2020年九年级中考数学专题之分类讨论专题复习(含解析)
2020年中考数学专题训练(四)等腰三角形中的分类讨论思想

专题训练(四)等腰三角形中的分类讨论思想类型一腰与底不明或顶角与底角不明时需分类讨论解题策略:先分不同情况画出图形,再进行计算.当不明确腰和底时,还要利用三角形三边关系进行检验.1.(1)等腰三角形的两边长分别为2和5,则其周长为.(2)等腰三角形的两边长分别为2,3,则其周长为;(3)等腰三角形的两边长分别为2,4,则其周长为.2.若等腰三角形的一个角为80°,则顶角为.3.若等腰三角形的一个角为110°,则顶角为.4.若等腰三角形的一个角为另一个角的两倍,则其底角为.类型二锐角与钝角不明时需分类讨论解题策略:此类题目一般与三角形的高相联系,主要的讨论点在于三角形的形状不同,高的位置不同.5.等腰三角形一腰上的高与另一腰的夹角为45°,求这个三角形的底角的度数.6.已知△ABC中,CA=CB,AD⊥BC于点D,∠CAD=50°,求∠B的度数.7.已知△ABC的高AD,BE所在的直线交于点F,若BF=AC,求∠ABC的度数.类型三画等腰三角形时的分类讨论解题策略:在平面直角坐标系中找一个点,使它与另两个定点构成一个等腰三角形的基本方法有两种:(1)以两定点中的一个为圆心,以两点之间的距离为半径作圆;(2)连接两定点,作线段的垂直平分线.8.在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C(原点除外),使△ABC为等腰三角形,则满足条件的点C有个.9.在平面直角坐标系中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.10.已知点A和B,以点A和点B为两个顶点作等腰直角三角形,一共可以作出个.教师详解详析例112[解析] 本题在解答过程中,要分两种情况:①当2为腰长时,三角形的三边长为2,2,5,显然不能构成三角形;②当5为腰长时,三角形的三边长为5,5,2,能构成三角形,所以其周长为12.1.(1)7或8(2)102.20°或80°3.110°4.45°或72°例2(1)如图①,当△ABC是锐角三角形时,作BD⊥AC于点D.因为∠ABD=45°,所以∠BAC=45°.由三角形的内角和定理可得∠C=67.5°.(2)如图②,当△ABC是钝角三角形时,作BD⊥AC交CA的延长线于点D.因为∠ABD=45°,所以∠BAC=135°.由三角形的内角和定理可得∠C=22.5°.综上,这个三角形的底角的度数为67.5°或22.5°.5.解:当∠C为锐角时,∠B=70°;当∠C为钝角时,∠B=20°.6.解:先证△BDF≌△ADC,①当∠ABC为锐角时,∠ABC=45°;②当∠ABC为钝角时,∠ABC=135°.故∠ABC的度数为45°或135°.例34[解析] 如图,共4个点.7.88.6。
中考数学专题《分类讨论思想在压轴题中的应用》原卷

专题20 分类讨论思想在压轴题中的应用分类讨论思想是一个非常重要的数学思想,在中考数学压轴题中考查频繁,例如在解决中考压轴题中的存在性问题时,要用到分类讨论思想:1.在解决等腰三角形存在性问题时,需要讨论腰和底的多种情况;2.在解决直角三角形存在性问题时,需要对直角的情况进行讨论;3.在解决平行四边形和矩形、菱形、正方形的存在性时,需要对邻边或对边的情况进行讨论;4.在解决相似三角形存在性问题时,需要对对应边和对应角进行分类讨论;5.压轴题中其他的问题,例如线段的数量和位置关系等,有时也需要进行分类讨论。
(2022·辽宁阜新·统考中考真题)如图,已知二次函数2y x bx c =-++的图像交x 轴于点()1,0A -,()5,0B ,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒(05t <<).当t 为何值时,BMN V 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 坐标;若不存在,请说明理由.(1)用待定系数法可求得二次函数的表达式为;(2)过点M 作ME x ⊥轴于点E ,设BMN V 面积为S ,由ON t =,BM =,可得5BN t =-,45ME BMsin t =︒==,即得()21115255()22228S BN ME t t t =⋅=-⋅=--+,由二次函数性质可得当52t =秒时,BMN V 的面积最大,求得其最大面积;(3)由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,分三种情况进行讨论求解.【答案】(1)245y x x =-++(2)当52t =时,BMN V 的面积最大,最大面积是258(3)存在,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3【详解】(1)将点()1,0A -,()5,0B 代入2y x bx c =-++中,得010255b c b c =--+⎧⎨=-++⎩,解这个方程组得45b c =⎧⎨=⎩,∴二次函数的表达式为245y x x =-++;(2)过点M 作ME x ⊥轴于点E ,如图:设BMN V 面积为S ,根据题意得:ON t =,BM =.()5,0B ,5BN t ∴=-,在245y x x =-++中,令0x =得5y =,()0,5C ∴,5OC OB ∴==,45OBC ∠∴=︒.45ME BMsin t ∴=︒==,()22111515255()2222228S BN ME t t t t t ∴=⋅=-⋅=-+=--+,05t << ,∴当52t =时,BMN V 的面积最大,最大面积是258;(3)存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形,理由如下:由()5,0B ,()0,5C 得直线BC 解析式为5y x =-+,设(),5Q m m -+,()2,45P n n n -++,又()1,0A -,()0,5C ,①当PQ ,AC 是对角线,则PQ ,AC 的中点重合,21054505m n m n n +=-+⎧∴⎨-+-++=+⎩,解得0(m =与C 重合,舍去)或7m =-,()7,12Q ∴-;②当QA ,PC 为对角线,则QA ,PC 的中点重合,21050455m n m n n -=+⎧∴⎨-++=-+++⎩,解得0(m =舍去)或7m =,()7,2Q ∴-;③当QC ,PA 为对角线,则QC ,PA 的中点重合,20155450m n m n n +=-⎧∴⎨-++=-+++⎩,解得1m =或2m =,()1,4Q ∴或()2,3,综上所述,Q 的坐标为()7,12-或()7,2-或()1,4或()2,3.本题考查二次函数的综合应用,涉及待定系数法,三角形面积,平行四边形的性质及应用,解题的关键是用含字母的式子表示相关点的坐标和相关线段的长度.(2022·湖南湘潭·统考中考真题)已知抛物线2y x bx c =++.(1)如图①,若抛物线图象与x 轴交于点()3,0A ,与y 轴交点()0,3B -.连接AB .①求该抛物线所表示的二次函数表达式;②若点P 是抛物线上一动点(与点A 不重合),过点P 作PH x ⊥轴于点H ,与线段AB 交于点M .是否存在点P 使得点M 是线段PH 的三等分点?若存在,请求出点P 的坐标;若不存在,请说明理由.(2)如图②,直线43y x n =+与y 轴交于点C ,同时与抛物线2y x bx c =++交于点()3,0D -,以线段CD 为边作菱形CDFE ,使点F 落在x 轴的正半轴上,若该抛物线与线段CE 没有交点,求b 的取值范围.(1)①直接用待定系数法求解;②先求出直线AB 的解析式,设点M (m ,m -3)点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,代入求解即可;(2)先用待定系数法求出n 的值,再利用勾股定理求出CD 的长为5,因为四边形CDFE 是菱形,由此得出点E 的坐标.再根据该抛物线与线段CE 没有交点,分两种情况(CE 在抛物线内和CE 在抛物线右侧)进行讨论,求出b 的取值范围.【答案】(1)①2=23y x x --,②存在,点P 坐标为(2,-3)或(12,-154),理由见解析(2)b <32-或b >133【详解】(1)①解:把()3,0A ,()0,3B -代入2y x bx c =++,得20333b c c ⎧=++⎨-=⎩,解得:23b c =-⎧⎨=-⎩,∴2=23y x x --②解:存在,理由如下,设直线AB 的解析式为y =kx +b ,把()3,0A , ()0,3B -代入,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩,∴直线AB 的解析式为y =x -3,设点M (m ,m -3)、点P (m ,m 2-2m -3)若点M 是线段PH 的三等分点,则13HM HP =或23HM HP =,即232331m m m -=--或232332m m m -=--,解得:m =2或m =12或m =3,经检验,m =3是原方程的增根,故舍去,∴m =2或m =12∴点P 坐标为(2,-3)或(12,-154)(2)解:把点D (-3,0)代入直线43y x n =+,解得n =4,∴直线443y x =+,当x =0时,y =4,即点C (0,4)∴CD =5,∵四边形CDFE 是菱形,∴CE =EF =DF =CD =5,∴点E (5,4)∵点()3,0D -在抛物线2y x bx c =++上,∴(-3)2-3b +c =0,∴c =3b -9,∴239y b x bx =++-,∵该抛物线与线段CE 没有交点,分情况讨论当CE 在抛物线内时52+5b +3b -9<4解得:b <32-当CE 在抛物线右侧时,3b -9>4解得:b >133综上所述,b <32-或b >133此题考查了二次函数和一次函数以及图形的综合,解题的关键是数形结合和分情况讨论.1.(2023·安徽宿州·统考一模)如图,在平面直角坐标系中,矩形OABC 的顶点B 的坐标为()8,4,OA OC ,分别落在x 轴和y 轴上,将OAB V 绕点O 逆时针旋转,使点B 落在y 轴上,得到ODE V ,OD 与CB 相交于点F ,反比例函数()0k y x x=>的图象经过点F ,交AB 于点G .(1)求k 的值.(2)连接FG ,则图中是否存在与FBG △相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由.(3)点M 在直线OD 上,N 是平面内一点,当四边形GFMN 是正方形时,请直接写出点N 的坐标.2.(2022·河南郑州·河南省实验中学校考模拟)在ABC V 中,AB AC =,E 为边AC 上一点,D 为直线BC 上一点,连AD 、BE ,交于点F .(1)如图1,若60BAC ∠=︒,D 点在线段BC 上,且AE CD =,过B 作BG AD ⊥,求证:12=FG BF ;(2)如图2,若BAC BFD ∠=∠,且3BF AF =,求BD BC 的值;(3)如图3,若60BAC ∠=︒.若3BD CD =,将线段AD 绕点A 逆时针旋转到AH ,并且使得HAC ADB ∠=∠,连接BH 交AC 于P ,直接写出AC PC= ______ .3.(2022·吉林长春·模拟)如图,在ABC V 中,5AB AC ==,6BC =.点P 从点B 出发,沿BC 以每秒2个单位长度的速度向终点C 运动,同时点Q 从点C 出发,沿折线CA AB -以每秒5个单位长度的速度运动,到达点A 时,点Q 停止1秒,然后继续运动.分别连接PQ 、BQ .设点P 的运动时间为t 秒.(1)求点A 与BC 之间的距离;(2)当3BP AQ =时,求t 的值;(3)当PQB V 为钝角三角形时,求t 的取值范围;(4)点P 关于直线AB 的对称点是点D ,连接DQ ,当线段DQ 与ABC V 的某条边平行时,直接写出t 的值.4.(2022·浙江金华·一模)如图,在平面直角坐标系xOy 中,菱形OABC 的顶点A 在x 轴的正半轴上,点C 的坐标为()3,4,点D 从原点O 出发沿O A B →→匀速运动,到达点B 时停止,点E 从点A 出发沿A B C →→随D 运动,且始终保持CDE COA ∠=∠.设运动时间为t .(1)当DE OB ∥时,求证:OCD BCE △≌△.(2)若点E 在BC 边上,当CDE △为等腰三角形时,求BE 的长.(3)若点D 的运动速度为每秒1个单位,是否存在这样的t ,使得以点C ,D ,E 为顶点的三角形与OCD V 相似?若存在,直接写出所有符合条件的t ;若不存在,请说明理由.5.(2022·重庆·模拟)如图,在平面直角坐标系中,抛物线2y x bx c ++=﹣交x 轴于点A 和C (1,0),交y 轴于点B (0,3),抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点O 沿顺时针方向旋转得到线段OE ',旋转角为α(0°<α<90°),连接,AE BE '',求13BE AE '+'的最小值;(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由.6.(2022·广东佛山·校考三模)已知抛物线223(0)y ax ax a a =--<交x 轴于点A ,(B A 在B 的左侧),交y 轴于点C .(1)求点A 的坐标;(2)若经过点A 的直线y kx k =+交抛物线于点D .①当0k >且1a =-时AD 交线段BC 于E ,交y 轴于点F ,求ΔΔEBD CEF S S -的最大值;②当0k <且k a =时,设P 为抛物线对称轴上一动点,点Q 是抛物线上的动点,那么以A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标,若不能,请说明理由.7.(2022·广东江门·校考一模)如图,抛物线26y ax x =++的图象与直线y kx b =+有唯一交点()1,4A -.(1)求抛物线和直线的解析式;(2)若点拋物线与x 轴的交点分别为点M 、N ,抛物线的对称轴上是否存在一点P ,使PA PM +的值最小?如果有,请求出这个最小值,如果没有,请说明理由.(3)直线y kx b =+与x 轴交于点B ,点Q 是x 轴上一动点,请你写出使QAB V 是等腰三角形的所有点Q 的横坐标.8.(2022·广东佛山·校考三模)如图1,AD 、BD 分别是ABC ∆的内角BAC ∠、ABC ∠的平分线,过点A 作AE AD ⊥,交BD 的延长线于点E .(1)求证:12E C ∠=∠;(2)如图2,如果AE AB =,且:2:3BD DE =,求cos ABC ∠的值;(3)如果ABC ∠是锐角,且ABC ∆与ADE ∆相似,求ABC ∠的度数,并直接写出ADE ABC S S ∆∆的值.。
最新通用版九年级中考数学小专题复习分类讨论型问题(解析版)

分类讨论型问题在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行。
正确的分类必须是周全的,既不重复、也不遗漏。
类型1 代数计算中的分类讨论(数学公式、性质引起的分类讨) 例1 =+=-+a 3x 49x ax 3-x 32无解,则例题分层分析本题既要讨论方程有增根无解,还要讨论去分母后得到的整式方程无解。
对应练习:1.若关于x 的函数y=k 2x +2x -1与x 轴仅有一个公共点,则实数k 的值为 . 2.一次函数y=kx+b ,当-3≤x ≤l 时,对应的y 值为l ≤y ≤9, 则kb 值为( )A .14B .-6C .-4或21D .-6或143.已知抛物线1y =a 2x +bx +c (a ≠0)与x 轴相交于点A ,B (点A ,B 在原点O 两侧),与y 轴相交于点C ,且点A ,C 在一次函数2y =34x +n 的图象上,线段AB 长为16,线段OC 长为8,当1y 随着x 的增大而减小时,求自变量x 的取值范围.类型2 几何图形中的分类讨论例2 如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .例题分层分析⊙P 与x 轴可能在x 轴上方相切,也有可能在x 轴下方相切,要分别讨论。
对应练习:1、如图,已知直线l 的表达式是y =43x -4,并且与x 轴,y 轴分别交于A ,B 两点.一个半径为1.5的⊙C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆的运动时间为( )A .3 s 或6 sB .6 sC .3 sD .6 s 或16 s2、如图,在平面直角坐标系xOy 中,已知直线y =kx(k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结AC.若△ABC 是等腰三角形,则k 的值是________.类型3 动点问题中的分类讨论例3 如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造□PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设□PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.例题分层分析对于第(3)题解题的关键是正确分几种不同情况求解.(1)当点C 在BO 上时,第一种情况,当点M 在CE 边上时,由△EMF ∽△ECO 求解,第二种情况,当点N 在DE 边上时,由△EFN ∽△EPD 求解;当点C 在BO 的延长线上时,第一种情况,当点M 在DE 边上时,由EMF ∽△EDP 求解,第二种情况,当点N 在CE 边上时,由△EFN ∽△EOC 求解;(2)当1≤t <94时和当92<t≤5时,分别求出S 的取值范围.这种双动点型、分类讨论问题是中考命题常用的策略. 对应练习:如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连接CD 、QC . (1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系式,并求S 的最大值; (3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.课后作业:1.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( ) A .5 B .7 C .5或7D .62.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为___________,底边长为_____________.3.如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .4.已知3+=kx y 与两坐标轴围成的三角形的面积为 24,求其函数解析式。
中考数学专题:例+练——第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
中考复习之分类讨论思想-圆

A O P
B
A O
B P
连接O、P所在的直线并延 长,交⊙O于A、B. 则PA=a,PB=b, 直径AB=PA+PB = a+b 半径为
连接O、P所在的直线并延 长,交⊙O于A、B. 则PA=a,PB=b, 直径AB=PA-PB = a-b 半径为
综合(1)(2)可知,此圆的半径为 a b
圆都相切的圆有
与两圆均内切.
5
个.
与两圆均 外切.
与一圆外切, 与一圆内切.
与一圆外切, 与一圆内切.
与两圆均 外切.
分类讨论思想在圆中应用的一般步骤:
1、先明确需讨论的对象; 2、选择分类的标准,合理分类;
统一标准,不重不漏 (统一标准,不重不漏)
3、逐类讨论; 4、归纳作出结论。
F
B
OE=3cm
OF=4cm
OE=3cm
OF=4cm
∴ EF=OF-OE=1cm
∴ EF=OF+OE=1cm
分类思想 圆中的应用
三、圆的大小或位置不唯一
例3、在Rt△ABC中,∠C=900,AC=3,BC=4. 若 以点C为圆心,R为半径的圆与斜边只有一个公共点, 则R的值为多少? B B
D C A C A
分类讨论:(1)当圆的半径R<3时
12 R= 5
(3)当圆的半径R>3时 从圆由小变大的过程中,可知R
3< R
4
4
(2)当圆的半径R=3时 圆与斜边有2个交点,不合题意。
∴综上可知,当 R= 5
12
或 3< R
4 时,
圆与斜边只有一个公共点.
中考数学专题复习一分类讨论思想PPT课件

AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
2020年中考数学复习考点解密 分类讨论(含解析)

2020年中考数学二轮复习考点解密 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。
【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。
以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。
中考数学专题复习:分类讨论题

中考数学专题复习:分类讨论题中考数学专题复:分类讨论题直线型分类讨论直线型分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题。
这些问题中,等腰三角形顶角度数和三角形高的长度是重要的考点。
例如,对于一个等腰三角形,如果其中一个角度数为50°,则需要分类讨论这个角是顶角还是底角。
如果这个角是顶角,则可以通过求解另外两个角的度数得到顶角的度数;如果这个角是底角,则可以通过计算底角的度数来得到顶角的度数。
因此,顶角可能是50°或80°。
同样地,在解决三角形高的问题时,也需要分类讨论。
例如,如果一个三角形的底边和斜边长度已知,需要求解这个三角形的高的长度,则需要分类讨论这个高是否在三角形内部。
如果高在三角形内部,则可以利用勾股定理和相似三角形的性质求解高的长度;如果高在三角形外部,则可以利用平移和相似三角形的性质求解高的长度。
圆形分类讨论圆形分类讨论主要是解决圆的有关问题。
由于圆是轴对称图形和中心对称图形,因此在解决圆的问题时,需要注意分类讨论,以避免漏解。
例如,对于一个直角三角形,如果以直角为圆心画圆,则这个圆与斜边只有一个公共点。
这个问题可以分类讨论,分别考虑圆与斜边相切和圆与斜边相交的情况,从而得到圆的半径的取值范围。
函数方程分类讨论函数方程分类讨论主要是解决复杂的函数方程和方程组的问题。
在解决这些问题时,需要注意分类讨论,以避免遗漏解或得到错误的解。
例如,对于一个函数方程,如果该方程在某个区间内有多个解,则需要分类讨论这些解的性质,例如它们是否为连续函数、是否为单调函数等等。
从而可以得到方程的解的取值范围。
总之,分类讨论是解决数学问题的重要方法之一,尤其适用于复杂的问题。
在进行分类讨论时,需要认真分析问题,将问题分成若干个互不重叠的情况,并对每种情况进行单独的讨论和求解。
本题涉及到函数的分类讨论和解析式的求解,同时也需要注意特殊点的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论专题复习分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.本讲主要三个内容: 1、 代数中的分类讨论 2、 几何中的分类讨论 3、 数学综合问题中的分类讨论代数中的分类讨论类型一 概念型分类讨论题有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】若,且,,则 .类型二 性质型分类讨论题有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2m n n m -=-4m =3n =2()m n +=【例3】已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥ 类型三 参数型分类讨论题解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题. 【例4】若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是( )【例5】对任意实数,点一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限【例6】关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为 ( )(A )a =0. (B )a =2. (C )a =1. (D )a =0或a =2. 类型四 解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式.解:∵,∴. 由有理数的乘法法则“两数相乘,同号得正”,有0ab <y ax =by x=x 2(2)P x x x -,290x ->29(3)(3)x x x -=+-(3)(3)0x x +->O-1-1X(1) (2)解不等式组(1),得,解不等式组(2),得, 故的解集为或, 即一元二次不等式的解集为或. 问题:求分式不等式的解集. 类型五 统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .类型六 方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A .4种B .3种C .2种D .1种 类型七 综合型分类讨论题【例10】在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数的图象上,若△P AB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 4个C. 5个D. 6个.3030x x +>⎧⎨->⎩3030x x +<⎧⎨-<⎩3x >3x <-(3)(3)0x x +->3x >3x <-290x ->3x >3x <-51023x x +<-2y x=几何中的分类讨论类型之一:与等腰三角形有关的分类讨论与角有关的分类讨论:1.已知等腰三角形的一个内角为75°则其顶角为________与边有关的分类讨论2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.与高有关的分类讨论3.一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.4.等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角是______度.30m的草皮铺设一块一边长为10m的等腰三角形绿地,请你5.为美化环境,计划在某小区内用2求出这个等腰三角形绿地的另两边长.6. 如图建立了一个由小正方形组成的网格(每个小正方形的边长为1).(1)在图1中,画出△ABC关于直线l对称的△A′B′C′;(2)在图2中,点D,E为格点(小正方形的顶点),则线段DE=;若点F也是格点且使得△DEF是等腰三角形,标出所有的点F.综合应用7.在直角坐标系中,O 为坐标原点,已知A (-2,2),试在x 轴上确定点P ,使△AOP 为等腰三角形,求符合条件的点P 的坐标类型之二 :与直角三角形有关的分类讨论8. 已知x 轴上有两点A (﹣3,0),B (1,0),在直线l :x +y +1=0上取一点C (x ,y ),使得△ABC 为直角三角形.求点C 的坐标.9.如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P的坐标是 。
baxAO类型之三 :与相似三角形有关的分类讨论 对应边不确定10.如图,已知矩形ABCD 的边长AB =3cm ,BC =6cm ..某一时刻,动点M 从A 点出发沿AB 方向以1cm /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:是否存在时刻t ,使以A ,.M ,N 为顶点的三角形与ΔACD 相似?若存在,求t 的值;若不存在,请说明理由.对应角不确定 11.如图1,∠A =500,∠B =600,一直线l 与△ABC 的边AC 、AB 边相交于点D 、E 两点,当∠ADE 为________度时,△ABC 与△ADE 相似. 图形的位置不确定12. Rt △ABO 在平面直角坐标系中的位置如图,AO =2,BO =2,∠ABO =30°,在坐标轴上是否存在点D ,使以A ,B ,D 为顶点的三角形与△ABO 相似(不含全等三角形)?若存在,则写出坐标;若不存在,说明理由.ABCEDl图1类型之四:与圆有关的分类讨论圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,圆的这些特性决定了关于圆的某些问题会有多解.由于点与圆的位置关系的不确定而分类讨论13. 已知点P到⊙O的最近距离为3 cm,最远距离为9 cm,求⊙O的半径.由于点在圆周上位置关系的不确定而分类讨论14.A、B是⊙O上的两点,且∠AOB=136o,C是⊙O上不与A、B重合的任意一点,则∠ACB的度数是___________.由于弦所对弧的优劣情况的不确定而分类讨论15.已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,求下水道中水的最大深度.由于两弦与直径位置关系的不确定而分类讨论16.⊙O的直径AB=2,过点A有两条弦AC=2,AD=3,求∠CAD的度数.由于直线与圆的位置的不确定而分类讨论17.已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移个单位时,它与x轴相切.18.如图,直线443y x=-+与x轴,y轴分别交于点M,N(1)求M,N两点的坐标;(2)如果点P在坐标轴上,以点P为圆心,125为半径的圆与直线443y x=-+相切,求点P的坐标.由于圆与圆的位置的不确定而分类讨论19.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 cm .20.如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移 个单位长后,⊙A 与⊙B 相切.21.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5,如果两圆内含,那么a 的取值范围是_________.22.如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆,B 为半圆上一点,连接AB 并延长至C ,使BC =AB ,过C 作CD ⊥x 轴于点D ,交线段OB 于点E ,已知CD =8,抛物线经过O 、E 、A 三点. (1)∠OBA = °; (2)求抛物线的函数表达式;(3)若P 为抛物线上位于第一象限内的一个动点,以P 、O 、A 、E 为顶点的四边形面积记作S ,则S 取何值时,相应的点P 有且只有....3个?A Byx53(a ,0)O综合问题中的分类讨论类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°2.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. 如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论:圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB 只有一个公共点,则r的取值范围是___ __.5.在△ABC中,AB=AC=5,3cos5B .如果圆O的半径为10,且经过点B、C,那么线段AO的长等于.6.如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?类型之三方程、函数中的分类讨论:方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.9. 分式方程无解的分类讨论问题 (1)=+=-+-a 349332无解,求x x ax x (2)猜想:把“无解”改为“有增根”如何解?10. 已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。