专题19 作图问题-2019年中考数学年年考的28个重点微专题(解析版)
专题06 数据的分析-2019年中考数学年年考的28个重点微专题(原卷版)

专题06 数据的分析一、基础知识1.平均数有算术平均数和加权平均数平均数的求法:x=1n(x1+x2+…+x n);加权平均数计算公式为:x=1n(x1f1+x2f2+…+x k f k),其中f1,f2,…,f k代表各数据的权.2.中位数的求法数据从大到小或从小到大排好顺序以后,若为偶数个数,就是最中间的两个数加起来除以2,即两个数的平均数;若为奇数个数,就是中间个数.3.众数:指一组数据中出现次数最多的数.4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差。
方差公式为:s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越小,数据越稳定.二、本专题典型题考法及解析【例题1】在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136C.136,148 D.136,145【例题2】近十天每天平均气温(℃)统计如下:24,23,22,24,24,27,30,31,30,29.关于这10个数据下列说法不正确的是()A.众数是24 B.中位数是26C.平均数是26.4 D.极差是9三、数据的分析问题训练题及其答案和解析1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12 B. 12,11C. 11,12 D. 12,122.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃C.中位数是24℃ D.平均数是26℃3.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>”、“=”、“<”)4.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差5.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁6.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.37.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁)12 13 14 15 16人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,158.一次招聘活动中,共有8人进入复试,他们的复试成绩(百分制)如下:70,100,90,80,70,90,90,80.对于这组数据,下列说法正确的是()A.平均数是80 B.众数是90 C.中位数是80 D.极差是709.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为.10.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”),由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112µg/cm2;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关,其中正确的说法是()A. ①②③B. ①②④C. ①③④D. ②③④11.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?。
2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理(Word版含解析)

直角三角形与勾股定理一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3 B. 3 C. 4 D.2 2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1 B.C.D.2 3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和5.如图,平面直角坐标系中, A (﹣ 8, 0), B (﹣ 8, 4), C (0, 4),反比率函数 y = 的图象分别与线段,交于点 , ,连结.若点B 对于DE 的对称点恰幸亏上,AB BCD EDEOA则 k =()A .﹣ 20B .﹣ 16C .﹣ 12D .﹣ 86.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上, BE与CF 交于点G .若BC =4, DE= AF =1,则GF 的长为()A .B .C .D .7.如图,在直角三角形ABC 中,∠ C = 90°, AC = BC ,E 是 AB 的中点,过点E 作的垂线, 垂足分别为点 D 和点 F ,四边形 CDEF 沿着 CA 方向匀速运动, 点 C 与点停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为AC 和 BCA 重合时S .则 S对于 t 的函数图象大概为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC= 90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点 F 处,线段 DF与 AB订交于点 E,则∠ BED等于()A. 120°B. 108°C. 72°D.36°9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.210.知足以下条件时,△ABC不是直角三角形的为()A.AB=,BC=4, AC=5 B.AB:BC:AC= 3:4: 5C.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣ |+ (tan B﹣2)= 011.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A .B . 3C .D .512.如图,在△ABC 中,∠ B = 50°, CD ⊥ AB 于点D ,∠ BCD 和∠ BDC 的角均分线订交于点E ,F 为边AC 的中点,CD = CF ,则∠ACD +∠ CED =()A . 125°B . 145°C . 175°D .190°二.填空题(共 12 小题)13.在△ ABC 中,∠ A = 50°,∠ B = 30°,点 D 在 AB 边上,连结CD ,若△ ACD 为直角三角形,则∠ BCD 的度数为度.14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图” .如图,设勾 = 6,弦 c = 10,则小正方形的面积是 .aABCD15.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 cm .16.如图,在边长为1 的菱形 ABCD 中,∠ ABC = 60°,将△ ABD 沿射线 BD 的方向平移获得△ A ' B ' D ' ,分别连结 A ' C , A ' D , B ' C ,则 A ' C +B ' C 的最小值为 .17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A ,且此外三个锐角极点B ,C ,D 在同向来线上. 若AB = 2,则 CD = .18.如图,为丈量旗杆 AB 的高度,在教课楼一楼点C 处测得旗杆顶部的仰角为 60°,在四楼点 D 处测得旗杆顶部的仰角为30°,点 C 与点 B 在同一水平线上.已知=,则CDm旗杆的高度为.AB m19.如图, 在 ?ABCD 中,E 、F 是对角线 AC 上两点, AE = EF = CD ,∠ ADF = 90°,∠ BCD =63°,则∠ ADE 的大小为.20.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°获得△ADE , DE与BC 交于点P ,可推出结论:PA +PC = PE .问题解决:如图2,在△ MNG 中, MN = 6,∠ M = 75°, MG =.点O 是△ MNG 内一点,则点O 到△ MNG 三个极点的距离和的最小值是.21.如图, 等边三角形 ABC 内有一点 P ,分別连结 AP 、BP 、CP ,若 AP = 6,BP = 8,CP = 10.则S △ ABP +S △ BPC = .22.无盖圆柱形杯子的睁开图以下图.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有cm .23.以下图,在 Rt △中,∠ = 90°, 是斜边上的中线, 、 F 分别为、ABCACBCMABEMB BC的中点,若 EF =1,则 AB =.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸 BC 至F ,使= ,连结 FE 并延伸交 于点 .若 = ,则△ 的周长为 .CF BC AB M BC a FMB三.解答题(共 9 小题)25.如图,等腰直角三角板如图搁置.直角极点在直线 上,分别过点 、 B 作 ⊥直线C m A AEm于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.27.在 6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图 1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.( 2)在图 2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).28.某发掘机的底座高AB=米,动臂 BC=米, CD=米, BC与 CD的固定夹角∠ BCD=140°.初始地点如图1,斗杆极点 D与铲斗极点 E 所在直线 DE垂直地面 AM于点 E,测得∠CDE=70°(表示图2).工作时如图3,动臂 BC会绕点 B 转动,当点 A, B, C在同向来线时,斗杆极点D升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB的夹角∠ABC的度数.( 2)问斗杆极点D的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50 °≈ 0.77 , cos50 °≈ 0.64 ,sin70 °≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ ABC的三个极点均在格点上, 以点 A 为圆心的与相切于点 ,分别交、 于点 、 .BC D AB AC E F( 1)求△ ABC 三边的长;( 2)求图中由线段 EB 、BC 、 CF 及 所围成的暗影部分的面积.30.已知: △ ABC 是等腰直角三角形, ∠ BAC =90°,将△ ABC 绕点 C 顺时针方向旋转获得△A ′B ′C ,记旋转角为 α,当 90°<α< 180°时,作 A ′D ⊥AC ,垂足为 D ,A ′ D 与 B ′C 交于点 E .( 1)如图 1,当∠ CA ′ D = 15°时,作∠ A ′ EC 的均分线 EF 交 BC 于点 F .①写出旋转角 α 的度数;②求证: EA ′ +EC = EF ;( 2)如图 2,在( 1)的条件下,设P 是直线 A ′D 上的一个动点,连结 PA , PF ,若 AB=,求线段 PA +PF 的最小值.(结果保存根号)31.如图 1,△ ABC 中, CA = CB ,∠ ACB =α, D 为△ ABC 内一点,将△ CAD 绕点 C 按逆时针方向旋转角 α 获得△CBE ,点 A ,D 的对应点分别为点B ,E ,且A ,D ,E 三点在同向来线上.( 1)填空:∠CDE =(用含 α 的代数式表示) ;( 2)如图2,若 α= 60°,请补全图形,再过点C作CF ⊥ AE 于点F ,而后研究线段CF ,AE , BE 之间的数目关系,并证明你的结论;( 3)若 α= 90°, AC = 5 ,且点 G 知足∠ AGB = 90°, BG = 6,直接写出点 C 到 AG 的距离.32.如图,在平面直角坐标系中,四边形 OABC 的极点坐标分别为 O ( 0, 0),A ( 12, 0), B( 8, 6), C ( 0, 6).动点 P 从点 O 出发,以每秒 3 个单位长度的速度沿边 OA 向终点 A 运动;动点 从点B 同时出发,以每秒 2 个单位长度的速度沿边 向终点C 运动.设运QBC2动的时间为 t 秒, PQ = y .( 1)直接写出 y 对于 t 的函数分析式及 t 的取值范围:;( 2)当 PQ = 3 时,求 t 的值;( 3)连结 OB 交 PQ 于点 D ,若双曲线 y = ( k ≠ 0)经过点 D ,问 k 的值能否变化?若不变化,恳求出 k 的值;若变化,请说明原因.33.已知 AB 是⊙ O 的直径, AM 和 BN 是⊙ O 的两条切线, DC 与⊙ O 相切于点 E ,分别交 AM 、BN 于 D 、 C 两点.( 1)如图 1,求证: AB 2= 4AD ?BC ;( 2)如图 2,连结 OE 并延伸交 AM 于点 F ,连结 CF .若∠ ADE =2∠ OFC ,AD = 1,求图中暗影部分的面积.参照答案与试题分析一.选择题(共12 小题)1.如图,四边形ABCD内接于⊙ O,AE⊥ CB交 CB的延伸线于点E,若 BA均分∠ DBE,AD=5,CE=,则AE=()A. 3B. 3C.4D.2【剖析】连结AC,如图,依据圆内接四边形的性质和圆周角定理获得∠1=∠CDA,∠ 2 =∠ 3,从而获得∠3=∠CDA,所以AC=AD= 5,而后利用勾股定理计算AE的长.【解答】解:连结AC,如图,∵BA均分∠ DBE,∴∠ 1=∠ 2,∵∠ 1=∠CDA,∠ 2=∠ 3,∴∠ 3=∠CDA,∴AC=AD=5,∵ AE⊥CB,∴∠ AEC=90°,∴AE===2.应选: D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1B.C.D.2【剖析】依据正六边的性质,正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,而后求出等边三角形的高即可.【解答】解:边长为 2 的正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为本来的纸带宽度,所以本来的纸带宽度=×2=.应选: C.3.如图 1,长、宽均为3,高为 8 的长方体容器,搁置在水平桌面上,里面盛有水,水面高为 6,绕底面一棱进行旋转倾斜后,水面恰巧触到容器口边沿,图2是此时的表示图,则图 2 中水面高度为()A.B.C.D.【剖析】设DE=x,则 AD=8﹣ x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点 C作 CF⊥ BG于 F,由△ CDE∽△ BCF的比率线段求得结果即可.【解答】解:过点C作 CF⊥ BG于 F,以下图:设 DE=x,则 AD=8﹣ x,依据题意得:( 8﹣x+8)× 3× 3= 3× 3×6,解得: x=4,∴DE=4,∵∠ E=90°,由勾股定理得:CD=,∵∠ BCE=∠ DCF=90°,∴∠ DCE=∠ BCF,∵∠ DEC=∠ BFC=90°,∴△ CDE∽△ BCF,∴,即,∴CF=.应选: A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记录.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图 2 的方式搁置在最大正方形内.若知道图中暗影部分的面积,则必定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【剖析】依据勾股定理获得c2= a2+b2,依据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2= a2+b2,暗影部分的面积=c2﹣b2﹣a( c﹣ b)= a2﹣ac+ab= a( a+b﹣ c),较小两个正方形重叠部分的长=a﹣( c﹣ b),宽= a,则较小两个正方形重叠部分底面积=a( a+b﹣c),∴知道图中暗影部分的面积,则必定能求出较小两个正方形重叠部分的面积,应选: C.5.如图,平面直角坐标系中,A(﹣8,0), B(﹣8,4), C(0,4),反比率函数y=的图象分别与线段AB,BC交于点D, E,连结DE.若点 B 对于DE的对称点恰幸亏OA上,则 k=()A.﹣ 20 B.﹣ 16 C.﹣ 12 D.﹣ 8【剖析】依据A(﹣8,0), B(﹣8,4), C(0,4),可得矩形的长和宽,易知点D的横坐标, E 的纵坐标,由反比率函数的关系式,可用含有k 的代数式表示此外一个坐标,由三角形相像和对称,可用求出AF的长,而后把问题转变到三角形ADF中,由勾股定理建立方程求出k 的值.【解答】解:过点 E 作 EG⊥ OA,垂足为 G,设点 B 对于 DE的对称点为F,连结 DF、 EF、BF,以下图:则△ BDE≌△ FDE,∴BD=FD, BE=FE,∠ DFE=∠ DBE=90°易证△ ADF∽△ GFE∴,∵A(﹣8,0),B(﹣8,4), C(0,4),∴ AB=OC= EG=4, OA= BC=8,∵D、E在反比率函数 y=的图象上,∴ E(, 4)、D(﹣ 8,)∴OG=EC=,AD=﹣,∴BD=4+, BE=8+∴,∴ =,AF2 2 2在 Rt △ADF中,由勾股定理:AD+AF = DF即:(﹣)2+22=( 4+ )2解得: k=﹣12应选: C.6.如图,正方形ABCD中,点 E、F 分别在边CD,AD上, BE与 CF交于点 G.若 BC=4, DE = AF=1,则 GF的长为()A.B.C.D.【剖析】证明△BCE≌△ CDF( SAS),得∠ CBE=∠ DCF,所以∠ CGE=90°,依据等角的余弦可得 CG的长,可得结论.【解答】解:正方形ABCD中,∵ BC=4,∴BC=CD= AD=4,∠ BCE=∠ CDF=90°,∵ AF=DE=1,∴DF=CE=3,∴ BE =CF = 5,在△ BCE 和△ CDF 中,,∴△ BCE ≌△ CDF ( SAS ),∴∠ CBE =∠ DCF ,∵∠ CBE +∠ CEB =∠ ECG +∠CEB = 90°=∠ CGE ,cos ∠ CBE = cos ∠ ECG = ,∴,CG =,∴ GF =CF ﹣ CG =5﹣ = ,应选: .A7.如图,在直角三角形中,∠ = 90°, = , 是AB 的中点,过点 E 作和ABC CAC BC EAC BC的垂线, 垂足分别为点D 和点,四边形沿着方向匀速运动, 点C 与点 A 重合时FCDEF CA 停止运动,设运动时间为 t ,运动过程中四边形 CDEF 与△ ABC 的重叠部分面积为S .则 S 对于 t 的函数图象大概为()A .B .C .D .【剖析】依据已知条件获得△ABC 是等腰直角三角形,推出四边形 EFCD 是正方形,设正方形的边长为 a ,当挪动的距离< a 时,如图 1S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣2;当挪动的距离>a 时,如图 2, = △AC ′H = ( 2 ﹣ ) 2=2﹣ 2+2 2,依据函t S S a tt at a数关系式即可获得结论;【解答】解:∵在直角三角形ABC 中,∠ C = 90°, AC = BC ,∴△ ABC 是等腰直角三角形,∵ EF ⊥BC , ED ⊥AC ,∴四边形 EFCD 是矩形,∵ E 是 AB 的中点,∴ EF = AC , DE = BC ,∴ EF =ED ,∴四边形 EFCD 是正方形,设正方形的边长为a ,如图 1 当挪动的距离< a 时, S =正方形的面积﹣△ EE ′ H 的面积= a 2﹣ t 2;当挪动的距离> a 时,如图 2, S = S △AC ′ H = ( 2a ﹣t ) 2 = t 2﹣ 2at +2a 2 ,∴ S 对于 t 的函数图象大概为 C 选项,应选: C .8.如图,在 Rt △ ABC 中,∠ BAC = 90°,∠ B =36°, AD 是斜边BC 上的中线,将△ ACD沿对折,使点C 落在点F 处,线段与订交于点 ,则∠等于()AD DF AB E BEDA. 120°B. 108°C. 72°D.36°【剖析】依据三角形内角和定理求出∠C=90°﹣∠ B=54°.由直角三角形斜边上的中线的性质得出AD= BD= CD,利用等腰三角形的性质求出∠BAD=∠ B=36°,∠ DAC=∠ C = 54°,利用三角形内角和定理求出∠ADC=180°﹣∠ DAC﹣∠ C=72°.再依据折叠的性质得出∠ ADF=∠ ADC=72°,而后依据三角形外角的性质得出∠BED=∠ BAD+∠ ADF=108°.【解答】解:∵在Rt △ABC中,∠BAC= 90°,∠B=36°,∴∠ C=90°﹣∠ B=54°.∵AD是斜边 BC上的中线,∴ AD=BD= CD,∴∠ BAD=∠ B=36°,∠ DAC=∠ C=54°,∴∠ ADC=180°﹣∠ DAC﹣∠ C=72°.∵将△ ACD沿 AD对折,使点C落在点 F 处,∴∠ ADF=∠ ADC=72°,∴∠ BED=∠ BAD+∠ ADF=36°+72°=108°.应选: B.9.如图,在△ABC中,∠C=90°,AC= 12,AB的垂直均分线EF交 AC于点 D,连结 BD,若cos ∠BDC=,则BC的长是()A. 10B. 8C.4D.2【剖析】设CD=5x, BD=7x,则 BC=2x,由 AC=12即可求 x,从而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设 CD=5x, BD=7x,∴BC=2 x,∵AB的垂直均分线 EF交 AC于点 D,∴ AD=BD=7x,∴ AC=12x,∵AC=12,∴x=1,∴BC=2;应选: D.10.知足以下条件时,△ABC不是直角三角形的为()A.=,=4,=5 B.::=3:4:5 AB BCAC AB BC ACC.∠A:∠B:∠C= 3: 4: 5 D. |cos A﹣|+(tan B﹣)2= 0 【剖析】依照勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可获得结论.【解答】解:、∵,∴△是直角三角形,错误;A ABCB、∵(2 2 2 2 2 23x) +( 4x)= 9x +16x= 25x=( 5x),∴△ABC是直角三角形,错误;、∵∠:∠ :∠ = 3:4: 5,∴∠ =,∴△不是C A BC C ABC直角三角形,正确;、∵ |cos ﹣|+ ( tan ﹣)2=0,∴,∴∠= 60°,∠=D A B A B30°,∴∠C= 90°,∴△ABC是直角三角形,错误;应选: C.11.如图,点E在正方形ABCD的边 AB上,若 EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3 C.D.5【剖析】先依据正方形的性质得出∠B=90°,而后在Rt△ BCE中,利用勾股定理得出2BC,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠ B=90°,2222 2∴BC= EC﹣EB=2﹣1=3,∴正方形ABCD的面积=2BC=3.应选: B.12.如图,在△ABC中,∠ B=50°, CD⊥ AB于点D,∠ BCD和∠ BDC的角均分线订交于点E,F 为边AC的中点,CD= CF,则∠ACD+∠ CED=()A. 125°B. 145°C. 175°D.190°【剖析】依据直角三角形的斜边上的中线的性质,即可获得△CDF是等边三角形,从而得到∠ ACD=60°,依据∠BCD和∠ BDC的角均分线订交于点E,即可得出∠CED=115°,即可获得∠ ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥ AB,F 为边 AC的中点,∴DF= AC= CF,又∵ CD= CF,∴CD=DF= CF,∴△ CDF是等边三角形,∴∠ ACD=60°,∵∠ B=50°,∴∠ BCD+∠ BDC=130°,∵∠ BCD和∠ BDC的角均分线订交于点E,∴∠ DCE+∠ CDE=65°,∴∠ CED=115°,∴∠ ACD+∠ CED=60°+115°=175°,应选: C.二.填空题(共12 小题)13.在△ABC中,∠A= 50°,∠B= 30°,点D在AB边上,连结CD,若△ ACD为直角三角形,则∠ BCD的度数为60°或 10度.【剖析】当△ ACD为直角三角形时,存在两种状况:∠ ADC=90°或∠ ACD=90°,依据三角形的内角和定理可得结论.【解答】解:分两种状况:①如图 1,当∠ADC= 90°时,∵∠ B=30°,∴∠ BCD=90°﹣30°=60°;②如图 2,当∠ACD= 90°时,∵∠ A=50°,∠ B=30°,∴∠ ACB=180°﹣30°﹣50°=100°,∴∠ BCD=100°﹣90°=10°,综上,则∠ BCD的度数为60°或10°;故答案为: 60°或 10;14.公元 3 世纪初,中国古代数学家赵爽注《周髀算经》时,创建了“赵爽弦图”.如图,设勾 a=6,弦 c=10,则小正方形ABCD的面积是4.【剖析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a = 6,弦 c = 10,∴股== 8,∴小正方形的边长= 8﹣ 6= 2,∴小正方形的面积= 22= 4故答案是: 415.如图,在△ ABC 中,∠ BAC = 90°, AB =AC = 10cm ,点 D 为△ ABC 内一点,∠ BAD = 15°,= 6 ,连结 ,将△ 绕点 A 按逆时针方向旋转,使 AB 与 重合,点D 的对应点ADcm BD ABDAC为点 E ,连结 DE , DE 交 AC 于点 F ,则 CF 的长为 (10﹣2 ) cm .【剖析】过点 A 作 AG ⊥ DE 于点 G ,由旋转的性质推出∠ AED =∠ ADG = 45°,∠ AFD =60°,利用锐角三角函数分别求出 AG , GF , AF 的长,即可求出CF = AC ﹣ AF =10﹣ 2.【解答】解:过点A 作 AG ⊥ DE 于点 G ,由旋转知: AD =AE ,∠ DAE = 90°,∠ CAE =∠ BAD = 15°,∴∠ AED =∠ ADG = 45°,在△ AEF 中,∠ AFD =∠ AED +∠ CAE = 60°,在 Rt △ADG 中, AG = DG = = 3,在 Rt △AFG 中, GF ==, AF =2FG = 2 ,∴ CF =AC ﹣ AF =10﹣ 2,故答案为: 10﹣2 .16.如图,在边长为 1 的菱形ABCD中,∠ABC= 60°,将△ABD沿射线BD的方向平移获得△ A' B' D',分别连结 A' C, A' D, B' C,则 A' C+B' C的最小值为.【剖析】依据菱形的性质获得 AB=1,∠ ABD=30°,依据平移的性质获得1,∠A′B′D=30°,当B′C⊥A′B′时,A' C+B' C的值最小,推出四边形A′ B′= AB=A′ B′CD是矩形,∠B′ A′C=30°,解直角三角形即可获得结论.【解答】解:∵在边长为 1 的菱形ABCD中,∠ ABC=60°,∴ AB=1,∠ ABD=30°,∵将△ ABD沿射线 BD的方向平移获得△A' B' D',∴A′ B′= AB=1,∠ A′B′ D=30°,当 B′C⊥ A′ B′时, A' C+B' C的值最小,∵ AB∥A′ B′, AB= A′ B′, AB= CD, AB∥ CD,∴A′ B′= CD,A′ B′∥ CD,∴四边形 A′ B′CD是矩形,∠ B′ A′ C=30°,∴B′C=,A′C=,∴A' C+B' C的最小值为,故答案为:.17.把两个相同大小含45°角的三角尺按以下图的方式搁置,此中一个三角尺的锐角顶点与另一个三角尺的直角极点重合于点A,且此外三个锐角极点B,C,D在同向来线上.若AB=2,则CD=﹣.【剖析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出 DF,即可得出结论.【解答】解:如图,过点 A 作 AF⊥BC于 F,在 Rt △ABC中,∠B= 45°,∴BC= AB=2, BF= AF=AB=,∵两个相同大小的含45°角的三角尺,∴ AD=BC=2,在 Rt △ADF中,依据勾股定理得,DF==,∴ CD=BF+DF﹣ BC=+﹣ 2 =﹣,故答案为:﹣.18.如图,为丈量旗杆AB的高度,在教课楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点 D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD= m,则旗杆 AB的高度为m.【剖析】作DE⊥ AB于E,则∠ AED=90°,四边形BCDE是矩形,得出BE= CD= m,∠CDE=∠ DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ ACD,得出AD= CD= m,在 Rt △ADE中,由直角三角形的性质得出AE=AD=m,即可得出答案.【解答】解:作DE⊥ AB于 E,以下图:则∠ AED=90°,四边形BCDE是矩形,∴BE=CD= m,∠ CDE=∠ DEA=90°,∴∠ ADC=90°+30°=120°,∵∠ ACB=60°,∴∠ ACD=30°,∴∠ CAD=30°=∠ ACD,∴AD=CD= m,在 Rt △ADE中,∠ADE=30°,∴ AE= AD= m,∴AB=AE+BE= m m= m;故答案为: 14.4 .19.如图,在 ?ABCD中,E、F是对角线AC上两点, AE= EF= CD,∠ ADF=90°,∠ BCD=63°,则∠ ADE的大小为21°.【剖析】设∠ ADE= x,由等腰三角形的性质和直角三角形得出∠DAE=∠ ADE=x,DE=AF = AE=EF,得出DE= CD,证出∠ DCE=∠ DEC=2x,由平行四边形的性质得出∠DCE=∠ BCD ﹣∠ BCA=63°﹣ x,得出方程,解方程即可.【解答】解:设∠ADE= x,∵AE=EF,∠ ADF=90°,∴∠ DAE=∠ ADE= x, DE=AF=AE= EF,∵AE=EF= CD,∴ DE=CD,∴∠ DCE=∠ DEC=2x,∵四边形 ABCD是平行四边形,∴ AD∥BC,∴∠ DAE=∠ BCA= x,∴∠ DCE=∠ BCD﹣∠ BCA=63°﹣x,∴ 2x=63°﹣x,解得: x=21°,即∠ ADE=21°;故答案为: 21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°获得△ADE,DE与BC交于点P,可推出结论:PA+PC= PE.问题解决:如图2,在△MNG中,MN= 6,∠M= 75°,MG=.点O是△ MNG内一点,则点O到△ MNG三个极点的距离和的最小值是 2 .【剖析】( 1)在BC上截取BG=PD,经过三角形求得证得AG= AP,得出△ AGP是等边三角形,得出∠ AGC=60°=∠ APG,即可求得∠ APE=60°,连结 EC,延伸 BC到 F,使 CF=PA,连结 EF,证得△ ACE是等边三角形,得出AE= EC=AC,而后经过证得△APE≌△ ECF (SAS),得出 PE= PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连结ND,可证△GMO≌△DME,可得 GO=DE,则 MO+NO+GO=NO+OE+DE,即当D、 E、 O、 N 四点共线时, MO+NO+GO 值最小,最小值为ND的长度,依据勾股定理先求得MF、 DF,而后求 ND的长度,即可求MO+NO+GO的最小值.【解答】( 1)证明:如图1,在BC上截取BG=PD,在△ ABG和△ ADP中,∴△ ABG≌△ ADP( SAS),∴AG=AP,∠ BAG=∠ DAP,∵∠ GAP=∠ BAD=60°,∴△ AGP是等边三角形,∴∠ AGC=60°=∠ APG,∴∠ APE=60°,∴∠ EPC=60°,连结 EC,延伸 BC到 F,使 CF= PA,连结 EF,∵将△ ABC绕点 A 逆时针旋转60°获得△ ADE,∴∠ EAC=60°,∠ EPC=60°,∵ AE=AC,∴△ ACE是等边三角形,∴AE=EC= AC,∵∠ PAE+∠ APE+∠ AEP=180°,∠ ECF+∠ ACE+∠ ACB=180°,∠ ACE=∠ APE=60°,∠AED=∠ ACB,∴∠ PAE=∠ ECF,在△ APE和△ ECF中∴△ APE≌△ ECF( SAS),∴PE=PF,∴PA+PC= PE;( 2)解:如图 2:以MG为边作等边三角形△MGD,以 OM为边作等边△ OME.连结 ND,作DF⊥ NM,交 NM的延伸线于F.∵△ MGD和△ OME是等边三角形∴OE=OM= ME,∠ DMG=∠ OME=60°, MG= MD,∴∠ GMO=∠ DME在△ GMO和△ DME中∴△ GMO≌△ DME( SAS),∴OG=DE∴NO+GO+MO= DE+OE+NO∴当 D、 E、 O、 M四点共线时, NO+GO+MO值最小,∵∠ NMG=75°,∠ GMD=60°,∴∠ NMD=135°,∴∠ DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为 2,21.如图,等边三角形ABC内有一点 P,分別连结 AP、BP、CP,若 AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【剖析】 将△ BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,依据旋转的性质可得∠PBP ′=∠CAB = 60°, BP = BP ′,可得△ BPP ′为等边三角形,可得BP ′= BP = 8=PP ' ,由勾股定理的逆定理可得,△ APP ′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC 绕点 B 逆时针旋转 60°后得△ AP ' B ,连结 PP ′,依据旋转的性质可知,旋转角∠ PBP ′=∠ CAB =60°, BP = BP ′,∴△ BPP ′为等边三角形, ∴ BP ′= BP = 8= PP ' ;由旋转的性质可知, AP ′= PC = 10, 在△ BPP ′中, PP ′= 8,AP = 6,由勾股定理的逆定理得,△ APP ′是直角三角形,2×PP ' × AP =24+16∴ S △ABP +S △ BPC = S 四边形 AP' BP = S △ BP' B +S △AP' P =BP +故答案为: 24+1622.无盖圆柱形杯子的睁开图以下图.将一根长为 20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分起码有5.cm【剖析】依据题意直接利用勾股定理得出杯子内的筷子长度,从而得出答案.【解答】解:由题意可得:杯子内的筷子长度为: = 15,则筷子露在杯子外面的筷子长度为:20﹣ 15=5( cm ).故答案为: 5.23.以下图,在 Rt △中,∠ = 90°, 是斜边 上的中线, 、 F 分别为、ABC ACBCM AB E MB BC的中点,若 EF =1,则 AB = 4 .【剖析】依据三角形中位线定理求出CM ,依据直角三角形的性质求出AB .【解答】解:∵ E 、 F 分别为 MB 、 BC 的中点,∴ CM =2EF = 2,∵∠ ACB = 90°, CM 是斜边 AB 上的中线,∴ AB =2CM = 4,故答案为: 4.24.如图,在 Rt △ ABC 中,∠ ACB =90°,∠ B =60°, DE 为△ ABC 的中位线,延伸BC 至 F ,使 CF = BC ,连结 FE 并延伸交 AB 于点 M .若 BC = a ,则△ FMB 的周长为.【剖析】在 Rt △中,求出 = 2 , = ,在 Rt △顶用 a 表示出 FE 长,并证ABC AB a ACaFEC明∠ FEC = 30°,从而 EM 转变到 MA 上,依据△ FMB 周长= BF +FE +EM +BM = BF +FE +AM +MB =BF +FE +AB 可求周长.【解答】解:在 Rt △ ABC 中,∠ B = 60°,∴∠ A = 30°,∴ AB =2a , AC = a .∵ DE 是中位线, ∴ CE =a .在 Rt △FEC 中,利用勾股定理求出FE = a ,∴∠ FEC=30°.∴∠ A=∠ AEM=30°,∴EM=AM.△ FMB周长= BF+FE+EM+BM= BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9 小题)25.如图,等腰直角三角板如图搁置.直角极点C在直线 m上,分别过点A、B 作 AE⊥直线m于点 E, BD⊥直线 m于点 D.①求证: EC= BD;②若设△ AEC三边分别为a、 b、 c,利用此图证明勾股定理.【剖析】①经过AAS证得△ CAE≌△ BCD,依据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ ACE+∠ BCD=90°.∵∠ ACE+∠ CAE=90°,∴∠ CAE=∠ BCD.在△ AEC与△ BCD中,∴△ CAE≌△ BCD( AAS).∴EC=BD;②解:由①知: BD= CE=a CD= AE= b∴S 梯形AEDB=( a+b)(a+b)=a2+ab+ b2.又∵ S 梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ ab+ c2=ab+ c2.∴a2+ab+ b2= ab+ c2.整理,得 a2+b2=c2.26.如图,正方形ABCD,点 E, F 分别在 AD, CD上,且 DE= CF, AF与 BE订交于点 G.(1)求证:BE=AF;(2)若AB= 4,DE= 1,求AG的长.【剖析】( 1)由正方形的性质得出∠BAE=∠ ADF=90°, AB= AD= CD,得出 AE= DF,由SAS证明△ BAE≌△ ADF,即可得出结论;( 2 )由全等三角形的性质得出∠EBA=∠ FAD,得出∠ GAE+∠ AEG=90°,所以∠ AGE=90°,由勾股定理得出BE==5,在Rt△ ABE中,由三角形面积即可得出结果.【解答】( 1)证明:∵四边形ABCD是正方形,∴∠ BAE=∠ ADF=90°, AB= AD=CD,∵DE=CF,∴ AE=DF,在△ BAE和△ ADF中,,∴△ BAE≌△ ADF( SAS),∴BE=AF;( 2)解:由( 1)得:△BAE≌△ADF,∴∠ EBA=∠ FAD,∴∠ GAE+∠ AEG=90°,∴∠ AGE=90°,∵AB=4, DE=1,∴ AE=3,∴ BE===5,在 Rt △ABE中,AB×AE=BE×AG,∴ AG==.27.在6×6 的方格纸中,点A, B, C都在格点上,按要求绘图:( 1)在图( 2)在图1 中找一个格点D,使以点 A, B,C, D为极点的四边形是平行四边形.2 中仅用无刻度的直尺,把线段AB三均分(保存绘图印迹,不写画法).【剖析】(1)由勾股定理得:CD= AB= CD'==;画出图形即可;,BD= AC=BD'' =,AD'= BC= AD''(2)依据平行线分线段成比率定理画出图形即可.【解答】解:( 1)由勾股定理得:CD= AB= CD'=,BD=AC=BD''=,AD'= BC= AD''=;画出图形如图 1 所示;( 2)如图 2 所示.28.某发掘机的底座高 AB = 0.8 米,动臂 BC = 米, CD =米, BC 与 CD 的固定夹角∠= 140°.初始地点如图 1,斗杆极点D 与铲斗极点E 所在直线垂直地面于点 ,BCDDEAM E测得∠ = 70°(表示图 2).工作时如图 3,动臂会绕点 B 转动,当点, , 在CDEBCA B C同向来线时,斗杆极点D 升至最高点(表示图4).( 1)求发掘机在初始地点时动臂BC与AB 的夹角∠ABC 的度数.( 2)问斗杆极点D 的最高点比初始地点高了多少米?(精准到0.1 米)(参照数据:sin50°≈ 0.77 , cos50 °≈ 0.64 ,sin70°≈ 0.94 ,cos70 °≈ 0.34 ,≈1.73 )【剖析】( 1)过点 C 作 CG ⊥ AM 于点 G ,证明 AB ∥ CG ∥ DE ,再依据平行线的性质求得结果;( 2)过点 C 作 CP ⊥ DE 于点 P ,过点 B 作 BQ ⊥ DE 于点 Q ,交 CG 于点 N ,如图 2,经过解直角三角形求得 DE ,过点 D 作 DH ⊥ AM 于点 H ,过点 C 作 CK ⊥ DH 于点 K ,如图 3,经过解直角三角形求得求得DH ,最后即可求得结果.【解答】解:( 1)过点 C 作 CG ⊥ AM 于点 G ,如图 1,∵AB⊥AM, DE⊥AM,∴ AB∥CG∥ DE,∴∠ DCG=180°﹣∠ CDE=110°,∴ BCG=∠ BCD﹣∠ GCD=30°,∴∠ ABC=180°﹣∠ BCG=150°;( 2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图 2,在 Rt △CPD中,DP=CD×cos70 °≈ 0.51 (米),在Rt △BCN中,CN=BC×cos30 °≈1.04 (米),所以, DE= DP+PQ+QE= DP+CN+AB=(米),如图 3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在 Rt △CKD中,DK=CD×sin50 °≈ 1.16(米),所以, DH= DK+KH=(米),所以, DH﹣ DE=(米),所以,斗杆极点 D的最高点比初始地点高了米.29.在以下图的网格中,每个小正方形的边长为1,每个小正方形的极点叫格点,△ABC 的三个极点均在格点上,以点 A 为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的暗影部分的面积.【剖析】( 1)依据勾股定理即可求得;( 2)依据勾股定理求得2 2 2AD,由(1)得, AB +AC=BC,则∠BAC= 90°,依据S阴=S△ABC﹣ S 扇形AEF即可求得.【解答】解:( 1)== 2 ,ABAC==2 ,BC==4 ;( 2)由( 1)得,2+ 2 =2,AB AC BC∴∠ BAC=90°,连结 AD, AD==2 ,∴ S 阴= S△ABC﹣ S 扇形AEF=AB?AC﹣2π ?AD= 20﹣ 5π.30.已知:△ABC是等腰直角三角形,∠ BAC=90°,将△ ABC绕点C顺时针方向旋转获得△A′ B′C,记旋转角为α,当90°<α<180°时,作A′ D⊥AC,垂足为D,A′ D与B′C交于点 E.(1)如图 1,当∠CA′D= 15°时,作∠A′EC的均分线EF交BC于点F.①写出旋转角α 的度数;②求证: EA′+EC= EF;( 2)如图 2,在( 1)的条件下,设P 是直线 A′D 上的一个动点,连结PA, PF,若 AB =,求线段 PA+PF的最小值.(结果保存根号)【剖析】( 1)①解直角三角形求出∠A′ CD即可解决问题.②连结 A′ F,设 EF交 CA′于点 O.在 EF时截取 EM=EC,连结 CM.第一证明△ CFA′是等边三角形,再证明△FCM≌△ A′CE( SAS),即可解决问题.( 2)如图 2 中,连结A′F,PB′,AB′,作B′M⊥AC交AC的延伸线于M.证明△A′EF≌△ A′ EB′,推出 EF=EB′,推出 B′,F 对于 A′ E 对称,推出 PF= PB′,推出 PA+PF=PA+PB′≥ AB′,求出 AB′即可解决问题.【解答】( 1)①解:旋转角为 105°.原因:如图 1 中,∵A′ D⊥ AC,∴∠ A′ DC=90°,∵∠CA′ D=15°,∴∠ A′CD=75°,∴∠ ACA′=105°,∴旋转角为 105°.②证明:连结A′ F,设 EF交 CA′于点 O.在 EF时截取 EM= EC,连结 CM.∵∠ CED=∠ A′CE+∠ CA′E=45°+15°=60°,∴∠ CEA′=120°,∵FE均分∠ CEA′,∴∠ CEF=∠ FEA′=60°,∵∠ FCO=180°﹣45°﹣75°=60°,∴∠ FCO=∠ A′EO,∵∠ FOC=∠ A′ OE,∴△ FOC∽△ A′OE,∴=,∴=,∵∠ COE=∠ FOA′,∴△ COE∽△ FOA′,∴∠ FA′ O=∠ OEC=60°,∴△ A′ OF是等边三角形,∴CF=CA′= A′ F,∵EM=EC,∠ CEM=60°,∴△ CEM是等边三角形,∠ECM=60°, CM= CE,∵∠ FCA′=∠ MCE=60°,∴∠ FCM=∠ A′CE,∴△ FCM≌△ A′CE( SAS),∴ FM=A′ E,∴ CE+A′ E= EM+FM= EF.( 2)解:如图 2 中,连结A′ F, PB′, AB′,作 B′M⊥ AC交 AC的延伸线于M.由②可知,∠ EA′ F=′ EA′ B′=75°, A′E= A′ E, A′ F=A′ B′,∴△ A′ EF≌△ A′ EB′,∴EF=EB′,∴B′, F 对于 A′ E 对称,∴PF=PB′,∴PA+PF= PA+PB′≥ AB′,在 Rt △CB′M中,CB′=BC=AB=2,∠ MCB′=30°,∴ B′ M= CB′=1, CM=,∴AB′===.∴ PA+PF的最小值为.31.如图 1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α 获得△ CBE,点A,D的对应点分别为点B,E,且 A,D,E 三点在同向来线上.( 1)填空:∠CDE=(用含α 的代数式表示);( 2)如图 2,若α= 60°,请补全图形,再过点C作 CF⊥ AE于点 F,而后研究线段CF,AE, BE之间的数目关系,并证明你的结论;(3)若α= 90°,AC= 5 ,且点G知足∠AGB= 90°,BG= 6,直接写出点C到AG的距离.【剖析】( 1)由旋转的性质可得CD= CE,∠ DCE=α,即可求解;( 2)由旋转的性质可得AD= BE,CD= CE,∠ DCE=60°,可证△ CDE是等边三角形,由等边三角形的性质可得DF= EF=,即可求解;( 3)分点G在AB的上方和AB的下方两种状况议论,利用勾股定理可求解.【解答】解:( 1)∵将△绕点按逆时针方向旋转角α 获得△CADCCBE ∴△ ACD≌△ BCE,∠ DCE=α∴CD=CE∴∠ CDE=故答案为:(2)AE=BE+CF原因以下:如图,∵将△ CAD绕点 C按逆时针方向旋转角60°获得△CBE∴△ ACD≌△ BCE∴AD=BE, CD=CE,∠ DCE=60°∴△ CDE是等边三角形,且 CF⊥ DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF( 3)如图,当点G在 AB上方时,过点C作 CE⊥ AG于点 E,∵∠ ACB=90°, AC= BC=5,∴∠ CAB=∠ ABC=45°, AB=10∵∠ ACB=90°=∠ AGB∴点 C,点 G,点 B,点 A四点共圆∴∠ AGC=∠ ABC=45°,且 CE⊥ AG∴∠ AGC=∠ ECG=45°∴CE=GE∵AB=10, GB=6,∠ AGB=90°∴AG==8∵AC2= AE2+CE2,。
2019年河北省中考数学试卷以及解析版

2019年河北省中考数学试卷以及逐题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)下列图形为正多边形的是( )A .B .C .D .2.(3分)规定:(2)→表示向右移动2记作2+,则(3)←表示向左移动3记作( ) A .3+B .3-C .13-D .13+3.(3分)如图,从点C 观测点D 的仰角是( )A .DAB ∠B .DCE ∠C .DCA ∠D .ADC ∠4.(3分)语句“x 的18与x 的和不超过5”可以表示为( )A .58xx +… B .58xx +… C .855x +… D .58xx += 5.(3分)如图,菱形ABCD 中,150D ∠=︒,则1(∠= )A .30︒B .25︒C .20︒D .15︒6.(3分)小明总结了以下结论: ①()a b c ab ac +=+; ②()a b c ab ac -=-;③()(0)b c a b a c a a -÷=÷-÷≠; ④()(0)a b c a b a c a ÷+=÷+÷≠ 其中一定成立的个数是( ) A .1B .2C .3D .47.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是( ) A .◎代表FEC ∠B .@代表同位角C .▲代表EFC ∠D .※代表AB8.(3分)一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510-⨯B .5510-⨯C .4210-⨯D .5210-⨯9.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( )A .10B .6C .3D .210.(3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .11.(2分)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的种类 ②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比 ④整理借阅图书记录并绘制频数分布表 正确统计步骤的顺序是( ) A .②→③→①→④ B .③→④→①→② C .①→②一④→③D .②→④→③→①12.(2分)如图,函数1(0),1(0)x xy x x⎧>⎪⎪=⎨⎪-<⎪⎩的图象所在坐标系的原点是( )A .点MB .点NC .点PD .点Q13.(2分)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④14.(2分)图2是图1中长方体的三视图,若用S 表示面积,22S x x =+主,2S x x =+左,则(S =俯 )A .232x x ++B .22x +C .221x x ++D .223x x +15.(2分)小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是()A .不存在实数根B .有两个不相等的实数根C .有一个根是1x =-D .有两个相等的实数根16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =. 乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取14n =.丙:如图4,思路是当x 倍时就可移转过去;结果取13n =. 下列正确的是( )A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若2107777p --⨯⨯=,则p 的值为 .18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即437+=则(1)用含x 的式子表示m = ; (2)当2y =-时,n 的值为 .19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:)km .笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,-,⨯,÷中的某一个(可重复使用),然后计算结果.(1)计算:1269+--;(2)若126÷⨯□96=-,请推算□内的符号;(3)在“1□2□69-”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 21.(9分)已知:整式222(1)(2)A n n =-+,整式0B >. 尝试 化简整式A . 发现2A B =,求整式B .联想 由上可知,2222(1)(2)B n n =-+,当1n >时,21n -,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值:22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)12=. (1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.23.(9分)如图,ABC ∆和ADE ∆中,6AB AD ==,BC DE =,30B D ∠=∠=︒,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为APC ∆的内心. (1)求证:BAD CAE ∠=∠;(2)设AP x =,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB AC ⊥时,AIC ∠的取值范围为m AIC n ︒<∠<︒,分别直接写出m ,n 的值.24.(10分)长为300m 的春游队伍,以(/)v m s 的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2(/)v m s ,当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为()t s ,排头与O 的距离为()S m 头.(1)当2v =时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为()S m 甲,求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为()T s ,求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,ABCD 中,3AB =,15BC =,4tan 3DAB ∠=.点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求CAP ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小;(3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.26.(12分)如图,若b 是正数,直线:l y b =与y 轴交于点A ;直线:a y x b =-与y 轴交于点B ;抛物线2:L y x bx =-+的顶点为C ,且L 与x 轴右交点为D . (1)若8AB =,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设00x ≠,点0(x ,1)y ,0(x ,2)y ,0(x ,3)y 分别在l ,a 和L 上,且3y 是1y ,2y 的平均数,求点0(x ,0)与点D 间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出2019b=时“美点”的个数.b=和2019.52019年河北省中考数学试卷答案与解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等, 故选:D .【点评】此题主要考查了正多边形,关键是掌握正多边形的定义. 2.(3分)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(2)→表示向右移动2记作2+,则(3)←表示向左移动3记作3-. 【解答】解:“正”和“负”相对,所以,如果(2)→表示向右移动2记作2+,则(3)←表示向左移动3记作3-. 故选:B .【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 3.(3分)【分析】根据仰角的定义进行解答便可.【解答】解:从点C 观测点D 的视线是CD ,水平线是CE ,∴从点C 观测点D 的仰角是DCE ∠,故选:B .【点评】本题主要考查了仰角的识别,熟记仰角的定义是解题的关键.仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角. 4.(3分)【分析】x 的18即18x ,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x 的18与x 的和不超过5”用不等式表示为158x x +….故选:A .【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 5.(3分)【分析】由菱形的性质得出//AB CD ,21BAD ∠=∠,求出30BAD ∠=︒,即可得出115∠=︒. 【解答】解:四边形ABCD 是菱形,150D ∠=︒, //AB CD ∴,21BAD ∠=∠, 180BAD D ∴∠+∠=︒, 18015030BAD ∴∠=︒-︒=︒, 115∴∠=︒;故选:D .【点评】此题考查了菱形的性质,以及平行线的性质,熟练掌握菱形的性质是解本题的关键. 6.(3分)【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案. 【解答】解:①()a b c ab ac +=+,正确; ②()a b c ab ac -=-,正确;③()(0)b c a b a c a a -÷=÷-÷≠,正确;④()(0)a b c a b a c a ÷+=÷+÷≠,错误,无法分解计算. 故选:C .【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键. 7.(3分)【分析】根据图形可知※代表CD ,即可判断D ;根据三角形外角的性质可得◎代表EFC ∠,即可判断A ;利用等量代换得出▲代表EFC ∠,即可判断C ;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE 交CD 于点F ,则BEC EFC C ∠=∠+∠(三角形的外角等于与它不相邻两个内角之和). 又BEC B C ∠=∠+∠,得B EFC ∠=∠. 故//AB CD (内错角相等,两直线平行). 故选:C .【点评】本题考查了平行线的判定,三角形外角的性质,比较简单. 8.(3分)【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:510.0000221050000-==⨯. 故选:D .【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <…,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(3分)【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.(3分)【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C .【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形的外心.11.(2分)【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D .【点评】本题考查扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.12.(2分)【分析】由函数解析式可知函数关于y 轴对称,即可求解;【解答】解:由已知可知函数1(0),1(0)x x y x x⎧>⎪⎪=⎨⎪-<⎪⎩关于y 轴对称, 所以点M 是原点;故选:A .【点评】本题考查反比例函数的图象及性质;熟练掌握函数的解析式与函数图象的关系是解题的关键.13.(2分)【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【解答】解2222(2)1(2)111441(2)111x x x x x x x x x x ++-=-=-=+++++++ 又x 为正整数, ∴112x <… 故表示22(2)1441x x x x +-+++的值的点落在② 故选:B .【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.14.(2分)【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:()222S x x x x =+=+主,()21S x x x x =+=+左,∴俯视图的长为2x +,宽为1x +,则俯视图的面积()()22132S x x x x =++=++俯,故选:A .【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.15.(2分)【分析】直接把已知数据代入进而得出c 的值,再解方程求出答案.【解答】解:小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,4b =,解出其中一个根是1x =-,2(1)40c ∴--+=,解得:3c =,故原方程中5c =,则241641340b ac -=-⨯⨯=>,则原方程的根的情况是有两个不相等的实数根.故选:B .【点评】此题主要考查了根的判别式,正确得出c 的值是解题关键.16.(2分)【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为14n =;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B .【点评】本题考查了矩形的性质与旋转的性质,熟练运用矩形的性质是解题的关键.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)若2107777p --⨯⨯=,则p 的值为 3- .【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:2107777p --⨯⨯=,210p ∴--+=,解得:3p =-.故答案为:3-.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.18.(4分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数. 示例:即437+=则(1)用含x 的式子表示m = 3x ;(2)当2y =-时,n 的值为 .【分析】(1)根据约定的方法即可求出m ;(2)根据约定的方法即可求出n .【解答】解:(1)根据约定的方法可得:23m x x x =+=;故答案为:3x ;(2)根据约定的方法即可求出n223x x x m n y +++=+=.当2y =-时,532x +=-.解得1x =-.23231n x ∴=+=-+=.故答案为:1.【点评】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.19.(4分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:)km .笔直铁路经过A ,B 两地.(1)A ,B 间的距离为 20 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB 的长度;(2)根据A 、B 、C 三点的坐标可求出CE 与AE 的长度,设CD x =,根据勾股定理即可求出x 的值.【解答】解:(1)由A 、B 两点的纵坐标相同可知://AB x 轴,12(8)20AB ∴=--;(2)过点C 作l AB ⊥于点E ,连接AC ,作AC 的垂直平分线交直线l 于点D ,由(1)可知:1(17)18CE =--=,12AE =,设CD x =,AD CD x ∴==,由勾股定理可知:222(18)12x x =-+,∴解得:13x =,13CD ∴=,故答案为:(1)20;(2)13;【点评】本题考查勾股定理,解题的关键是根据A 、B 、C 三点的坐标求出相关线段的长度,本题属于中等题型.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,-,⨯,÷中的某一个(可重复使用),然后计算结果.(1)计算:1269+--;(2)若126÷⨯□96=-,请推算□内的符号;(3)在“1□2□69-”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1269+--369=--39=--12=-;(2)126÷⨯□96=-,1162∴⨯⨯□96=-, 3∴□96=-,∴□内的符号是“-”;(3)这个最小数是20-, 理由:在“1□2□69-”的□内填入符号后,使计算所得数最小,1∴□2□6的结果是负数即可,1∴□2□6的最小值是12611-⨯=-,1∴□2□69-的最小值是11920--=-,∴这个最小数是20-.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.21.(9分)已知:整式222(1)(2)A n n =-+,整式0B >.尝试 化简整式A .发现2A B =,求整式B .联想 由上可知,2222(1)(2)B n n =-+,当1n >时,21n -,2n ,B 为直角三角形的三边长,如图.填写下表中B 的值:【分析】先根据整式的混合运算法则求出A ,进而求出B ,再把n 的值代入即可解答.【解答】解:2224224222(1)(2)21421(1)A n n n n n n n n =-+=-++=++=+,2A B =,0B >,21B n ∴=+,当28n =时,4n =,2214115n ∴+=+=;当2135n -=时,2137n +=.故答案为:15;37 【点评】本题考查了勾股数的定义,及勾股定理的逆定理:已知ABC ∆的三边满足222a b c +=,则ABC ∆是直角三角形.22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P (一次拿到8元球)12=. (1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由; ②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)P (一次拿到8元球)12=, 8∴元球的个数为1422⨯=(个),按照从小到大的顺序排列为7,8,8,9, ∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下: 原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为8882+=(元), 所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个, ∴乙组两次都拿到8元球的概率为49.【点评】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.23.(9分)如图,ABC ∆和ADE ∆中,6AB AD ==,BC DE =,30B D ∠=∠=︒,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为APC ∆的内心.(1)求证:BAD CAE ∠=∠;(2)设AP x =,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB AC ⊥时,AIC ∠的取值范围为m AIC n ︒<∠<︒,分别直接写出m ,n 的值.【分析】(1)由条件易证ABC ADE ∆≅∆,得BAC DAE ∠=∠,BAD CAE ∴∠=∠.(2)6PD AD AP x =-=-,点P 在线段BC 上且不与B 、C 重合,AP ∴的最小值即AP BC ⊥时AP 的长度,此时PD 可得最大值.(3)I 为APC ∆的内心,即I 为APC ∆角平分线的交点,应用“三角形内角和等于180︒ “及角平分线定义即可表示出AIC ∠,从而得到m ,n 的值.【解答】解:(1)在ABC ∆和ADE ∆中,(如图1)AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩()ABC ADE SAS ∴∆≅∆BAC DAE ∴∠=∠即BAD DAC DAC CAE ∠+∠=∠+∠BAD CAE ∴∠=∠.(2)6AD =,AP x =,6PD x ∴=-当AD BC ⊥时,132AP AB ==最小,即633PD =-=为PD 的最大值. (3)如图2,设BAP α∠=,则30APC α∠=+︒,AB AC ⊥90BAC ∴∠=︒,60PCA ∠=︒,90PAC α∠=︒-, I 为APC ∆的内心AI ∴、CI 分别平分PAC ∠,PCA ∠,12IAC PAC ∴∠=∠,12ICA PCA ∠=∠ 180()AIC IAC ICA ∴∠=︒-∠+∠1180()2PAC PCA =︒-∠+∠1180(9060)2α=︒-︒-+︒ 11052α=+︒ 090α<<︒,11051051502α∴︒<+︒<︒,即105150AIC ︒<∠<︒, 105m ∴=,150n =.【点评】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30︒的角所对的直角边等于斜边的一半,全等三角形的判定和性质,三角形内心概念及角平分线定义等,解题关键是将PD 最大值转化为PA 的最小值.24.(10分)长为300m 的春游队伍,以(/)v m s 的速度向东行进,如图1和图2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2(/)v m s ,当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为()t s ,排头与O 的距离为()S m 头.(1)当2v =时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为()S m 甲,求S 甲与t 的函数关系式(不写t 的取值范围)(2)设甲这次往返队伍的总时间为()T s ,求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.【分析】(1)①排头与O 的距离为()S m 头.等于排头行走的路程+队伍的长300,而排头行进的时间也是()t s ,速度是2/m s ,可以求出S 头与t 的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S 即可;在甲从排头返回到排尾过程中,设甲与位置O 的距离为()S m 甲是在S 的基础上减少甲返回的路程,而甲返回的时间(总时间t 减去甲从排尾赶到排头的时间),于是可以求S 甲与t 的函数关系式; (2)甲这次往返队伍的总时间为()T s ,是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度⨯返回时间.【解答】解:(1)①排尾从位置O 开始行进的时间为()t s ,则排头也离开原排头()t s ,2300S t ∴=+头②甲从排尾赶到排头的时间为300(2)3003002150v v v ÷-=÷=÷=s ,此时2300600S t =+=头m 甲返回时间为:(150)t s -()2150300415041200S S S t t ∴=-=⨯+--=-+甲甲回头;因此,S 头与t 的函数关系式为2300S t =+头,当甲赶到排头位置时,求S 的值为600m ,在甲从排头返回到排尾过程中,S 甲与t 的函数关系式为41200S t =-+甲.(2)30030040022T t t v v v v v=+=+=-+返回追及, 在甲这次往返队伍的过程中队伍行进的路程为:400(150)(150)400150v T v v v⨯-=⨯--=-;因此T 与v 的函数关系式为:400T v=,此时队伍在此过程中行进的路程为(400150)v m -.【点评】考查行程问题中相遇、追及问题的数量关系的理解和应用,同时函数思想方法的应用,切实理解变量之间的变化关系,由于时间有重合的部分,容易出现错误. 25.(10分)如图1和2,ABCD 中,3AB =,15BC =,4tan 3DAB ∠=.点P 为AB 延长线上一点,过点A 作O 切CP 于点P ,设BP x =.(1)如图1,x 为何值时,圆心O 落在AP 上?若此时O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当4x =时,如图2,O 与AC 交于点Q ,求CAP ∠的度数,并通过计算比较弦AP 与劣弧PQ 长度的大小;(3)当O 与线段AD 只有一个公共点时,直接写出x 的取值范围.【分析】(1)由三角函数定义知:Rt PBC ∆中,4tan tan 3CP PBC DAB BP =∠=∠=,设4C P k =,3BP k =,由勾股定理可求得BP ,根据“直径所对的圆周角是直角”可得PE AD ⊥,由此可得PE BC ⊥;(2)作CG AB ⊥,运用勾股定理和三角函数可求CG 和AG ,再应用三角函数求CAP ∠,应用弧长公式求劣弧PQ 长度,再比较它与AP 长度的大小;(3)当O 与线段AD 只有一个公共点时,O 与AD 相切于点A ,或O 与线段DA 的延长线相交于另一点,此时,BP 只有最小值,即18x ….【解答】解:(1)如图1,AP 经过圆心O ,CP 与O 相切于P , 90APC ∴∠=︒,ABCD , //AD BC ∴, PBC DAB ∴∠=∠∴4tan tan 3CP PBC DAB BP =∠=∠=,设4CP k =,3BP k =,由222CP BP BC +=, 得222(4)(3)15k k +=,解得13k =-(舍去),23k =,339x BP ∴==⨯=,故当9x =时,圆心O 落在AP 上;AP 是O 的直径,90AEP ∴∠=︒,PE AD ∴⊥,ABCD , //BC AD ∴ PE BC ∴⊥(2)如图2,过点C 作CG AP ⊥于G ,ABCD , //BC AD ∴, CBG DAB ∴∠=∠∴4tan tan 3CG CBG DAB BG =∠=∠=, 设4CG m =,3BG m =,由勾股定理得:222(4)(3)15m m +=,解得3m =,4312CG ∴=⨯=,339BG =⨯=,945PG BG BP =-=-=,347AP AB BP =+=+=, 3912AG AB BG ∴=+=+=12tan 112CG CAP AG ∴∠===, 45CAP ∴∠=︒;连接OP ,OQ ,过点O 作OH AP ⊥于H ,则224590P O Q C A P ∠=∠=⨯︒=︒,1722PH AP ==,在Rt CPG ∆中,13CP =, CP 是O 的切线,90OPC OHP ∴∠=∠=︒,90OPH CPG ∠+∠=︒,90PCG CPG ∠+∠=︒ OPH PCG ∴∠=∠ OPH PCG ∴∆∆∽∴PH CGOP CP=,即PH CP CG OP ⨯=⨯,713122OP ⨯=, 9124OP ∴=∴劣弧PQ 长度9190912418048ππ⨯==, 912748ππ<< ∴弦AP 的长度>劣弧PQ 长度.(3)如图3,O 与线段AD 只有一个公共点,即圆心O 位于直线AB 下方,且90OAD ∠︒…, 当90OAD ∠=︒,CPM DAB ∠=∠时,此时BP 取得最小值,过点C 作CM AB ⊥于M , DAB CBP ∠=∠, CPM CBP ∴∠=∠CB CP ∴=, CM AB ⊥22918BP BM ∴==⨯=,18x ∴…【点评】本题是一道几何综合题,考查了圆的切线性质,相似三角形性质,三角函数解直角三角形,勾股定理,弧长计算等;综合性较强,学生解题时要灵活运用所学数学知识解决问题.26.(12分)如图,若b 是正数,直线:l y b =与y 轴交于点A ;直线:a y x b =-与y 轴交于点B ;抛物线2:L y x bx =-+的顶点为C ,且L 与x 轴右交点为D . (1)若8AB =,求b 的值,并求此时L 的对称轴与a 的交点坐标; (2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设00x ≠,点0(x ,1)y ,0(x ,2)y ,0(x ,3)y 分别在l ,a 和L 上,且3y 是1y ,2y 的平均数,求点0(x ,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出2019b =和2019.5b =时“美点”的个数.【分析】(1)当0x =吋,y x b b =-=-,所以B (0,)b -,而8AB =,而(0,)A b ,则()8b b --=,4b =.所以2:4L y x x =-+,对称轴2x =,当2x =吋,42y x =-=-,于是L 的对称轴与a 的交点为(2,2- );(2)22()24b b y x =--+,顶点2(,)24b b C 因为点C 在l 下方,则C 与l 的距离221(2)1144b b b -=--+…,所以点C 与1距离的最大值为1;(3)由題意得1232y y y +=,即1232y y y +=,得20002()b x b x b x +-=-+解得00x =或012x b =-.但0#0x ,取012x b =-,对于L ,当0y =吋,20x bx =-+,即0()x x b =--,解得10x =,2x b =,右交点(,0)D b .因此点0(x ,0)与点D 间的距离11()22b b --=(4)①当2019b =时,抛物线解析式2:2019L y x x =-+直线解析式:2019a y x =-,美点”总计4040个点,②当2019.5b =时,抛物线解析式2:2019.5L y x x =-+,直线解析式:2019.5a y x =-,“美点”共有1010个.【解答】解:(1)当0x =吋,y x b b =-=-,B ∴ (0,)b -,8AB =,而(0,)A b ,()8b b ∴--=, 4b ∴=.2:4L y x x ∴=-+,L ∴的对称轴2x =,当2x =吋,42y x =-=-,L ∴的对称轴与a 的交点为(2,2- ); (2)22()24b b y x =--+,L ∴的顶点2(,)24b b C点C 在l 下方,C ∴与l 的距离221(2)1144b b b -=--+…,∴点C 与1距离的最大值为1;(3)由題意得1232y y y +=,即1232y y y +=, 得20002()b x b x bx +-=-+ 解得00x =或012x b =-.但0#0x ,取012x b =-,对于L ,当0y =吋,20x bx =-+,即0()x x b =--, 解得10x =,2x b =, 0b >,∴右交点(,0)D b .∴点0(x ,0)与点D 间的距离11()22b b --=(4)①当2019b =时,抛物线解析式2:2019L y x x =-+直线解析式:2019a y x =-联立上述两个解析式可得:11x =-,22019x =,∴可知每一个整数x 的值 都对应的一个整数y 值,且1-和2019之间(包括1-和2019)-共有2021个整数;另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点 ∴总计4042个点,这两段图象交点有2个点重复重复,∴美点”的个数:404224040-=(个);②当2019.5b =时,抛物线解析式2:2019.5L y x x =-+,直线解析式:2019.5a y x =-,联立上述两个解析式可得:11x =-,22019.5x =,∴当x 取整数时,在一次函数2019.5y x =-上,y 取不到整数值,因此在该图象上“美点”为0,在二次函数2019.5y x x =+图象上,当x 为偶数时,函数值y 可取整数,可知1-到2019.5之 间有1009个偶数,并且在1-和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故2019b =时“美点”的个数为4040个,2019.5b =时“美点”的个数为1010个. 【点评】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.。
2019年全国各地中考数学压轴题汇编:几何综合(江苏专版)(解析卷)

2019年全国各地中考数学压轴题汇编(江苏专版)几何综合参考答案与试题解析1.(2019•南京)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.(1)证明:∵DE=DG,EF=DE,∴DG=EF,∵DG∥EF,∴四边形DEFG是平行四边形,∵DG=DE,∴四边形DEFG是菱形.(2)如图1中,当四边形DEFG是正方形时,设正方形的边长为x.在Rt△ABC中,∵∠C=90°,AC=3,BC=4,∴AB==5,则CD=x,AD=x,∵AD+CD=AC,∴+x=3,∴x=,∴CD=x=,观察图象可知:0≤CD<时,菱形的个数为0.如图2中,当四边形DAEG是菱形时,设菱形的边长为m.∵DG∥AB,∴=,∴=,解得m=,∴CD=3﹣=,如图3中,当四边形DEBG是菱形时,设菱形的边长为n.∵DG∥AB,∴=,∴=,∴n=,∴CG=4﹣=,∴CD==,观察图象可知:当0≤CD<或<CD<3时,菱形的个数为0,当CD=或<CD≤时,菱形的个数为1,当<CD≤时,菱形的个数为2.2.(2019•无锡)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F 即为所求②如图3所示,AH即为所求.3.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=1+3+5+7+…+2n﹣1.;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=6;当n=5,m=3时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=n+2(m﹣1)(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.解:(1)有三个Rt△其面积分别为ab,ab和c2.直角梯形的面积为(a+b)(a+b).由图形可知:(a+b)(a+b)=ab+ab+c2整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.故结论为:直角长分别为a、b斜边为c的直角三角形中a2+b2=c2.(2)n行n列的棋子排成一个正方形棋子个数为n2,每层棋子分别为1,3,5,7,…,2n﹣1.由图形可知:n2=1+3+5+7+…+2n﹣1.故答案为1+3+5+7+…+2n﹣1.(3)①如图4,当n=4,m=2时,y=6,如图5,当n=5,m=3时,y=9.②方法1.对于一般的情形,在n边形内画m个点,第一个点将多边形分成了n个三角形,以后三角形内部每增加一个点,分割部分增加2部分,故可得y=n+2(m﹣1).方法2.以△ABC的二个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成3+2(m﹣1)个互不重叠的小三角形.以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成4+2(m﹣1)个互不重叠的小三角形.故以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成n+2(m﹣1)个互不重叠的小三角形.故可得y=n+2(m﹣1).故答案为:①6,3;②n+2(m﹣1).4.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是上的一点.①求∠AQB的度数;②若OA=18,求的长.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:①∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°;②∵∠AQB=65°,∴∠AOB=130°,∴的长=的长==23π.5.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.②如图2﹣1中,当∠PCB’=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB’=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB’中则有:,解得t=6.如图2﹣3中,当∠CPB’=90°时,易证四边形ABP’为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB’M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB’=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B’AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB’=90°﹣x,∴∠DAB’=∠P AB’﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB’=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.6.(2019•苏州)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.解:(1)∵点D是中点,OD是圆的半径,∴OD⊥BC,∵AB是圆的直径,∴∠ACB=90°,∴AC∥OD;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DCA,∴CD2=DE•DA;(3)∵tan∠CAD=,设:DE=a,则CD=2a,AD=4a,AE=3a,∴=3,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.7.(2019•常州)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:1;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:1+;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.解:(1)①半径为1的圆的宽距离为1,故答案为1.②如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt△ODC中,OC===∴OP+OC≥PC,∴PC≤1+,∴这个“窗户形“的宽距为1+.故答案为1+.(2)①如图2﹣1中,点C所在的区域是图中⊙O,面积为=π.②如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊥x轴于T.∵AC≤AM+CM,又∵5≤d≤8,∴当d=5时.AM=4,∴AT==2,此时M(2﹣1,2),当d=8时.AM=7,∴AT==3,此时M(3﹣1,2),∴满足条件的点M的横坐标的范围为2﹣1≤x≤3﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣3+1≤x﹣2+1.8.(2019•连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E 在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.9.(2019•苏州)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由。
专题06 数据的分析-2019年中考数学年年考的28个重点微专题(解析版)

专题06 数据的分析一、基础知识1.平均数有算术平均数和加权平均数平均数的求法:x=1n(x1+x2+…+x n);加权平均数计算公式为:x=1n(x1f1+x2f2+…+x k f k),其中f1,f2,…,f k代表各数据的权.2.中位数的求法数据从大到小或从小到大排好顺序以后,若为偶数个数,就是最中间的两个数加起来除以2,即两个数的平均数;若为奇数个数,就是中间个数.3.众数:指一组数据中出现次数最多的数.4.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差。
方差公式为:s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越小,数据越稳定.二、本专题典型题考法及解析【例题1】在一次数学模拟考试中,小明所在的学习小组7名同学的成绩分别为:129,136,145,136,148,136,150.则这次考试的平均数和众数分别为()A.145,136 B.140,136C.136,148 D.136,145【答案】B【解析】考点是众数和加权平均数..众数是一组数据中出现次数最多的数据,注意众数可以不止一个;再利用平均数的求法得出答案.在这一组数据中136是出现次数最多的,故众数是136;他们的成绩的平均数为:(129+136+145+136+148+136+150)÷7=140.【例题2】近十天每天平均气温(℃)统计如下:24,23,22,24,24,27,30,31,30,29.关于这10个数据下列说法不正确的是()A.众数是24 B.中位数是26C.平均数是26.4 D.极差是9【解析】考点包括极差;加权平均数;中位数;众数.菁优网版权分别计算该组数据的平均数,众数,中位数及极差后找到正确的答案即可.∵数据24出现了三次最多,∴众数为24,故A选项正确;∵数据按从小到大的顺序排列为:22,23,24,24,24,27,29,30,30,31,∴中位数为(24+27)÷2=25.5,故B选项错误;平均数=(22+23+24×3+27+29+30×2+31)÷10=26.4,故C选项正确;极差=31﹣22=9,故D选项正确.三、数据的分析问题训练题及其答案和解析1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12 B. 12,11C. 11,12 D. 12,12【答案】C【解析】考点有众数和中位数.菁优网版权所有先把原数据按由小到大排列,然后根据中位数和众数的定义求解.原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.2.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃C.中位数是24℃ D.平均数是26℃【解析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误。
专题28 圆的问题-2019年中考数学年年考的28个重点微专题(解析版)

专题28 圆的问题一、基础知识1.基本概念规律(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.3.与圆有关的公式设圆的周长为r ,则:(1)求圆的直径公式d=2r(2)求圆的周长公式 C=2πr(3)求圆的面积公式S=πr 24.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式5.圆柱侧面积体积公式(1)圆柱的侧面积公式S 侧=2πrh(2)圆柱的表面积公式:S 表=S 底×2+S 侧=2πr 2+2πr h 1802360r n r n l ππ=⋅=2360r n s π⋅=lr s 21=或6.圆锥侧面积体积公式(1)圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,圆锥侧面积计算公式:S圆锥侧=S扇形== πrl(2)圆锥全面积计算公式:S圆锥全=S圆锥侧+S圆锥底面= πr l +πr2=πr(l +r)二、解题要领1.判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
江西省2019届中考数学最后专题练之创新画图题附全解全析

江西省2019届中考数学最后专题练之创新画图题类型一以圆、半圆为辅助画图1.请仅用无刻度的直尺,用连线的方法在图①、图②中分别过圆外一点A画出直径BC 所在直线的垂线.第1题图第2题图2. 如图,A、B在圆上,图①中,点P在圆内,图②中,点P在圆外,请仅用无刻度的直尺按要求画图.求作△CDP,使△CDP与△ABP相似,且C、D在圆上,相似比不为1.3.在⊙O中,点A,B,C在⊙O上,请仅用无刻度的直尺画图.(1)在图①中,以点C或点B为顶点作一锐角,使该锐角与∠CAB互余;(2)在图②中,已知AD∥BC交⊙O于点D,过点A作直线将△ACB的面积平分.第3题图第4题图4.在图①、图②中,四边形ABCD为矩形,某圆经过A,B两点,请仅用无刻度的直尺画出符合要求的图形.(保留痕迹,不写画法)(1)在图①中画出该圆的圆心O;(2)在图②中画出线段CD的垂直平分线.5. 如图,已知AB是⊙O的直径,在四边形ABCD中,BC=CD=DA,且CD∥AB,请仅用无刻度的直尺按下列要求画图.(保留作图痕迹,不写作法)(1)作∠BCD的平分线;(2)在圆上任选两点M、N(不与A、B、C、D重合),使=.第5题图第6题图6. 如图,在△ABC中,AB=BC,O为AB的中点,以OA为半径画弧,与AC相交于D,连接BD;请仅用无刻度的直尺画图,保留必要的画图痕迹.(1)在图①中找到BC的中点M;(2)在图②中过点D,作直线l∥AB.7. 如图①,⊙O1是△A1B1C1的内切圆;如图②,⊙O2是△A2B2C2的外接圆.请仅用无刻度的直尺按下列要求画图,保留必要的画图痕迹.(1)在图①中,画出△A1B1C1的三条角平分线;(2)在图②中,画出以A2B2为一边的矩形A2B2D2E2,其中点D2、E2均在⊙O2上.第7题图第8题图8. 如图,请仅用无刻度的直尺画出线段BC的垂直平分线.(不要求写出作法,保留作图痕迹)(1)如图①,等腰△ABC内接于⊙O,AB=AC;(2)如图②,已知四边形ABCD为矩形,AB、CD与⊙O分别交于点E、F.9. 等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图①,图②中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法) (1)如图①,∠A<90°;(2)如图②,∠A>90°.第9题图第10题图10. 如图,图①、图②均为由菱形ABCD与圆组合成的轴对称图形,请仅用无刻度的直尺分别按下列要求画图.(1)如图①,已知A、C两点在⊙O内,B、D两点在⊙O上,在图中找出圆心O的准确位置;(2)如图②,已知A、C、D三点在⊙O外,点B在⊙O上,且∠A=90°,在图中找出圆心O 的准确位置.11.如图,▱ABCD的顶点A、B、D均在⊙O上,请仅用无刻度的直尺按要求画图.(1)AB边经过圆心O,在图①中作一条与AD边平行的直径;(2)AB边不经过圆心O,DC与⊙O相切于点D,在图②中作一条与AD边平行的弦.第11题图类型二以网格为辅助画图1. 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),仅用无刻度直尺画一个面积最大的直角三角形和一个四条边均不在网格线上的矩形,要求所画图形的顶点均落在格点上.第1题图2. 如图,在6×6的正方形网格中,△ABC的顶点在格点上,请仅用无刻度的直尺分别在图①、图②中画出△ABC的AB边上的高.第2题图3. 如果一个六边形各个内角相等,且既是轴对称图形,又是中心对称图形,那么我们就把这个六边形叫做等六边形,如图①中的正六边形ABCDEF就是一个等六边形.请仅用无刻度的直尺分别在图②、图③的正三角形网格中各画一个等六边形.要求:(1)等六边形的顶点都是正三角形网格的顶点;(2)图①、图②、图③中的等六边形互不全等.第3题图4.如图,在边长为1的正方形网格中画一个圆心为O的半圆,请按要求准确画图.(1)请在图①中仅用无刻度的直尺连线将半圆的面积三等份;(2)请在图②网格中以O为圆心,用直尺与圆规画一个与已知半圆的半径不同,但面积相等的扇形.第4题图5. 图①和图②均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺按下列要求画图.(保留作图痕迹,不写作法)(1)如图①,在格线CD上确定一点Q,使QA与QB的长度之和最小;(2)如图②,在四边形ACBD的对角线CD上确定一点P,使∠APC=∠BPC.第5题图6. 如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,请仅用无刻度直尺在矩形中完成下列画图.(1)在图①中画出一个顶点均在格点上的非特殊的平行四边形;(2)在图②中画出一个顶点均在格点上的菱形.第6题图7. 如图,在8×6的正方形网格中,每个小正方形的边长均为1,线段AB、BC的端点均在小正方形的顶点上,请仅用无刻度的直尺画图.(1)在图①中找一点D(点D在小正方形的顶点上),连接AD、BD、CD,使△ABD与△BCD 相似;(2)在图②中找一点E(点E在小正方形的顶点上),使△ABE与△BCE均为以BE为直角边的直角三角形,且其中一个三角形的面积是另一个三角形面积的2倍.第7题图8. 在10×10的正方形网格中(每个小正方形的边长为1),线段AB在网格中的位置如图所示,请仅用无刻度直尺,按要求分别完成以下画图.(1)在图①中,画出一个以AB为边,另两个顶点C、D也在格点上的菱形ABCD;(2)在图②中,画出一个以A、B为顶点,另两个顶点C、D也在格点上的菱形,且使这个菱形的面积最大.第8题图类型三以正多边形为辅助画图1. (2019原创)如图,在正六边形ABCDEF中,请仅用无刻度的直尺按要求画出图形,并用字母表示所画图形.(1)在图①中画出一个矩形;(2)在图②中画出一个菱形(要求菱形在正六边形的内部).第1题图2. 如图,在五边形ABCDE中,AB=AE=DE,CD=CB,∠ABC=120°.请仅用无刻度的直尺按要求画出图形.(1)在图①中,作出图形的对称轴l;(2)在图②中,作出一个正六边形.第2题图3. 如图所示的正六边形ABCDEF,连接FD,请仅用无刻度的直尺,完成下列作图.(1)在图①中,作出一个边长等于DF的等边三角形;(2)在图②中,作出一个周长等于DF的等边三角形.第3题图4. 如图,已知正五边形ABCDE,AE∥CF交AB的延长线于点F.请仅用无刻度的直尺按要求画出图形.(1)在图①中,作出一条长度等于BF的线段;(2)在图②中,作出一条长度等于AF的线段.第4题图类型四以三角形为辅助画图1.根据下列条件和要求,仅使用无刻度的直尺画图,并保留画图痕迹.(1)如图①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB;(2)如图②,△ABC中,AB=AC,ED是△ABC的中位线,画出△ABC的边BC上的高.第1题图2. (2019原创)如图,是由三个等边三角形组成的图形,请仅用无刻度的直尺按要求画图.(1)在图①中画出一个直角三角形,使得AB为三角形的一条边;(2)在图②中画出AD的垂直平分线.第2题图3. 请仅用无刻度的直尺按要求作图.(不写作法,保留作图痕迹)(1)如图①,AD、BE是△ABC的角平分线,且相交于点O,作出∠C的平分线;(2)如图②,AC与BD相交于点O,且∠DAO=∠BAO=∠CBO=∠ABO,作出∠AOB 的平分线.第3题图4. 请仅用无刻度直尺,根据下列条件分别在图①和图②中画出BC的垂直平分线.(1)如图①,AB=AC,BD=CD;(2)如图②,AB=AC,EB=FC.第4题图5. 如图,在△ABC中,已知AB=AC,AD⊥BC于点D,请仅用无刻度的直尺按要求画图.(1)如图①,点P为AB上任意一点,在AC上找出一点P′,使AP=AP′;(2)如图②,点P为BD上任意一点,在CD上找出一点P′,使BP=CP′.第5题图6. 如图,D、E为线段BC上的点,MN为△ABC的中位线,点A在线段BC外,且AB =AC,AD=BD,AE=CE,请仅用无刻度直尺按要求画图.(1)如图①,确定△ABC的外心P的准确位置;(2)如图②,在AC上取一点K,连接NK,使四边形AMNK为菱形.第6题图类型五以特殊四边形为辅助画图1.如图,AC是菱形ABCD的一条对角线,过点B作BE∥AC,过点C作CE⊥BE,垂足为E,请用两种不同的方法,仅用无刻度.....的直尺在图中画出一条与CD相等的线段.第1题图2.如图①、图②,四边形ABCD是正方形,DE=CE.请仅用无刻度的直尺按要求完成下列画图.(1)在图①中,画出CD边的中点;(2)在图②中,画出AD边的中点.第2题图3.在图①、②中,点E是矩形ABCD边AD上的中点,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法](1)在图①中,以BC为一边画△PBC,使△PBC面积等于矩形ABCD面积;(2)在图②中,以BE、ED为邻边画▱BEDK.第3题图4. 在正方形ABCD中,点P是BC的中点,请仅用无刻度的直尺按要求画图.(1)在图①中画出AD的中点M;(2)在图②中画出对角线AC的三等分点E,点F.第4题图5. (2019原创)如图是由三个等边三角形组成的图形,请仅用无刻度的直尺按要求画出图形.(1)在图①中画出△ABC的AB边上的高;(2)在图②中画出一个矩形.第5题图6. (2019原创)如图,是正方形和菱形组成的图形,请仅用无刻度的直尺按要求画图.(1)在图①中画出一个平行四边形;(2)在图②中画出∠CDF的平分线.第6题图7. (2019原创)如图,菱形ABCD,点P是AB的中点,连接CP.请仅用无刻度的直尺按要求画图.(1)在图①中画出BC边的中点E;(2)在图②中画出∠DCF,使得∠DCF=∠BCP.第7题图8. 如图,四边形ABCD,图①中AB=AD,BC=DC;图②中AB=BC=CD=AD,请仅用无刻度的直尺按要求画图.(1)图①中,已知P为AD上任意一点,作线段DQ,使DQ=BP;(2)图②中,已知CE⊥AB,垂足为E,过点C作AD的垂线,垂足为F.第8题图江西中考最后专题练之创新画图题答案全解全析类型一以圆、半圆为辅助画图1.①作图如解图①,直线AD即为所求;第1题解图①②作图如解图②,直线AE即为所求.第1题解图②【作法提示】①连接AB,AC,分别与圆交于点E,F,连接EC,BF,交于点Q,连接AQ,并延长交BC于点D,AD即为所求;②连接AB,与圆交于点D,连接AC并延长交圆于点F,连接DC、BF并延长交于点Q,连接AQ,延长BC交AQ于点E,AQ即为所求.2.①作图如解图①,△CDP即为所求;②作图如解图②,△CDP即为所求;图①图②第2题解图【作法提示】①延长AP,BP交圆于D,C两点,连接CD,△CDP即为所求;②AP 与圆交于点D,延长PB交圆于C点,连接CD,△CDP即为所求.3. (1)作图如解图①、②,∠CBP、∠BCP即为所求;(答案不唯一)图①图②第3题解图(2)作图如解图③,直线AE将△ACB的面积平分.第3题解图③【作法提示】(1)①连接BO与圆交于点P,∠CBP即为所求;②连接OC与圆交于点P,∠BCP即为所求;(2)连接DC与AB交于点F,作直线OF交BC于点E,连接AE,AE即为所求.4. (1)作图如解图①,点O即为所求;(2)作图如解图②,直线QE即为所求.图①图②第4题解图【作法提示】(1)延长AD,BC分别交圆于点E,F,连接EB,AF交于点O,O点即为所求;(2)由(1)得到点O,E,F,连接BD,AC交于点G,连接OG交圆于点Q,QG即为所求.5. (1)作图如解图①,CO即为所求;(2)作图如解图②,点M、N即为所求.图①图②第5题解图【作法提示】(1)连接DO ,由题意知四边形OBCD 为菱形,连接CO ,CO 即为∠BCD 的角平分线;(2)连接DO 并延长交⊙O 于点M ,连接CO 并延长交⊙O 于N ,由题易知,∠DOC =∠BOC ,∠DOC =∠NOM ,∴∠NOM =∠BOC ,∴MN ︵=BC ︵.6. (1)作图如解图①,点M 即为所求;第6题解图①(2)作图如解图②,直线l 即为所求.第6题解图②【作法提示】(1)由题意知,D 为AC 中点,O 为AB 中点,连接CO 与BD 交于点E ,连接AE 并延长与BC 交于点M ,M 即为BC 的中点;(2)在(1)的基础上,连接MD 并延长与圆交于点N ,由于M 、D 分别为BC 、AC 的中点,所以MD ∥BA ,直线l ∥AB .7. (1)作图如解图①所示;(2)作图如解图②所示.图①图②第7题解图【作法提示】(1)连接A 1O 1,B 1O 1,C 1O 1,连线即为所求;(2)连接A 2O 2交⊙O 2于点D 2,连接B 2O 2交⊙O 2于点E 2,连接A 2E 2,E 2D 2,D 2B 2,四边形A 2B 2D 2E 2即为所求.8. (1)作图如解图①,直线l 即为所求;(2)作图如解图②,直线l 即为所求.第8题解图【作法提示】(1)如解图①,连接AO 并延长,则AO 所在直线l 即为线段BC 的垂直平分线;(2)如解图②,连接AF ,DE 交于点O ,连接CE 、BF 交于点H ,连接OH ,则OH 所在的直线l即为线段BC的垂直平分线.9. (1)作图如解图①,DE即为所求;第9题解图①(2)作图如解图②,DE即为所求.第9题解图②【作法提示】(1)如解图①,设AC交圆于点E,连接AD,AE,由于AB为直径,则∠ADB =90°,由于AB=AC,∴AD平分∠BAC,即∠BAD=∠EAD,于是得到BD=DE;(2)如解图②,延长CA交圆于E,连接BE,DE,与(1)一样得到∠BAD=∠DAC,而∠DAC=∠DBE,∴∠DBE=∠BAD=∠BED,∴DE=BD.10. (1)作图如解图①,点O即为所求;(2)作图如解图②,点O即为所求.第10题解图【作法提示】(1)如解图①,由于题中图形为轴对称图形,∴直线BD经过圆心,又由菱形的性质可得圆心O为菱形对角线的交点,故连接AC、BD,交点即为圆心O;(2)如解图②,直线BD经过圆心,由∠A=90°可得四边形ABCD为正方形,故∠B=90°,∴∠B所对的弦为直径,故作出∠B所对的弦,该弦与BD的交点即为圆心O.11. (1)作图如解图①,EF即为所求;(2)作图如解图②,GH即为所求.图①图②第11题解图【作法提示】(1)连接AC、BD交于点K,过点O、K作直径EF;(2)连接OD, DO的延长线交AB 于点T ,连接AC 、BD 交于点K ,过T 、K 作弦GH ,GH 即为所求.类型二 以网格为辅助画图1. 作图如解图①、②所示.第1题解图2. ①作图如解图①,CD 即为所求:②作图如解图②,CD 即为所求.第2题解图3. 作图如解图①、②.第3题解图4. (1)作图如解图①;(2)作图如解图②.第4题解图【作法提示】(1)将半圆三等分,可以考虑过圆心O 的半径,所以将平角三等分;(2)画一个半径不同但等面积的扇形,所以圆心角也一定不同,则π·222=n πr 2360°即nr 2=720°,当n =90°,r 2=8,∴r =2 2.5. (1)如解图①,点Q 即为所求;(2)如解图②,∠APC =∠BPC ,点P 即为所求.第5题解图6. (1)作图如解图①,平行四边形ABCD 即为所求;(2)作图如解图②,菱形ABCD即为所求.图①图②第6题解图7. (1)作图如解图①;第7题解图①(2)作图如解图②.第7题解图②【作法提示】(1)如解图①,根据平行四边形的性质,平行四边形的对角线把平行四边形分成两个全等三角形,由此即可画出;(2)如解图②,根据直角三角形的定义以及面积关系作出△BCE即可.8. (1)作图如解图①;第8题解图①(2)作图如解图②.第8题解图②【作法提示】(1)如解图①,由菱形的判定易知四边形ABCD即为所求的菱形;(2)如解图②,四边形ADBC为菱形,此时菱形的对角线CD最长,根据菱形的面积等于对角线乘积的一半,可知此时菱形面积最大,菱形ADBC即为所求.类型三以正多边形为辅助画图1. (1)作图如解图①,四边形ACDF为所求矩形;(2)作图如解图②,四边形MNPQ为所求菱形.图①图②第1题解图【作法提示】(1)因为ABCDEF为正六边形,可得AF∥CD且AF=CD,所以连接AC,FD,矩形CDF A即为所求;(2)连接BE,AC,FD,AC交BE于点N,FD交BE于点Q,连接AQ,NF,相交于点M,连接ND,CQ相交于点P,四边形MNPQ即为所求.2. (1)作图如解图①,l即为所求;(2)作图如解图②,正六边形ABPJDE即为所求.第2题解图【作法提示】(1)连接AD,BE,相交于点F,连接FC,FC即为所求的对称轴l;(2)同(1)作对称轴l,连接BD,交l于点G,连接AG并延长交CD于点J,连接EG并延长交BC 于点P,连接PJ,正六边形ABPJDE即为所求.3. (1)作图如解图①,△BDF即为所求;第3题解图①(2)作图如解图②,△MEN即为所求.第3题解图②【作法提示】(1)根据正六边形的性质,连接BF,BD,△BDF即为所求;(2)连接AE 交FD于点M,连接EC交FD于点N,△MEN即为所求.4. (1)作图如解图①,DM即为所求;第4题解图①(2)作图如解图②,CN即为所求.第4题解图②类型四以三角形为辅助画图1. (1)当点D在AC或BC上时,△DAB是钝角三角形,作图如解图①、②;图①图②第1题解图(2)作图如解图③,AF即为所求.第1题解图③2. (1)作图如解图①,△ABE即为所求的直角三角形;(2)作图如解图②,CF即为AD的垂直平分线.图①图②第2题解图3. (1)作图如解图①,CF即为所求;(2)作图如解图②,OF即为所求.图①图②第3题解图【作法提示】(1)连接CO并延长交AB于点F,则利用三角形的三条角平分线相交于一点可判断CF平分∠ACB;(2)延长AD和BC相交于点E,连接EO并延长交AB于点F,利用在同一三角形中,有两个角相等的三角形是等腰三角形,可证明△OAB和△EAB为等腰三角形,则根据等腰三角形的性质可判断OF平分∠AOB.4. (1)作图如解图①,AE即为所求;(2)作图如解图②,AG即为所求.图①图②第4题解图【作法提示】(1)连接AD并延长交BC于点E,即可得到BC的垂直平分线AE;(2)连接BF,CE交于点D,连接AD并且延长交BC于点G,即可得到BC的垂直平分线AG.5. (1)作图如解图①,点P′即为所求;(2)作图如解图②,点P′即为所求.第5题解图【作法提示】(1)如解图①,由AB=AC,AD⊥BC可知,直线AD为△ABC的对称轴.连接CP交AD于点E,连接BE并延长交AC于点P′,则点P′即为所求;(2)如解图②,在AB 上任选一点E,再同(1)中的作法作点E关于直线AD的对称点F,连接PF交AD于点O,连接EO并延长交BC于点P′,则点P′即为所求.6. (1)作图如解图①,点P即为所求;第6题解图①(2)作图如解图②,点K即为所求.第6题解图②【作法提示】(1)连接AN,MD并延长交于点P,P点即为所求;(2)同(1)作出点P,连接PE并延长交AC于点K,连接NK,四边形AMNK即为所求.类型五以特殊四边形为辅助画图1.作图如解图①、②,EF、GH即为所求.图①图②第1题解图【作法提示】作法一,连接BD交AC于点F,连接EF,则EF=CD;方法二,连接BD,交AC于O,过点O作GH∥CD,交AD于H,交BC于G,则GH=CD.2. (1)作图如解图①,点F即为所求;(2)作图如解图②,点M即为所求.图①图②第2题解图【作法提示】(1)连接AC、BD交于点O,利用正方形的对角线互相平分这一性质,可知交点O到C、D两点的距离相等,连接OE与CD交于点F,点F即为所求;(2)延长EO 交AB于点G,连接DG、HF交于点H,利用正方形、矩形对角线的性质,可知点O、H都在线段AD的垂直平分线上,连接OH与AD相交于点M,点M即为所求.3. (1)作图如解图①,△PBC即为所求;(2)作图如解图②,▱BEDK即为所求.图①图②第3题解图【作法提示】(1)以BC为边作一个面积与矩形面积相等的三角形,可以利用割补法,将矩形割掉一个三角形,再补上一个全等的三角形,而此题中有中点这个条件可以构造全等的三角形;(2)连接AC,BD交于点O,连接EO并延长交BC于点K,∵DE∥BK且ED=BK,∴四边形BEDK是平行四边形.4. (1)作图如解图①,点M即为所求;第4题解图①(2)作图如解图②,点E、点F即为所求.第4题解图②【作法提示】(1)先连接正方形的对角线交于点O,再连接PO并延长,交AD于M,则点M即为AD的中点;(2)运用(1)中的方法,画出AD的中点M,再连接BM和DP,分别交AC于点E和点F,则点E,点F即为对角线AC的三等分点.5. (1)作图如解图①,CG即为△ABC中AB边上的高;(2)作图如解图②,矩形AGCH即为所求.图①图②第5题解图【作法提示】(1)图中是由三个等边三角形组成的图形,所以可得AB∥EF,连接AF,BE相交于点Q,连接CQ并延长交AB于点G,CG即为所求;(2)同(1)做出CG,连接BD,于AC相交于点Q,连接GQ并延长交DC于点H,连接AH,四边形AGCH即为所求.6. (1)作图如解图①,四边形BCFE即为所求;(2)作图如解图②,DG即为∠CDF的平分线.图①图②第6题解图【作法提示】(1)根据正方形和菱形的性质可得,BC=EF,BC∥EF,连接BE,FC,四边形BCEF即为所求;(2)连接BE并延长交DF于点Q,连接AF交BQ于点G,连接DG,DG即为所求.7. (1)作图如解图①,点E即为所求;(2)作图如解图②,∠DCF即为所求.图①图②第7题解图【作法提示】(1)连接BD与PC交于点Q,连接AQ并延长交BC于点E,点E即为所求;(2)同(1)作出AE,连接AC,与BD交于点G,连接EG并延长交AD于点F,连接CF,∠DCF即为所求.8. (1)作图如解图①所示,DQ即为所求;第8题解图①(2)作图如解图②所示,CF即为所求.第8题解图②【作法提示】(1)由AB=AD,BC=DC可得四边形ABCD为轴对称图形,直线AC为四边形ABCD的对称轴,所以只要找到点P关于直线AC的对称点Q即可;所以,连接AC,AC与BP相交于点O,连接DO并延长与AB相交于点Q,则DQ为所求;(2)四边形AB=BC=CD=AD,所以四边形ABCD为轴对称图形,直线AC为四边形ABCD的对称轴,所以只要找到点E关于直线AC的对称点F即可;所以,分别连接AC,DE,AC与DE相交于点O,连接BO并延长与射线AD相交于F点,CF即为所求.中考数学第21页共21页。
2019年全国中考试题解析版分类汇编-尺规作图

2019年全国中考试题解析版分类汇编-尺规作图注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题1.〔2017•台湾33,4分〕如图,AB为圆O的直径,在圆O上取异于A、B的一点C,并连接BC、AC、假设想在AB上取一点P,使得P与直线BC的距离等于AP长,判断以下四个作法何者正确?〔〕A、作的中垂线,交于P点B、作∠ACB的角平分线,交于P点C、作∠ABC的角平分线,交于D点,过D作直线BC平行线,交于P点D、过A作圆O的切线,交直线BC于D点,作∠ADC的角平分线,交于P点考点:切线的性质;角平分线的性质。
分析:A圆内弦中垂线过原点;角平分线上点到到两边距离相等;角平分线上点到两边距离相等;D角平分线上点到两边距离相等,与切线与过切点的直径垂直、从而判断出来、解答:解:A、圆内弦的中垂线过原点,有圆内弦性质可知,所以交AB于圆点O,故本选项错误;B、作∠ACB的角平分线,那么点P到BC的距离等于点P到AC的距离,而不等于AP,故本选项错误;C、假设过点D作直线BC的平行线交AB于点P,那么点P的距离,等于DP也不等于AP,故本选项错误;D、角平分线DP交直径AB与点P,根据角平分线定理,由PA⊥AD,得到点P到BC的距离等于AP,故正确、点评:此题考查了切线的性质,A考查了圆内弦中垂线过原点;B考查了角平分线上点到到两边距离相等;C考查了角平分线上点到两边距离相等;D考查了角平分线上点到两边距离相等,与切线与过切点的直径垂直、2.〔2017湖北荆州,15,3分〕请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形、答案不唯一、考点:作图—应用与设计作图、专题:作图题、分析:整个图形含有36个小菱形,分为面积相等的六部分,那么每一个部分含6个小菱形,由此设计分割方案、解答:解:分割后的图形如下图、此题答案不唯一、点评:此题考查了应用与设计作图、关键是理解题意,根据图形设计分割方案、3.〔2017•西宁〕用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是〔〕A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形考点:菱形的判定;作图—复杂作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题19 作图问题
一、基础知识
复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
作图﹣基本作图包括(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
1.利用角平分线的性质、线段的垂直平分线的性质等知识.
2.圆的性质;比如:90°的圆周角所对应弦是直径.
3.平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
4.菱形的判定和全等三角形的判定与性质,熟练掌握菱形的判定是解题关键.
5.其他知识。
二、对理解本节课知识点的例题及其解析
【例题1】已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
【答案】见解析
【解析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
∵点P在∠ABC的平分线上,
∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
∵点P在线段BD的垂直平分线上,
∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
如图所示:
【例题2】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线l和l外一点P.(如图1)
求作:直线l的垂线,使它经过点P.
作法:如图2
(1)在直线l上任取两点A,B;
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
(3)作直线PQ.
所以直线PQ就是所求的垂线.
请回答:该作图的依据是.
【答案】线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)【解析】只要证明直线AB是线段PQ的垂直平分线即可.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),
理由:如图,∵PA=AQ,PB=QB,
∴点A、点B在线段PQ的垂直平分线上,
∴直线AB垂直平分线段PQ,
∴PQ⊥AB.
三、作图问题训练题及其答案和解析
1.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧○1;
步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是()
A.BH垂直分分线段AD B.AC平分∠BAD
C.S△ABC=BC·AH D.AB=AD
【答案】A.
【解析】BH是线段AD的垂直平分线.
2.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()
A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧
C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧
【答案】D
【解析】作一个角等于已知角,依据是用“SSS”说明三角形全等,显然图中已满足“OE=OE,OF=OG”,只要添加“EF=EG”,故作图痕迹②的圆心是点E,半径是EF长.
3.图1是“作已知直角三角形的外接圆”的尺规作图过程
已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.
作法:如图2.
(1)分别以点A和点B 为圆心,大于的长为半径作弧,两弧相交于P,Q两点;
(2)作直线PQ,交AB于点O;
(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.
请回答:该尺规作图的依据是
.
【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对应弦是直径.
【解析】由于90°的圆周角所的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.
该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.4.在5×3的方格纸中,△ABC的三个顶点都在格点上.
G
(1)在图1中画出线段BD,使BD∥AC,其中D是格点;
(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.
【答案】见解析。
【解析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD。
如图所示,线段BD即为所求;
(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.如图所示,线段BE即为所求.
5.如图,已知BD平分∠ABF,且交AE于点D。
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
【答案】见解析
【解析】(1)根据角平分线的作法作出∠BAE的平分线AP即可。
如图所示:
(2)根据ASA证明△ABO≌△CBO,得出AO=CO,AB=CB,再根据ASA证明△ABO≌△ADO,得出BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.证明:如图:
在△ABO和△CBO中,
,
∴△ABO≌△CBO(ASA),
∴AO=CO,AB=CB.
在△ABO和△ADO中,
,
∴△ABO≌△ADO(ASA),
∴BO=DO.
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
∵AB=CB,
∴平行四边形ABCD是菱形.
6.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.
【答案】
【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.
连接AE,如图,
由作法得MN垂直平分AC,
∴EA=EC=3,
在Rt△ADE中,AD==,
在Rt△ADC中,AC==.
7.如图将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()
A B C D
【答案】A
【解析】根据题意直接动手操作得出即可.本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:
8. “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度
(1)用记号(a ,b ,c )(a ≤b ≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹). 单位长度
【答案】(1)(2,2,2),(2,2,3),(2,3,3),(2,3,4),
(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).
(2)由(1)可知,只有(2,3,4),即2,3,4a b c === 时满足a <b <c .
如答图的ABC ∆即为满足条件的三角形.
【解析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.
(2)首先判断满足条件的三角形只有一个:2,3,4a b c === ,再作图:
①作射线AB ,且取AB =4;
②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ;
③连接AC 、BC .
则ABC ∆即为满足条件的三角形.。