机器人系统组成结构

合集下载

机器人系统的组成

机器人系统的组成

机器人系统的组成机器人系统通常由以下几个组成部分构成:1. 机械结构:包括机器人的物理外形和各个部件的机械结构,如关节、链条、连接器、传感器等。

这些结构决定了机器人的动作范围和运动能力。

2. 电气控制系统:包括电机、驱动器、传感器、计算机等电子设备,用于控制机器人的运动和感知环境。

电气控制系统接收来自计算机的指令,并将其转化为机械动作。

3. 计算机控制系统:包括嵌入式系统、单片机、PLC等,用于控制机器人的运动和执行任务。

计算机控制系统负责运算、决策和监控机器人的各种功能。

4. 感知系统:包括各种传感器,如摄像头、激光雷达、红外传感器等,用于感知机器人周围的环境信息。

感知系统可以获取到环境中的物体位置、距离、光照强度等数据,以辅助机器人的决策和动作。

5. 控制算法:包括路径规划、运动控制、动作规划等算法,用于指导和控制机器人的各项动作。

控制算法可以使机器人对特定任务做出适当的反应和行动。

6. 用户界面:通常是一台显示屏或者计算机界面,与机器人进行通信,可以通过界面对机器人进行控制和监控。

用户界面还可以提供机器人的工作状态、故障报警等信息。

这些组成部分相互配合,共同组成一个完整的机器人系统,实现使用者对机器人的控制和监控,并执行各种任务。

另外还有一些可选的组成部分,可以根据具体的机器人应用需求进行选择和配置:1. 操作系统:机器人可能运行一个特定的操作系统,如Linux 或Windows,用于管理和协调机器人系统的各项功能。

2. 数据存储和通信设备:机器人可能需要具备一定的存储和通信能力,以便存储和传输数据。

例如,机器人可以存储感知到的环境信息和任务执行过程中的数据。

3. 电源系统:机器人通常需要电源来驱动各个部件的工作,可以采用电池、电源适配器等不同形式的供电方式。

4. 人机交互接口:机器人可以配备触摸屏、声音识别、手势识别等人机交互设备,以便用户能够与机器人进行沟通和交互。

需要注意的是,不同类型的机器人系统在组成部分上可能会有所不同。

机器人四大系统组成部分

机器人四大系统组成部分

机器人四大系统组成部分机器人是一种具备自主行动和人工智能的机械装置。

它可以执行各种任务,无论是在工业生产中还是在日常生活中。

机器人的功能和性能很大程度上取决于其系统的组成部分。

一个完整的机器人系统通常由以下四大系统组成:感知系统、控制系统、执行系统和智能系统。

一、感知系统感知系统是机器人系统的重要组成部分,它使机器人能够感知和理解外部环境。

感知系统使用各种传感器和感知器件来获取信息,并将其转化为数字信号供控制系统和智能系统使用。

感知系统可以包括视觉传感器、声音传感器、触觉传感器、力传感器等。

视觉传感器能够帮助机器人识别和跟踪对象,通过摄像头获取图像,并将图像转化为数字信号以便机器人进行处理。

声音传感器可以帮助机器人感知声音信号,如语音识别和声音指令等。

触觉传感器可以让机器人感知外部的接触力和压力,从而更好地进行操作。

力传感器可测量机器人施加的力或受到的力,以确保安全和精确度。

感知系统的作用是为机器人提供与环境的交互和理解能力,使其能够做出相应的反应和决策。

二、控制系统控制系统是机器人系统的核心,它负责接收并解释感知系统提供的信息,并针对性地生成控制信号以操纵执行系统。

它基于机器人的操作目标和任务要求,通过算法和规划,将高级指令转化为底层的动作和运动。

控制系统通常包括硬件和软件两个方面。

硬件方面,它包括控制器、运动控制器、逻辑电路等。

软件方面,它包括运动规划算法、决策算法等。

控制系统的设计和优化是确保机器人能够准确执行任务的关键。

三、执行系统执行系统是机器人系统的执行力部分,它将控制系统提供的控制信号转化为机械运动。

执行系统通常由电动机、液压系统或气动系统组成,根据机器人的具体用途和任务要求进行选择。

执行系统的功能是根据控制信号实现机器人的准确运动和操作。

它可以实现机器人的各种机械动作,如移动、抓取、举起等。

四、智能系统智能系统是机器人系统的大脑,它赋予机器人智能和学习能力。

智能系统通过处理和分析感知系统提供的信息,并采取适当的决策和行动。

简述机器人的组成和分类

简述机器人的组成和分类

简述机器人的组成和分类机器人是一种由人工智能技术驱动的自动化设备,它在不同领域具有广泛的应用。

本文将简述机器人的组成和分类。

一、机器人的组成机器人通常由以下几个组成部分构成:1. 机械结构:机器人的机械结构是其身体的具体形态,包括机器人的外形、骨架和关节等。

机械结构的设计决定了机器人的运动能力和适应能力。

2. 传感器系统:传感器系统使机器人能够感知和获取周围环境的信息。

常见的传感器包括摄像头、激光雷达、声音传感器等,它们可以帮助机器人实时地感知到周围的物体、人和环境。

3. 控制系统:控制系统是机器人的大脑,负责接收和处理传感器获取的信息,并作出相应的决策和行动。

控制系统通常由硬件和软件组成,硬件包括主控芯片和执行器,软件则负责算法和逻辑的实现。

4. 电源系统:电源系统为机器人提供能量,使其能够正常运转。

电源可以是电池、充电宝或者连接外部电源等形式,不同的机器人根据其应用场景和能耗需求选择不同的电源方案。

二、机器人的分类根据机器人的用途和功能,可以将机器人分为以下几类:1. 工业机器人:工业机器人主要用于工业生产中的自动化操作,如焊接、装配、搬运等。

它们通常具有较大的工作空间和承重能力,并且能够高效地完成重复性、精密性的任务。

2. 服务机器人:服务机器人用于提供人类生活和服务的支持,如清洁机器人、导览机器人、护理机器人等。

它们可以与人类进行交流,并执行一些特定的任务,提高人类的生活质量和便利性。

3. 军事机器人:军事机器人主要应用于军事领域,用于战场侦查、侦察、救援等任务。

军事机器人通常具有高度的机动性、防护能力和作战能力,可以在危险环境下执行任务,减少对士兵的伤害风险。

4. 医疗机器人:医疗机器人主要用于医疗领域的辅助治疗和手术操作。

如手术机器人可以通过微创手术的方式减少手术切口,提高手术的精确性和安全性,为患者带来更好的治疗效果。

5. 家庭机器人:家庭机器人是为了满足家庭生活需求而设计的机器人,如智能扫地机器人、智能助理机器人等。

工业机器人的基本结构

工业机器人的基本结构

工业机器人的基本结构工业机器人是一种用于自动化生产的机器人系统,它具有复杂的结构和多样的功能。

下面将介绍工业机器人的基本结构。

工业机器人主要由机械结构、传感器、控制系统和执行器四个主要部分组成。

一、机械结构工业机器人的机械结构是机器人的骨架,它决定了机器人的外形和运动能力。

机械结构包括机器人的机身、关节、连杆、末端执行器等部分。

1. 机身:机身是机器人的主体部分,承载着各个关节和执行器。

一般采用铝合金、钢材或碳纤维等材料制作,具有较强的刚性和轻量化特性。

2. 关节:关节是连接机身和连杆的部分,用于实现机器人的运动。

根据运动方式的不同,关节可以分为旋转关节和直线关节。

旋转关节可以使机器人在水平方向上旋转,而直线关节可以使机器人在垂直方向上进行上下运动。

3. 连杆:连杆是连接关节和末端执行器的部分,它们通过关节的旋转和直线运动,使机器人能够完成各种复杂的任务。

连杆一般采用铝合金或钢材制作,具有一定的刚性和强度。

4. 末端执行器:末端执行器是机器人的“手”,用于实现机器人的具体操作。

常见的末端执行器包括夹爪、焊枪、刀具等,不同的末端执行器适用于不同的工作任务。

二、传感器传感器是工业机器人的感知器官,用于获取周围环境的信息,帮助机器人做出相应的动作。

常见的传感器包括视觉传感器、力传感器、位置传感器等。

1. 视觉传感器:视觉传感器可以通过拍摄和分析图像,实现对物体的识别、定位和测量。

它可以帮助机器人在不同的工作环境中准确定位和操作物体。

2. 力传感器:力传感器可以测量机器人施加在物体上的力和力矩,帮助机器人控制力的大小和方向,实现精确的操作和装配。

3. 位置传感器:位置传感器可以测量机器人各个关节的位置和姿态,提供给控制系统进行运动控制。

常见的位置传感器有编码器、陀螺仪等。

三、控制系统控制系统是工业机器人的大脑,负责对机器人进行运动控制和任务规划。

它由硬件和软件两部分组成。

1. 硬件:硬件部分包括中央处理器(CPU)、存储器、输入输出接口等。

工业机器人系统的组成

工业机器人系统的组成

工业机器人系统的组成
一、工业机器人系统的组成
工业机器人系统是由机器人本体、控制器、传感器、发动机、驱动器和操作平台组成的一个复杂的系统。

1、机器人本体
机器人本体是机器人的核心部件,由机械结构、电气控制及管理系统三部分组成,它主要负责移动、完成指定的加工任务,具体的结构及性能根据具体的机器人类型而定。

2、控制器
控制器是机器人系统的核心部件,它负责接收外部信号并驱动机器人本体执行指定的任务,具体控制策略及实现方法根据机器人类型而定。

3、传感器
传感器用于检测工作环境及机器人本体的变化,以实现机器人的定位和跟踪目标,是机器人系统的重要组成部分。

4、发动机
发动机主要负责提供机器人本体的动力,发动机类型普遍有直流电机、交流电机、液体发动机和流体发动机等。

5、驱动器
驱动器是由驱动器控制器、变换器、伺服系统和反馈系统组成的硬件系统,用于驱动机器人本体的机械部件,实现机器人的精密运动控制。

6、操作平台
操作平台是由计算机、机器人控制系统和辅助设备组成的系统,用于机器人操作前的程序设计、监控、仿真等任务,是机器人工作的重要环节。

工业机器人的典型结构

工业机器人的典型结构

工业机器人的典型结构
工业机器人的典型结构包括机械臂、控制系统、传感器和执行器等基本部分。

其中:
1. 机械臂:是工业机器人的主要部分,通常包括可伸缩的臂、关节、末端执行器和触觉传感器等。

其结构复杂,设计灵活,能够执行各种不同的任务和功能。

2. 控制系统:是机器人的大脑,包括计算机、控制器和编程器等。

控制系统能够接收外部指令,对机械臂进行准确的控制和调度,调整机器人的运动和转向速度等。

3. 传感器:是机器人的“眼睛”和“耳朵”,能够感知环境和物体,通过视觉识别、声音识别、力量反馈和距离测量等方式获得信息,并传达给控制系统。

4. 执行器:是机器人的“手”和“脚”,能够根据控制系统的指令,执行各种不同的任务,比如移动、抓取、拆分、焊接和研磨等。

总之,工业机器人的典型结构是多种部件的综合体,具有复杂的功能和灵活的设计,能够满足不同领域和产业的机械化需求。

机器人的组成结构

机器人的组成结构
一般情况下,实现臂部的升降、回转或或俯仰等 运动的驱动装置或传动件都安装在机身上。臂部的运 动愈多,机身的结构和受力愈复杂。机身既可以是固 定式的,也可以是行走式的,即在它的下部装有能行 走的机构,可沿地面或架空轨道运行。
常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。

机器人系统的设计与实现

机器人系统的设计与实现

机器人系统的设计与实现随着科技的不断发展,机器人在我们的生活中扮演着越来越重要的角色。

机器人可以在工厂生产线上执行同样的任务,可以在医院协助医生进行手术,还可以在家庭中进行清洁或甚至陪伴。

然而,机器人的设计与实现需要多方面的技术和知识,让我们一起来了解一下机器人系统的设计与实现。

一、机器人系统的基本组成机器人系统的基本组成包括机械结构、电子控制和软件系统三部分。

1. 机械结构机械结构是机器人系统的基础,通常包括底盘、臂和夹持器三个主要部分。

在建立机械结构时,需要考虑机器人执行的任务、可行的材料、负载能力、基本灵活性以及其他功能等方面。

2. 电子控制电子控制是机器人运行的核心,包括电路、电源、传感器和执行器等。

电子控制可以使机器人实现各种操作,如检测、响应和执行任务等。

3. 软件系统软件系统是机器人系统的大脑。

软件的主要目的是指导机器人进行一定的操作,如感知、分析和执行。

软件系统可以包括嵌入式系统、控制系统和人机界面等。

二、机器人的设计和软件开发对于机器人系统的设计和开发,需要合适的软件和硬件环境。

下面是典型的设计和开发步骤:1. 设计和建模机器人系统的设计从创建模型开始,从创建草图、细节、组件和配件等等着手。

在这个过程中,我们需要采用实现各种任务和行为的机器人调节器。

在建模完成后,需要进行虚拟仿真,以模拟实际场景。

2. 选定硬件由于机械结构,电子和软件系统的各种要求,我们需要选择合适的硬件,如微控制器、形态材料、感应器和执行器等。

3. 软件开发在这个阶段,需要实现控制器、执行器和中心处理,建立各种算法和框架,以实现预定任务。

同时,需要对水平传送带和中央程序进行编程。

最后检测和验证各部分之间的协作。

三、机器人的应用机器人系统在医疗、制造、航空航天、农业、能源和矿产资源等各个领域都有广泛的应用。

下面是一些典型的机器人应用:1. 商业和制造业机器人在业务流程自动化、装配、包装、生产线上的加工、物流和库存管理等领域有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人控制系统负责协调、管理、控制系统的所有部件进行工作 ,其基本功能包括:
记忆功能 与外围设备联系功能 示教功能 人机接口 位置伺服功能 传感器接口 故障诊断安全保护功能
22
三、控制系统
机器人控制系统框图
23
三、控制系统
3 机器人控制系统结构
机器人控制系统可分为集中控制、主从控制、分散控制
集中控制:所有控制工作由一台计算机(CPU)完成
轮足混合型行走机构可提高行走效率
问题:大家觉得 轮足混合式机器 人主要优点是什 么??
科学家最新研制的ATHLETE(全地 S形hrim六p全足地地形移外动探机器测人器)机器人
轮足混合是机器人 集中了轮式机器人 的高速高效和足式 机器人的特殊地形 适应性两种优势!
21
三、控制系统
1机器人控制系统的基本功能
第二讲 机器人组成结构
1、机器人组成概述 2、机器人机械系统 3、机器人控制系统 4、机器人感知系统 5、机器人驱动系统
2
一 、机器人组成概述
1 机器人系统组成
机器人系统的三大部分
机械部分



传感部分

控制部分
人机交互系统




控制系统




驱动系统



机械系统

机器人—环境交互系统
3
一、机器人组成概述
有刷 无刷
43
五、驱动系统
3电动机-直流电机的控制
直流 (DC)伺服电机
开环脉冲宽度调速系统的组成:
直流电机调速系统结构(开环)
44
五、驱动系统
4电动机-步进电机的控制
结构与工作原理描述
工作原理:
0100
0010
控制方法:
1000
0001
(1)给脉冲,对应一个步距
(2)改变频率,控制速度
(3)改变脉冲顺序,改变转动方向
在机器人感知系统中,陀螺仪作为一种惯性导航器件
国产单轴陀螺仪模块
进口单轴陀螺仪模块
39
四、感知系统
4传感器-检测类传感器
压力传感器
位移传感器
扭矩传感器
超声波测距传感器
电流检测传感器
40
五、驱动系统
1驱动器 机器人主要驱动器:
(1)电动机:伺服电机、步进电机、直接驱动电机 (2)液压驱动器 (3)气动驱动器 (4)形状记忆合金驱动器 (5)磁滞伸缩驱动器
典型气动系统如下图所示
优点:系统结构简单,价格低; 高速直线运动; 容易实现力和缓冲控制;
缺点:高精度的位置控制和速度控制都比较困难,驱动刚性比较差。
51
谢谢
52
机器人传感器功能和作用: 检测机器人周围以及自身的环境信息
30
四、感知系统
1 传感器
问题:请列举你所了解的传感器类型
常见传感器:
光线类传感器 触觉开关类传感器 超声探测器 温度等检测类传感器 电源检测类传感器
31
四、感知系统
2 传感器-光传感器
光线传感器功能:测距、目标检测、颜色识 别等,
主要类别:激光、红外、视觉等
步进电机驱动结构图
反应式步进电机结构
45
五、驱动系统
5 电动机-无刷电机的控制
定子
永磁转子 传感器定子 传感器转子
一体式无刷直流电机由电动 机主体和驱动器组成
无刷直流电动机自控式运
行:
直流电 源
控制信号
无刷电机结构示意图
逆变器
电机本体
控制器
位置检测器
无刷电机内部控制结构
输出
46
五、驱动系统
6 电动机-舵机的控制
系和协调的系统; 人机交互系统:操作人员参与机器人控制并与机器人进行联系
的装置;
4
一、机器人组成概述
3 机器人部分术语及主要技术参数
关 节:即运动副,即手臂
各零件之间发生相对运动 的机构
连 杆:机器人手臂上被
相邻两关节分开的部分
5
一、机器人组成概述
3 机器人部分术语及主要技术参数
自由度:亦称坐标
其他重要参数:
承载能力:指机器人在工作范围内的任何位姿
上所能承受的最大负载
工作速度:单位时间内所移动的距离或转动的
角度。
刚度:机身或臂部在外力作用下抵抗变形的能
力。
8
二、机械系统组成
1 机器人机械系统组成
机器人机械结构通常由以下部分组成
手臂:连接机身和手腕的部分
手腕:连接手部和手臂的部件 手部:手腕上配置的操作机构,也称末端操作器 机身:机器人的基础部分,起支承作用 行走机构:机器人用来移动的重要装置
二、机械系统组成
4 机器人的机身
回转与俯仰机身:该类机身主要包括回转与俯仰两部分 类人式多自由度机身:与人体结构类似
回转与俯仰式机身
类人式多自由度机身
15
二、机械系统组成
5机器人的行走机构
行走机构是用来移动的重要装置可分为: 固定轨迹式 无固定轨迹式
固定轨迹式行走机构
无固定轨迹式行走机构 (1)轮式行走机构 (2)履带式行走机构 (3)足式行走机构 (4)轮足混合行走机构
48
五、驱动系统
7液压驱动 利用液体的抗挤压力来实现力的传递.
典型液压伺服控制系统
d 2 d (Vol) dx
4
Q d (Vol) d 2 dx d 2 x
dt
4 dt 4
dx表示期望的位移; dv是期望的速度;
控制液体流入速度--实现控制活塞速度
位置控制阀原理
49
五、驱动系统
7液压驱动
MT9D111
OV7670ห้องสมุดไป่ตู้
34
四、感知系统
3传感器-触碰类传感器
触碰类传感器: 非接触式、接触式
接触式:包括微
动开关、行程开关 、挡铁等
非接触式:
主要为接近开关
35
四、感知系统
4传感器-检测类传感器 其他传感器
增量式旋转编码器: 电机转速和角度的测量(机械式、电磁式)
主要技术参数:频率、线数
2 系统概念
机械系统:由关节连在一起的许多机械连杆的集合体,形成开 环运动学链系;
驱动系统:使各种机械部件产生运动的装置; 感知系统:获取内部和外部环境中的有用信息,通过这些信息
确定机械部件各部分的运行状态; 控制系统:通过作业指令及反馈信息支配执行机构完成规定动
作的处理单元,包括闭环和开环系统; 机器人环境交互系统:实现机器人与外部环境中的设备相互联
轴数,是指描述物 体运动所需要的独 立坐标数
工作空间:机器人
手腕参考点或末端操 作器安装点所能到达 的所有空间区域
PUMA机器人工作空间
6
一、机器人组成概述
3 机器人部分术语及主要技术参数
思考:人的手臂共有多少个自由度?
共有27个自由度!!
人臂与手的自由度示意图
7
一、机器人组成概述
3 机器人部分术语及主要技术参数
9
二、机械系统组成
2 机器人手部
两类:工业机器人的手部和仿人机器人的手部。
工业机器人手部: 夹钳式手部 吸附式手部(气吸式、磁吸式)
夹钳式手部示意图 1手指;2、4传动机构;3驱动装置;5工件
吸附式手部示意图 真空吸附式、气流负压气吸式、挤压排气式
10
二、机械系统组成
2 机器人手部
仿人机器人的手部
36
四、感知系统
4传感器-检测类传感器
温度传感器: 数字量输出:以一定协议直接向外输出数字量 模拟量输出:一般为通过电阻的变化间接测量
18B20
PT100
37
四、感知系统
4传感器-检测类传感器
加速度传感器: 一种能够测量加速力的电子设备。
38
四、感知系统
4传感器-检测类传感器
陀螺仪: 角运动检测装置
28
三、控制系统
6 控制器种类
单片机:使用简单,价格低廉。 DSP:速度快、实时性好,能够快速地进行大量的运算。 专用运动控制卡:是功能强大,价格昂贵。
51单片机
430单片机
AVR单片机
STM32
DSP
专用运动控制卡
29
四、感知系统
1 传感器
传感器:
是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件
起重梁
16
二、机械系统组成
5机器人的行走机构
(1)轮式行走机构
轮式是机器人最流行的行走运动机构,它具有高效率、机械简单等特点
全方位轮
轮式机器人车轮形式
17
二、机械系统组成
5机器人的行走机构
(2)履带式行走机构 履带式行走机构的主要特征是将圆环状的无限轨道带绕在多个车轮上, 使车轮不直接与路面接触
3机器人的手臂
手臂作用是支承腕部和手部,并将披抓取的 工件运送到给定的位置上
机器人手臂机械结构形式
13
二、机械系统组成
4机器人的机身
机身:与臂部相连,支承臂部
分类:
直线移动机身
回转与升降机身
该类机器人的运动形式大多为
该类机身主要包括回转与升降两
移动式
部分
横梁直线移动式机身
回转与升降式机身
14
履带式侦查机器人
thunder3仿生履带机器人
18
二、机械系统组成
5机器人的行走机构
军用履带机器人
19
二、机械系统组成
5机器人的行走机构
(3)足式行走机构
本田公司的Asimo
相关文档
最新文档