D J一同分享了1987年的诺贝尔化学奖。超分子结构突破了传统性的共价键结合的一大壁垒,标志着化学分子史上的一大飞跃。此后,以非共价键为主的超分子聚合物成为了科学家研究的一大热点。 超分子化学这一概念, 他指出: “基于共价键存在着分子化 学领域, 基于分子组装体和分子间键而存在着超分子化学”。超分子化学是基于分子间的非共价键相互作用而形成的分子聚集体的化学, 换句话说分子间的相互作用是超分子化学的核心。在超分子化学中,不同类型的分子间相互作用时可以区分的,根据他们不同的强弱程度、取向以及对距离和角度的依赖程度,可以分为:金属离子的配位键、氢键、π-π堆积作用、静电作用和疏水作用等。它们的强度分布由π-π堆积作用及氢键的弱到中等,到金属离子配位键的强或非常强,这些作用力成为驱动超分子自组装的基本方法。人们可以根据超分子自组装原则,使用分子间的相互作用力作为工具,把具有特定的结构和功能的组分或建筑模块按照一定的方式组装成新的超分子化合物。这些新的化合物不仅仅能表现出单个分子所不具备的特有性质,还能大大增加化合物的种类和数目。如果人们能够很好的控制超分子自组装过程,就可以按照预期目标更简单、更可靠的得到具有特定结构和功能的化合物。 二、超分子聚合物

相关文档
最新文档