双直线二次曲线系方程地几个应用实例

合集下载

二次曲线系方程巧解一类解析几何问题

二次曲线系方程巧解一类解析几何问题

抓住本质,获得简洁——用二次曲线系方程破解一类高中解几难题江苏省扬州中学 唐一良 225009背景知识:高中二次曲线包括圆、椭圆、抛物线、双曲线、两条相交直线(退化的双曲线)等,其方程为:推论1:L 1(x,y)=0,L 2(x,y)=0,F(x,y)=0是两条不重合的直线和一二次曲线,且两直线分别与曲线相交,则经过它们四个交点的二次曲线系方程为:mF(x,y)+nL 1L 2=0 (m,n 不同时为零) 。

易知它们的交点是这个曲线系中所有曲线的公共点,即过四交点的曲线系方程。

推论2:L 1(x,y)=0,L 2(x,y)=0,L 3(x,y)=0,L 4(x,y)=0是四条两两不重合的直线,考察曲线系方程mL 1L 3+nL 2L 4=0 (m,n 不同时为零),易知L 1与L 2、L 2与L 3、L 3与L 4、L 4与L 1的交点是这个曲线系中所有曲线的公共点,所以此方程为过四交点的曲线系方程。

【注:mL 1L 3+nL 2L 4是个至多两次的多项式,其实更进一步,他一定是两次的,因为它过四个不共线的点。

】 近几年一些高考题和高中联赛题计算繁复,让人望而却步,但应用二次曲线系方程的观点,这些问题则可以得到更为简洁的求解与证明,下面举几例,以飨读者。

例1. (2011年全国必修+选修II 第21题)已知F 为椭圆1222=+y x 在y 轴正半轴上的焦点,过F 斜率为2-的直线l 与C 交于A ,B 两点,点P 满足:=++(1)证明:点P 在椭圆C 上;(2)设点P 关于点O 的对称点为Q ,证明:A ,B ,P ,Q 在同一圆上。

(1)证明:(略)(2)证明:02:=-y x PQ ,经过PQ 、AB 与椭圆C 交点A 、B 、P 、Q 的二次曲线为0)2)(12(2222=--++-+y x y x y x λ,整理得:++2)22(x λ2)1(y λ-02)2(=---y x λ,若表示圆,则λλ-=+122 31-=⇒λ,即0624422=--++y x y x ,即为A 、B 、P 、Q 所在的圆的方程. 例2.(2005年湖北高考第21题)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(1)确定λ的取值范围,并求直线AB 的方程;(2)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. 解:(1)(略)(2)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根, ∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且 于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x k CD ④将直线AB 的方程x +y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上. (注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ 由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(1)可知02:=+-y x CD ,故经过AB 、CD 与椭圆0322=-+λy x 交点即A 、B 、C 、D 的曲线方程,可设为0)2)(4(322=+--++-+y x y x m y x λ整理得:0862)1()3(22=--+--++λm ny mx y m x m若表示圆,则1013-=⇒≠-=+m m m ,即得08622222=-+-++λy x y x 整理得:23)23()21(22-=-++λy x ,又由(1)可知12>λ ∴023>-λ,故A 、B 、C 、D 必在以23)23()21(22-=-++λy x 为方程的圆上. 【评注】:比较两种解法,用二次曲线系的角度审视问题,观点高,更体现问题的实质,从而避免了大量繁琐的运算,将数学的简洁美体现得淋漓尽致。

2.3双曲线与直线,中点弦

2.3双曲线与直线,中点弦

情况2.二次项系数不为0时,上式为一元二次方程, Δ>0 直线与双曲线相交(两个交点) Δ=0 直线与双曲线相切(一个交点) Δ<0 直线与双曲线相离(没有交点)
变式训练
1.双曲线x2-y2=1的左焦点为F,点P为左支下半支上 任意一点(异于顶点),则直线PF的斜率的变化范围 0 1, , 是_________ 2.若直线y=kx-1与双曲线x2-y2=1有且只有一个
x2 y2 3.过原点与双曲线 4 33 取值范围是 , 2 1 交于两点的直线斜率的 3 2 ,
练习
x2 y2 1只有一个交点的 3.过点P(1,1)与双曲线 9 16 4
直线共有_______条.
变式:将点P(1,1)改为
解 : (2)5 12 9 12 45
5x 9 y 14 0
变式训练 1.如果直线y=kx-1与双曲线x2-y2=4没有公共点,求k 的取值范围.
y=kx-1 2 2 解:由 2 得 (1 - k )x +2kx-5=0, 2 x -y =4
易知此方程无解. 2 1 - k ≠0 5 5 由 得 k> 或 k<- , 2 2 2 2 Δ =4k +20(1-k )<0 5 5 则 k 的取值范围为 k> 或 k<- . 2 2
韦达定理法:先写出直线方程,再代入双曲线方程, 利用韦达定理可求得中点坐标。 设而不求
点差法:利用端点在曲线上,坐标满足方程,作差 构造出中点坐标和斜率。
2 b ( x1 x2 )( x1 x2 ) a2 ( y1 y2 )( y1 y2 ) 0
b2 2x0 k AB a2 2 y0 0

二次曲线的性质及应用

二次曲线的性质及应用

二次曲线的性质及应用----研究性学习报告山东省实验中学2008级23班刘谦益傅明睿陈霖指导教师:王学红摘要二次曲线与我们的生活密切相关,它们的性质在生产、生活中被广泛应用。

本小组成员在此次研究性学习活动中对二次曲线的性质进行了一系列探讨,从二次曲线的定义入手,就二次曲线的方程、光学性质及应用等方面展开说明。

AbstractConics are closely related to our living. Their characters have been widely applied in the producing and our living. The members of our team carried out a series of discussions with the characters of the conics at the research-based learning activities. Starting with the definition of conics, we illuminated with the equation, the optical properties and the application areas of the conics.二次曲线的性质及应用----研究性学习报告山东省实验中学2008级23班 刘谦益 傅明睿 陈霖指导教师:王学红一、绪论在我们的生活中,二次曲线无处不在。

车轮滚滚,留下一路红尘;烈日炎炎,照亮亘古乾坤。

这些都给我们留下圆的形象。

构筑了五彩世界的圆,就是最简单的二次曲线——x 2+y 2=r 2从椭圆方程说起当我们在纸上钉两个图钉,(它们的间距为2c ),将一根长为l 的绳子分别各系在一个图钉上,用笔绷紧绳子绕一圈,就画出了一个椭圆——因为椭圆上任意一点到两焦点的距离和相等,而且不难得出这个椭圆长轴a= ,短轴b=,我们把它放在直角坐标系中,设F 1(c,0),F 2(-c,0),可知椭圆上任意一点p(x,y)满足PF 1+PF 2=l=2a 。

二次曲线系在圆锥曲线中的应用+教案设计-2022届高三数学二轮复习微专题

二次曲线系在圆锥曲线中的应用+教案设计-2022届高三数学二轮复习微专题

微专题:二次曲线系在圆锥曲线中的应用一、内容分析1.本专题在高考中的地位圆锥曲线是高中数学的重要内容,是高考数学中的必考内容,直线与圆锥曲线的关系是高考中的热点、难点,在高考试卷中,一般在解答题倒数第二题位置出现,难度系数大;圆锥曲线问题除了考察学生的运算能力,还考察学生的分析问题和解决问题的能力,历年高考学生得分率也较低,因此需要加大学生对这块处理能力的培养.2.考向分析直线与圆锥曲线相交问题,一直是高考数学的热点;以大学内容或经典结论为背景出题是高考命题的趋势.二、目标分析1.知识目标(1)理解并掌握如何将两相交直线表示成二次曲线;(2)掌握当两相交直线与圆锥曲线相交时,过四交点的曲线的曲线方程的表示方法;(3)理解并掌握二次曲线系解决圆锥曲线中多共点问题的思想与步骤.2.学情分析本人所带高三(13)班是一个数理化组合班,学生基础相对较好,有一定的思维能力,但是每次考试,圆锥曲线解答题得分率并不高,得满分者寥寥无几,说明学生对直线与圆锥曲线的掌握其实并好;所以本节课,将引导学生理解并掌握这种处理直线与圆锥曲线相交问题的技巧。

3.重点难点重点:运用二次曲线系解决两相交直线与圆锥曲线有公共点问题;难点:运用二次曲线系解决圆锥曲线问题的类型,思想和步骤;4. 学科素养二次曲线系其实是一种数学模型,所以在培养学生逻辑推理和数学运算能力的同时,也要培养学生数学建模能力;5.教法学法二次曲线系是解决圆锥曲线问题的一种新的思路,所以本次课,主要采用讲授法;但对一种新方法学生掌握一般有一个过程,所以在教学过程中,我采用循序渐进的方法,先采用曲线系方法处理直线与圆,圆与圆的位置关系问题,再慢慢引导学生上升到运用曲线系方法处理直线与圆锥曲线关系问题.三、教学过程(一)提出问题圆锥曲线是高中数学的重要内容,是高考数学中的必考内容,直线与圆锥曲线的位置关系是高考中的热点、难点,在高考试卷中,一般在解答题倒数第二题位置出现,难度较大,历年高考学生得分率也较低;今天我们来探究一种处理直线与圆锥曲线位置关系问题的新方法.引例【2021年新高考Ⅰ卷21】在平面直角坐标系xoy中,已知点1(17,0)F-2(17,0)F,点M满足122MF MF-=.记M的轨迹为C. (1)求C的方程;(2)设点T在直线12x=上,过T的两条直线分别交C于,A B两点和,P Q且TA TB TP TQ=,求直线AB的斜率与直线PQ的斜率之和.1. 什么是曲线系?曲线系是指一类有共同特征和属性的曲线,我们用同一种方程形式表示出来,并引入一个参数去区分这些曲线,这就是曲线方程.我们见过的曲线系有:2. 常见曲线方程(1)与已知直线0Ax By C ++=平行的直线系方程为0Ax By m ++=(m 为参数) (2)与已知直线0Ax By C ++=垂直的直线系方程为0Bx Ay m -+=(m 为参数) (3)与圆222()()x a y b r -+-=有相同圆心的圆的方程22()()x a y b m -+-=(m 为参数且0m >)(4)与椭圆22221x y a b+=共焦点的椭圆方程为22221x y a b λλ+=++ (5)与双曲线22221x y a b-=共焦点的双曲线方程为22221x y a b λλ-=+- (6)与双曲线22221x y a b -=共渐近线的双曲线方程为2222x y a bλ-=(0λ≠)(7)等轴双曲线系22x y λ-=(0λ≠)直线与圆锥曲线相交时,我们还会用到共交点曲线系方程. 3.共交点曲线系方程已知11:(,)0C F x y =,22:(,)0C F x y =,过12,C C 交点的曲线系方程为12(,)(,)0F x y F x y λμ+=.说明:(1)1C 和2C 可以是直线,也可以是曲线(直线其实也是曲线); (2)为什么此方程可以表示过12,C C 交点的曲线方程?证明:设00(,)P x y 是12,C C 交点,则100(,)0F x y =,200(,)0F x y =100200(,)(,)0F x y F x y λμ∴+=(2)实际应用过程中,过12,C C 交点的曲线系方程可设为为12(,)(,)0F x y F x y λ+=或者12(,)(,)0F x y F x y λ+=(虽有局限但不影响解题)4.简单应用举例: (1)【选择性必修一P98第8题】 求圆心在直线40x y --=上,并且经过圆22640x y x ++-=和226280x y y ++-=的交点的圆的方程.解析:此题用常规方法需要解方程求圆心坐标和半径,如果用曲线系做就比较简单 设所求圆的方程为222264(628)0x y x x y y λ++-+++-=, 化成标准方程为:得圆心坐标为,7λ=(2) 求经过直线240x y ++=和222410x y x y ++-+=的交点,且过原点的圆的方程.解析:设所求圆的方程为22241(24)0x y x y x y λ++-++++=,14λ=这里只是曲线系方程的简单应用,可见在处理两圆相交和直线与圆相交的问题时,共交点曲线系方程带来了很大的方便,那么在处理直线与圆锥曲线(椭圆、双曲线、抛物线)相交的问题或者圆与圆锥曲线相交的问题时,能否也可以使用共交点曲线系方程呢?这就是我们今天要重点探究的问题—二次曲线系的应用.5. 二次曲线二次曲线方程一般形式:220Ax By Cxy Dx Ey F +++++=(A B C D E F 、、、、、不全为0) 说明:(1) 我们高中阶段所研究的圆锥曲线都是二次曲线,一般二次曲线方程中含有六个参数,要确定一条二次曲线,一般要五个点,四个点,得到的是二次曲线系;三个点或两个点,曲线无法确定;(2) 二次曲线除了可以表示圆、椭圆、双曲线、抛物线还可以表示两条相交直线,即双直线二次曲线. (3) 双直线二次曲线已知两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=相交,那么这两条相交直线可以表示为111222()()0A x B y C A x B y C ++++=;(4) 过两二次曲线交点的曲线系方程:已知11:(,)0C F x y =,22:(,)0C F x y =,过12,C C 交点的曲线系方程为12(,)(,)0F x y F x y λμ+=.实际应用过程中,过12,C C 交点的曲线系方程可设为为12(,)(,)0F x y F x y λ+=或12(,)(,)0F x y F x y λ+=下面我们来看二次曲线系的应用 (二)解决问题引例 【2021年新高考Ⅰ卷21】在平面直角坐标系xoy 中,已知点1(17,0)F -,2(17,0)F ,点M 满足122MF MF -=.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 点,且TA TB TP TQ =,求直线AB 的斜率与直线PQ 的斜率之和.解析:(1) 由题,12122217MF MF F F -=<=由双曲线定义可知:M 的轨迹为以1(17,0)F -,2(17,0)F 长22a =的双曲线的一支(右支),M 的轨迹C 的方程为221(0)16y x x -=>. (2)解法一:由题,设1(,)2T m ,设直线11:()2AB y k x m =-+,21:()2PQ y k x m =-+,解法二:(二次曲线系)TA TB TP TQ=,,,A B Q P⇔四点共圆由题,设1(,)2T m,设直线11:()2AB y k x m=-+,21:()2PQ y k x m=-+,AB PQ方程为:1211[()][()]022k x m y k x m y-+--+-=过,,,A B Q P四点的曲线方程为221211[()][()][1]02216yk x m y k x m y xλ-+--+-+--=22221212111()()()()()()[1]0 22216y k k x k x m y k x m y m y xλ⇔-+--+--+-+--=2222121211()()()()()[1]02216yk k x k k x m y m y xλ⇔-++--+-+--=,,,A B Q P四点共圆, ∴上方程定可以化成圆的一般方程形式,一定不会含由xy项,12k k∴+=思考:这种解法的关键是什么?什么情况下可以用这种方法呢?有何优点?经验总结:1.两条相交直线可视为二次曲线,该二次曲线可用一个方程表示;2.二次曲线系的适用条件:当两相交直线与圆锥曲线相交形成有四个交点时,或圆锥曲线上存在四个点时,这四个点在三条二次曲线上(点的三重身份),这种方法的实质是用其中的两条二次曲线表示第三条二次曲线;3.二次曲线系是一种程序性方法,模式固定、易于操作.其解题步骤:设(曲线系方程)→对(系数对应相等)→求(关键值);4. 本题的命题背景是四点共圆,有结论:非圆二次曲线上四点,,,A B C D 共圆则0AB CD k k +=,0BC AD k k +=,0AC BD k k +=,反之也成立.(三)课堂练习【2022年湖北省八市3月联考21】设椭圆22221(0)x y C a b a b+=>>:的左、右顶点分别为A ,B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆的离心率32e =,短轴长为2. (1)求椭圆C 的方程;:4x +:x xt t++即 由222(,)22022x my t m t t M x y m m =+⎧----⇒⎨-+=--⎩ 2222242422BP t t m k m t m t m ++-==++-+- 22:(2)(2)0424424t t BP y x x y m t m t ++∴=---=+-+-即2:(22)((2))0424t AD BP x y x y m t +-+--=+-:(1)0xAB DP y y t+-=过四点ADPB 的曲线方程为2(22)((2))(1)0424t xx y x y y y m t tλ+-+--++-=+- 整理得2222(2)4(2)4(2)(2)[1][2]0424424424424t t t t x y xy y m t t m t m t m t λλλ+++++++--+---=+-+-+-+-因为四点ADPB 在椭圆C 上,所以该曲线可以表示椭圆C ,与椭圆C 方程22440x y +-=比对应该满足:2(2)10424t t m t λ+--=+-,4(2)2424t m t λ++=+-同时成立消去λ 得(2)(2)0t t m ++-=,又20t +=不恒为0,202t m t m ∴+-=∴=-+ :22(1)MN x my m x m y ∴=-+-=-即MN ∴过定点21(,)(四)课堂小结 1. 双直线二次曲线:已知两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=相交,那么这两条相交直线可以表示为111222()()0A x B y C A x B y C ++++=;2.二次曲线系是用来解决圆锥曲线中多共点问题:适用条件:两相交直线与圆锥曲线相交有四个交点,或圆锥曲线上存在四个点,这四个点在三条二次曲线上(点的三重身份),这种方法的实质是用其中的两条二次曲线表示第三条二次曲线;(程序化方法)3. 两曲线有公共点时,会用共交点曲线系方程表示过交点的曲线;4. 二次曲线系解题步骤:设(曲线系方程) →对(系数对应相等)→求(关键值);5.结论:非圆二次曲线上四点,,,A B C D共圆则0AB CD k k +=,0BC AD k k +=,0AC BD k k +=,反之也成立.(五)课后练习1. (2016年四川文)已知椭圆22221(0)x y E a b a b +=>>:的一个焦点与短轴的两个端点是正三角形的三个顶点,点1(3,)2P 在椭圆E 上.(1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:MA MB MC MD =2. 【2020年课标1卷理科20】已知A ,B 分别为椭圆2221(1)x E y a a+=>:的左、右顶点,G 为E 的上顶点,8AG GB = .P 为直线6x =上的动点,P A 与E 的另一个交点为C ,PB 与E 的另一个交点为D. (1)求E 的方程; (2)证明直线CD 过定点.四、板书设计CDABGPCDMBAO标题:1.曲线系2.共交点曲线系:3.二次曲线系4.双直线二次曲线多媒体小结:1.2.3.4.五、教学反思二次曲线系是解决直线与圆锥曲线位置关系的一种新的方法,它主要是用来处理直线与圆锥曲线多交点问题,只要是两相交直线与圆锥曲线有公共点,或圆锥曲线上有四个点的问题,一般都可以采用这种方法解题,因此此方法的实用性较高,此方法与常规方法相比,具有可操作性强、运算量小等特点,当然前提时学生对圆、椭圆、双曲线和抛物线这几种特殊曲线的标准方程要熟悉,另外某些问题采用此方法还可以很快得出结论,这对于我们学生在处理定点、定值问题的时候,能很快得出结果带来了方便。

高二数学双曲线第二定义及应用

高二数学双曲线第二定义及应用
x2 y2 1 64 36
F1
O
F2 x
a2 x c
a2 x c
练习2:求焦半径公式
y M(x1,y1)
a2 a2 又 | MN 1 | x1 ( ) x1 c c c a2 | MF1 | ( x1 ) ex1 a a c
设M(x1 , y1 ),
c 2 a

y

F1
o
F2
x a2 (二)准线方程: x , (a c) c (三)焦半径公式的推导及 其应用
y2 x2 思考:(1)双曲线 2 2 1的准线方程及焦半径公式? a b (2)如何求中心不在原点的双曲线的准线方程?

南阳城说否定也要陪葬咯.更重要の是,那么多天来の相处,壹起经历生死,东舌早已否将秦琼当作外人,反而当作咯自己の好兄弟,若是秦琼出咯什么事,东舌内心绝对会留下壹道难以磨灭の阴影.时过两响,吱の壹声,房门终于打咯开来,大夫 挥咯挥衣袍,脚步沉重地走咯出来."草民拜见钱塘王."只见出来の大夫躬下身子朝东舌行咯壹礼,面色凝重.东舌心急如焚,哪还有心情做那些客套之礼,当即亲自扶起咯大夫,急忙问道:"大夫,孤那兄弟如何?"他深深の谈咯壹口气,缓缓说 道:"那位将军の命也真够大の,草民为他诊视筋脉,发现他急火攻心,并且五脏六腑都受到咯否同程度の震荡之伤,若是再来迟半步,怕是神医华佗再世,也再难救咯.""那现在是怎么个情况?"东舌紧接着追问.大夫背上咯自己の药囊,拿出手中 の壹长方子说:"好在来の及时,草民已经为他施行咯壹系列针灸驱气,现在已经脱离咯生命危险,只要配上草民手中の方子,大概半月,就能恢复正常状态咯.""是吗,那就好."听到大夫の确认通告,东舌深呼壹口气,心中久久悬着の壹块巨石才 掉咯下来,脸上神色舒缓开来."雨召,送壹下大夫离开,去帐房去壹些银两给大夫."回来之后の东舌,语气变得十分亲切近人,直呼伍雨召本名,反倒让伍雨召壹时有点反应否过来."诺,先生跟我来吧."伍雨召点咯点头,带着大夫转身走出庭院. 秦琼の伤势,总算没什么事情咯,接下来要考虑の就是南阳之役咯.送走大夫之后,长辽开口朝东舌说道:"殿下,末将有壹些事情想和殿下讨论壹下,诸位将军正好在场,也好随我壹起去正堂商议壹下要事."东舌点咯点头,壹挥袖袍,身后分别跟 着罗士信,赵雨,长辽,蒋琬,川蒙,众人壹起朝正堂走去.钱塘王府,王府正堂.襄阳文武全都汇聚在咯正堂之中,左文右武,东舌坐在王座之上,环视壹眼,武将有长辽,罗士信,赵雨,川蒙.而文臣有只有蒋琬可怜丁丁の壹个,吐茂公要驻防江夏以 防江东杜伏威偷袭,而流逊如今却被死守在咯南阳城中.东舌那才意识到咯自己手中文臣是有多么の缺乏,下壹次召唤壹定要侧重智力来召唤咯.随后赶来の伍雨召匆匆站进咯武将の行列之中,壹时文臣和武将形成咯鲜明の人数对比.见众人已 经尽数来齐,东舌开口说道:"孤否在襄阳那段日子里,襄阳情况如何?蒋总管否妨直言."蒋琬站出身来,躬曲咯壹下身子,壹脸严肃地将情况壹壹报道"回殿下,那几月来库房总共收入叁万八千贯,收入粮食约为九千石,百姓和乐,荆州各地并没 什么任何异象,否过……咳咳."东舌心中暗暗赞赏壹番,自己出襄阳前,财库收入只有现今の叁分之二,那蒋琬果然没什么叫自己失望.蒋琬语气抑扬顿挫,说到壹半干咳几声,好似在吊胃口壹般,咳嗽几声之后,紧接着说到."臣在治理荆州之时, 却发现有两个可造之才,现二人正在门外等候,否知殿下是否愿意召见此二人.""让他们进来吧."听到蒋琬说发现咯两个人才,东舌内心萌生几分好才之心,自己手中正缺文臣.东舌话音刚落,门外走进两人,只见在左壹人,身高七尺有余,长得否 算英俊潇洒,却也是眉清目秀,壹身素袍,显然为人较为勤俭,出身寒苦."草民见过殿下,久闻殿下大名,今日壹见果真否枉流言,年轻有为,气势沉着有度."只见他当先上前参拜,细细打量壹番东舌浑身上下,语气中流转着书生意气,好似等待今 日已经久等多时."操作界面,帮本宿主检测壹下,此人是谁?"东舌闻其语气淡然而又蕴含着壹股意气风发,忍否住使用金手指开始扫描."正在检测中……此人正是吐庶吐元直,吐庶四维如下,武力:69,智力:94,统率:87,政治83.""哈哈,终于让 我收到咯吐庶咯,操作界面大爷,真够意思啊/"原来眼前此人就是赵雨爆出来の吐庶,潜水那么久,如今却投到自己王府上来咯,东舌脸上否动声色,心中却乐开咯花.东舌平息内心の激动,面色没什么丝毫流露出惊喜之意,语气平静の问道:"听 闻先生才高八斗,敢问先生尊姓大名?"受到东舌如此褒奖自己,吐庶有些否好意思,便谦虚壹笑:"草民姓吐单名庶,字元直,是荆州人士,至于才高八斗,草民实在否敢当,只是略略识得一些粗字罢咯.""您要是只会认字,难否成我只会画画?"吐 庶壹袭自谦,听の东舌倒是有些自嘲.东舌左右思酌半响,久之开口说道:"先生否必如此自谦,若是太平盛世,孤定为加官进爵,可悲现在恰逢乱世,先生倒否如在孤钱塘王府中暂当壹个幕僚,日后再提拔,您看如何?"东舌壹番话让吐庶有些受宠 若惊,本以为自己撑死也就只能当个小吏,东舌却开口让他留在自己府中,那对于壹个寞落书生是何等の待遇.吐庶立即跪倒东舌面前,感激地说道:"谢殿下大恩,元直定当倾尽生平之力辅佐殿下/""元直起来吧."东舌直呼本名,对吐庶满意の点 咯点头,侧过头又望向咯另外壹人.只见此人身高八尺,放眼望去,五官标致,鼻梁宽大,壹身着装十分随意,却无否散发着壹种文雅の气息,否过在那文雅之中,却又带着几分勇士独有の味道.吐庶退入蒋琬左边,此人便上前几步,拱手否矜否伐地 说道:"草民参见殿下,草民名长璞,字文宇,便是那襄阳人士.""长璞?我好像从来都没什么听到过那个人."听到此人自报姓名长璞,东舌心中思绪对此人生出无数疑问.无从所知の情况下,东舌便只能再次动用金手指来扫描,"操作界面,帮本宿 主查询壹下,此人是谁?""正在检测中叮咚,长璞,长璞四维如下,武力:77,智力:85,统率:80,政治:90.原为隋末农民起义荆州人士,前来投靠反王萧铣,却被萧铣否受接见,故此隐居避世.""四维如此看来倒是壹个全能型の人才,可谓罕见,萧铣 既然否能让您得志,我定否会再让您消逝在历史潮流之中."衡量着长璞の四维,东舌内心自有计较壹番,长璞当前既然侧重于政治与智力,倒否如协助蒋琬壹起打理荆州,蒋琬完全侧重政治,长璞则是各方面都有涉及,说否定会出现1+1大于2の 效果.虽然四维足够,但是壹般途径还是要走の.东舌若有所思地点咯点头,开口问道:"那孤问您,您都会些什么?"长璞嘴角抹起壹丝笑意,眼中迸射出壹道精光,回应东舌说:"草民会舞刀弄枪,会治政管理,会布列兵阵."长璞の语气是那样の自 在,没什么半分の拖泥带水,很自然の说咯出来,却是让两旁文武听得有点否爽."您还真是直接啊,就否能婉转点么?"长璞の回答让东舌有些无语,显然长璞否怎么会做人,难怪萧铣会否接见您.沉吟片刻,东舌考虑咯壹下两旁人の感受,说道:" 孤念您年纪尚小,就先留在蒋总管の身边好好学习,协助蒋总管治理荆州,日后再给您进行封官,您看如何?""草民谨遵殿下命令."长璞虽然没什么和吐庶那样壹般显眼,但也是没什么直接浪费咯壹身所学,日后还能再放光彩,便回应壹声,转身 退到左侧.解决完政事之后,就该解决武の咯,当下南阳之围才是最关键の问题.哐/东舌刚想开口询问长辽,突然门外飞进咯壹个守门の侍卫,壹个莽汉の伴着光影走咯进来,嗓音浩荡,嘴中否断の喷粗."他奶奶の,敢骂我杀猪の,信否信我戳您 壹百个透明窟窿/"Ps:(青衣在那里推荐壹下好友の壹本书,雄霸天下叁国魂,壹样是新人否容易,感兴趣の朋友可以去看看)(未完待续o(∩_∩)o)壹百零七部分援兵之计Ps:(求打赏,求推荐,求收藏哈)突然发生壹幕,众人眼光齐刷刷望 向咯大门.只见壹个莽汉在门口否断爆着粗口,还壹边挥手作着要打人の样子.此人身长八尺,豹头环眼,燕颔虎须,声若巨雷,势如奔马,东舌扫视壹眼,心中已经隐隐断定,此人便是被木靖爆出来の长飞."您那个黑厮是谁啊,您吓到人咯您知否 晓得,信否信我拧咯您の脑袋."罗士信忍否住站咯出来,气冲冲地挑衅起长飞."哎呦呦,您个长得跟死猪壹样の东西,信否信我戳您几百个透明窟窿/"长飞捋咯捋袖子,就要冲上来和罗士信打架.长辽见势否对,急忙从上前去,挽住长飞の臂

第20讲 曲线系及其应用(解析几何)(解析版)

第20讲 曲线系及其应用(解析几何)(解析版)

第20讲曲线系及其应用知识与方法1.曲线系与曲线系方程的概念曲线系:具有某种共同性质的所有曲线的集合,称为一个曲线系,并用含有参数的方程来表示. 曲线系方程: 对于关于的二元方程,如果方程中除外,还含有至少一个暂不确定的参数,x,y x,y这样的方程叫曲线系方程.2.过两曲线交点的曲线系若两曲线和有交点,则过两曲线交点的曲线系方程可设为C1:f1(x,y)=0C2:f2(x,y)=0(不包括或者.f1(x,y)+λf2(x,y)=0f2(x,y)=0)λf1(x,y)+μf2(x,y)=03.一次曲线系(直线系)具有某种共同属性的一类直线的集合,称为直线系,也叫做一次曲线系,它的方程称直线系方程. 下面是几种常见的直线系方程:(1)过已知点的直线系方程或(为参数);P(x0,y0)y−y0=k(x−x0)x=x0(2)斜率为的直线系方程:是参数);k y=kx+b(b(3)与已知直线平行的直线系方程: 为参数);Ax+By+C=0Ax+By+λ=0(λ(4)与已知直线垂直的直线系方程: 为参数);Ax+By+C=0Bx−Ay+λ=0(λ(5)过直线与的交点的直线系方程:l1:A1x+B1y+C1=0l2:A2x+B2y+C2=0为参数)(不包括直线)A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ l24.二次曲线系圆、椭圆、双曲线、抛物线统称为“二次曲线”,两条相交直线被视为二次曲线的退化形式. 二次曲线系的一般形式为:Ax2+By2+Cxy+Dx+Ey+F=0两条直线所组成的二次曲线方程为:(Ax+B1y+C1)(A2x+B2y+C2)=01熟悉下列结论有助于我们更好地理解二次曲线系:定理给定五点,其中任何三点都不共线,则有且仅有一条二次曲线过这五点.在此定理的基础上我们可以进一步得到一些重要结论. 为简单起见,以下将两直线的并体记作l1,l2,那么可以理解为一条退化的二次曲线,其方程简记为.l1⋅l2l1⋅l2l1(x,y)⋅l2(x,y)=0推论1如果两条直线的方程为,分别记为,即A i x+B i y+C i=0(i=1,2)l i(x,y)(i=1,2),它们与一条二次曲线有交点,那么曲线系l i(x,y)≡A i x+B i y+C i=0F(x,y)=0λF(x,y)+μl1(x,y)⋅l2(x,y)=0经过这些交点.如果它们有四个不共线交点,那么曲线系包含有所有过此四点的二次曲线.由推论可知:若二次曲线的方程为: ,则Ax2+Bxy+Cy2+Dx+Ey+F=0(1)已知四边形四条边的方程为l i:A i x+B i y+C i=0(i=1,2,3,4),则过四边形四个顶点的二次曲线方程为.l1(x,y)l3(x,y)+λl2(x,y)l4(x,y)=0(2)过两直线与一条二次曲线的四个交点的二次曲线系的方程为l1,l2f(x,y)=0f(x,y)+λl1(x,y)l2(x,y)=0(3)与两条已知直线分别切于点的二次曲线系方程为, 其中l1,l2M1,M2l1(x,y)l2(x,y)+λl23(x,y)=0l3(x,是直线的方程.y)M1M2推论为不共线的三点,直线的方程为2P i(i=1,2,3)P i P i+1(i=1,2,3,P4=P1)l i(x,y)≡A i x+B i y+C i=0,则曲线系:λl1(x,y)⋅l2(x,y)+λ2l2(x,y)⋅l3(x,y)+λ3l3(x,y)⋅l1(x,y)=01表示所有过三点的二次曲线.P1,P2,P3典型例题类型利用曲线系求曲线方程1:【例1】已知椭圆与两直线C:x2+2y2=4l1:x+y−1=0,l2:2x−2y+1=0,各有两个交点,求过此四个交点及点的二次曲线.(−1,1)【答案】.5x2+4y2−x+3y−13=0【解析】显然四个交点不共线,可设所求曲线方程为,λ(x2+2y2−4)+(x+y−1)(2x−2y+1)=0将点的坐标代人方程,即得.故所求椭圆方程为.(−1,1)λ=35x2+4y2−x+3y−13=0【注】利用曲线系求曲线方程的步䐂:(1)设出曲线系方程;(2)根据条件求出参数;(3)回代即得所求方程.类型2:圆系问题【例2】求经过两圆和的交点,并且圆心在直线x2+y2+6x−4=0x2+y2+6y−28=0x−y−4=0的圆的方程.【答案】.x2+y2−x+7y−32=0【解析】设所求圆的方程为,x2+y2+6x−4+λ(x2+y2+6y−28)=0化简得 ,(1+λ)x 2+(1+λ)y 2+6x +6λy−(28λ+4)=0因为圆心在直线 上,所以 ,(−31+λ,−3λ1+λ)x−y−4=0−31+λ+−3λ1+λ−4=0解得,即得所求圆的方程为.λ=−7x 2+y 2−x +7y−32=0【例3】三边所在直线方程为: ,求的外接圆的方程. △ABC x−2y−5=0,3x−y =0,x +y−8=0△ABC 【答案】x 2+y 2−4x−2y−20=0【解析】外接圆方程可写为△ABC (x−2y−5)⋅(3x−y )+λ1(3x−y )(x +y−8)+λ2(x +y−8)(x−2y−5)=0即(3λ1+λ2+3)x 2+(2λ1−λ2−7)xy +(−λ1−2λ2+2)y 2+(−24λ1−13λ2−15)x+(8λ1+11λ2+5)y +40λ2=0于是,解得:,将它们代入,{2λ1−λ2−7=03λ1+λ2+3=−λ1−2λ2+2λ1=2,λ2=−3即得外接圆方程为 .△ABC x 2+y 2−4x−2y−20=0【例4】椭圆与直线 交于两点,点的坐标为.求过x 2+2y 2−2=0x +2y−1=0B ,C A (2,2)A ,B ,C 三点的圆的方程.【答案】6x 2+6y 2−9x−14y−2=0【解析】我们可以先求出B ,C点的坐标,利用推论2求解,不过这里可从另一个角度思考问题,二次曲线系λ(x 2+2y 2−2)+μ(x +2过两点,但十分明显地不包含过的所有曲线,过y−1)=0B ,C B ,C B ,C 的圆就不在其中.不过我们可以“就势”一变,再构造二次曲线系λ(x 2+2y 2−2)+μ(x +2y−1)(x−2y +m )=0(∗)这就包含了过的圆了.展开,得B ,C (λ+μ)x 2+(2λ−4μ)y 2+μ(m−1)x +2μ(m +1)y−mμ−2λ=0令,并取,即得.λ+μ=2λ−4μμ=1λ=5代入得.(∗)6x 2+6y 2+(m−1)x +2(m +1)y−m−10=0将点坐标代人,得,代人得所求圆的方程为.A m =−86x 2+6y 2−9x−14y−2=0【注】这里添加直线,原因是过三点的圆是唯一的,且缺项.x−2y +m =0A ,B ,C xy【例5】四条直线围成一个四边形,问l 1:x +3y−15=0,l 2:kx−y−6=0,l 3:x +5y =0,l 4:y =0k取何值时, 此四边形有个外接圆,并求此外接圆的方程.【答案】.x 2+y 2−15x−159y =0【解析】设过该四边形4个顶点的二次曲线系的方程为.(x +3y−15)(x +5y )+λ(kx−y−6)y =0整理得, 方程表示圆, 则 解得()()()22815157560x k xy y x y λλλ+++---+=151,80.k λλ-=+=, 故此四边形外接圆的方程为.414,7k λ==-22151590x y x y +--=【例6】 设过坐标原点的直线与拋物线交于两点, 且以l ()2:41C y x =-,A B AB 为直径的圆恰好经过拋物线的焦点, 求直线的方程.C F l【答案】.y =【解析】设直线的方程为, 构造过的二次曲线系l y kx =,A B ,()()()2410y x kx y kx y m λ--+-++=即,①()()2221440k x y mk x my λλλλ+-+--+=令得,代入①即得过两点的圆的方程是21k λλ=-211k λ=+,A B 222222224401111k k mk m x y x y k k k k ⎛⎫++--+= ⎪++++⎝⎭因点在圆上,于是有()2,0F 2224244011k mk k k ⎛⎫+-+= ⎪++⎝⎭又以为直径的圆的圆心在直线上, AB y kx =22411m mk k k k ⎛⎫∴=-- ⎪++⎝⎭由上两式消去, 解得故所求的直线的方程是m k =l y x =【例7】 已知直线与双曲线相交于两点, 当为何值时, 以10mx y -+=2231x y -=,A B m AB为直径的圆经过原点.【答案】 .1m =±【解析】构造二次曲线系: ,()()223110x y mx y mx y n λ--+-+++=即()()()()222311110m x y m n x n y n λλλλλ+-++++-+-=,令得,又圆经过原点,代入得,于是方程可表示为()231m λλ+=-+241m λ-=+1n λ=222253m x y mx y m ++-+=-又圆心在直线上,故()225,223m m m ⎛⎫+ ⎪- ⎪-⎝⎭10mx y -+=()22510223m m m m ⎡⎤+⎢⎥⋅--+=-⎢⎥⎣⎦化简整理得 故.410m -=,1m =±易知当时, 直线与双曲线相交, 所以当时, 以为直径的圆经过原点.1m =±1m =±AB 类型3: 利用曲线系求解切线问题【例8】 已知圆的方程为, 求经过圆上一点的切线方程.222x y r +=()00,M x y 【答案】 .200x x y y r +=【解析】视圆上的点为点圆,()00,M x y ()()22000x x y y -+-=设所求圆方程为: ,()()()22222000x x y y x y r λ-+-++-=令, 得, 故切线方程为.1λ=-22220000222x x y y x y r r +=++=200x x y y r +=【注】在二次曲线系的应用中,“点圆”, “点椭圆”可助一臂之カ.本题中, 将点看成“二次曲线": ,()00,M x y ()()22000x x y y -+-=即为“点圆”. 用类似的解法可得:(1)过圆上一点的切线方程为222()()x a y b r -+-=()00,M x y ()()()()200;x a x a y b y b r --+--=(2) 过椭圆上一点的切线方程为22221(0)x y a b a b +=>>()00,M x y 2200221;x y a b +=(3)过双曲线上一点的切线方程为;22221(0,0)x y a b a b -=>>()00,M x y 2200221x y a b-=(4)过抛物线上一点的切线方程为.22(0)y px p =>()00,M x y ()00y y p x x =+【例9】 求经过点且与圆相切于点的圆的方程.()4,1A -22(1)(3)5x y ++-=()1,2B 【答案】 .226250x y x y +--+=【解析】将切点视为点圆, 设所求圆的方程为:()1,2B 22(1)(2)0x y -+-=()2222(1)(2)2650x y x y x y λ⎡⎤-+-+++-+=⎣⎦将点坐标代入, 可得, 代入整理, 得所求方程为.A 12λ=-226250x y x y +--+=【例10】 求与拋物线相切于两点, 且过点的圆锥曲线方程.259y x =+()()0,3,1,2P Q --()2,1A -【答案】 .2225103117562970x xy y x y --+-+=【解析】过 和 两切点的直线方程是,()0,3P ()1,2Q --530x y -+=设所求的曲线方程是()2259(53)0, *y x x y λ--+-+=因曲线过点, 代人上式得.()2,1A -132λ=-再代入, 化简整理得所求的圆锥曲线方程是.()*2225103117562970x xy y x y --+-+=【注】运用此种解法比其他解法解决这类问题要简单得多,但切勿忘记将切点弦方程加上平方.类型4: 利用曲线系求解圆锥曲线上的四点共圆问题【例11】 已知为坐标原点, 为椭圆在轴正半轴上的焦点,O F 22:12y C x +=y过且斜率为的直线与交于两点, 点满足.F l C ,A B P 0OA OB OP ++=(1) 证明:点在上;P C (2) 设点关于点的对称点为, 证明: 四点在同一圆上.P O Q ,,,A P B Q 【答案】(1)见解析; (2) 见解析.【解析】 (1) 设, 直线, 与联立得,()()1122,,,A x y B x y :1l y =+2212y x +=2410x --=所以121214x x x x +==-由,得0OA OB OP ++=()()()1212,P x x y y -+-+()()())121212121121x x y y x x -+=-+=-+++=+-=-因为, 所以点在上.22(1)12⎛-+= ⎝P C (2) 解法 1:()()()2112224tan 11131PA PBPA PBx x k k APB y y k k ∠ ⎪ ⎪--⎝⎭⎝⎭====----++同理()214tan 13QB QA QA QBk k x x AQB k k ∠---====-+所以互补, 因此四点在同一圆上.,APB AQB ∠∠,,,A P B Q 解法 2:由和题设知, 的垂直平分线的方程为1P ⎛⎫- ⎪ ⎪⎝⎭,Q PQ ⎫⎪⎪⎭1l ()1yx =⋯设的中点为, 则的垂直平分线的方程为 (2)AB M 1,2M AB ⎫⎪⎪⎭2l 14y=+⋯由(1)(2)得的交点为,12,l l 18N ⎛⎫ ⎪ ⎪⎝⎭1NP x ==-=AM ===所以,NA NP NB NQ ===故四点在以为圆心的同一圆上.,,,A PB Q N 解法 3:由(1)得, 直线.1,P Q ⎛⎫⎫- ⎪⎪ ⎪⎪⎝⎭⎭PQ 0y -=又直线的方程为AB 1y =+10y +-=故两直线的二次方程为,AB PQ )10y y +--=由此可设过点的曲线系方程为,,,A P B Q①)()221220y y xy λ+--++-=即②()()2222120x y y λλλ++--+-=我们让②式表示圆, 则, 得 .221λλ+=-3λ=-代入①式化简得,224460x y y +--=即, 显然此方程表示一个圆, 故四点在同一圆上.22199864x y ⎛⎛⎫+-= ⎪ ⎝⎭⎝,,,A P B Q【例12】 若两条直线与圆锥曲线有四个交点, ()1,2i i y k x b i =+=()220ax by cx dy c a b ++++=≠则四个交点共圆的充要条件是.120k k +=【答案】见解析【证明】两直线组成的曲线方程为, 则过四个交点的曲线方程可设为()()11220k x y b k x y b -+-+=()()()2211220k x y b k x y b ax by cx dy e λ-+-++++++=必要性:若四点共圆, 则方程(1)表示圆, 那么(1)式左边展开式中项的系数为零, 即有xy .120k k +=充分性:当时,令(1)式左边展开式中项的系数相等, 得, 120k k +=22,x y 121k k a b λλ+=+联立解得, 将其代入(1)式, 整理得21211, k k k a bλ+=-=-220x y c x d y e ++++''='由题设知四个交点在方程(2)所表示的曲线上,显然方程(2)表示圆, 即四个交点共圆.【注】本题表明:圆锥曲线的内接四边形ABCD 出现四点共圆时,一定有任何一组对边对应所在的直线倾斜角互补.【例13】 设直线 与椭圆 交于 两点, 过 两点的圆与:43l y x =-22:12516x y E +=,A B ,A B E 交于另两点 , 则直线 的斜率为( ,C D CD )A. B. C.D. -414-2-14【答案】D【解析】设 , 所以, 则过:0CD l ax by c ++=()():430AB CD l l ax by c x y ⋃++--=,,,A B C D四点的曲线系为 .()()22:14302516x y C ax by c x y λ+-+++--=表示圆, 则系数相等, 且无项. 化简得C 22,x y xy 114251640a b b a λλλλ⎧+=-⎪⎨⎪-=⎩解得 4.CD a k b=-=-【注】由例 12 结论可知:四点共圆.,,,A B C D 04CD AB CD k k k ⇔+=⇒=-【例14】 已知拋物线的焦点为, 直线与轴的交点为,2:2(0)C y px p =>F 4y =y P 与的交点为, 且.C Q 54QF PQ =(1) 求抛物线的方程;C (2) 过的直线与相交于两点, 若的垂直平分线与相交于两点, 且F l C ,A B AB l 'C ,M N ,,,A M B N四点在同一个圆上, 求直线的方程.l【答案】(1) (2)或.24; y x =10x y --=10x y +-=【解析】 (1) 设, 代入中得, 所以,()0,4Q x 22(0)y px p =>08x p =088,22p p PQ QF x p p==+=+依题意得, 解得或 (舍去),故拋物线的方程为.85824p p p+=⨯2p =2p =-C 24y x =(2) 依题意知与坐标轴不垂直, 故可设的方程为.l l ()10x my m =+≠代入得. 设,24y x =2440y my --=()()1122,,,A x y B x y 则, 故的中点为.12124,4y y y y +==-AB ()221,2D m m +又的斜率为, 所以的方程为,l 'm -l '2123x y m m=-++由直线的方程及拋物线方程, 可设过四点的曲线系方程为:,l l ',,,A M B N ()()22112340x my x y m y x m λ⎛⎫--+--+-= ⎪⎝⎭()()2223211122223230x y m xy m x m m y m m m λλ⎛⎫⎛⎫+----++++-++= ⎪ ⎪⎝⎭⎝⎭因为四点共圆, 所以, 从而.,,,A M B N 111,0m mλ-=-=2,1m λ==±当时,化简式得,1m =()*2214450x y x y +-++=即, 此时直线的方程为:;22(7)(2)48x y -++=l 10x y --=当时,化简式得, 即1m =-()*2214450x y x y +--+=22(7)(2)48x y -+-=此时直线的方程为:, 所求直线的方程为:或.l 10x y +-=l 10x y --=10x y +-=【例15】 设, 过两定点, 分别引直线和, 使与拋物线0b a >>()(),0,,0A a B b l m 2y x =有四个不同的交点, 当这四点共圆时, 求和的交点的轨迹.l m P 【答案】点的轨迹是直线 (除去与和三个交点).P 2a bx +=0y =2y x =【解析】设, 则:,()00,P x y ()()0000:,:y yPA y x a PB y x b x a x b=-=---将两直线合并为二次曲线: ,,PA PB ()()00000y yy x a y x b x a x b ⎡⎤⎡⎤--⋅--=⎢⎥⎢⎥--⎣⎦⎣⎦又抛物线方程为,20y x -=则过四个点的二次曲线系方程为()()()200000y yy x a y x b y x x a x b λμ⎡⎤⎡⎤--⋅--+-=⎢⎥⎢⎥--⎣⎦⎣⎦因为四个交点共圆, 则方程(*)表示圆, 四点必满足方程:(为常数)()()222110x x y y r -+--=11,,x y r 于是:()()()()()2222001100y y y x a y x b y x x x y y r x a x b λμ⎡⎤⎡⎤--⋅--+-=-+--⎢⎥⎢⎥--⎣⎦⎣⎦对比两侧项的系数, 可得, 所以,xy 00000y y x a x b λ⎛⎫--= ⎪--⎝⎭()02a b x +=即点的轨迹是直线(除去与和的三个交点). P 2a bx +=0y =2y x =【注】本题借助曲线系方程,巧妙利用“四点共圆”的已知条件,成功避开了求交点的繁杂过程. 需 要注意的是,在对比系数时, 不必找出所有项的系数, 我们只要找出其中最好用的即可. 本例中, 由于圆 方程的特点:没有项, 即项系数为0 , 故对比项的系数即可得到结果.xy xy xy 类型5: 利用曲线系求解定点定值问题【例16】 已知椭圆中有一内接, 且(如图), 求证, 直线22126x y +=,60PAB XOP ∠= 0PA PB k k +=AB方向一定.【答案】见解析【解析】点的坐标为, 过点, 将点视作二重点P (P 0y +-=P ,于是直线的方程依次是:,P P ,,,PA PB PPAB ()()1100y k x y k x y px qy r -=--=--++=++=过四点的椭圆方程可写为,,,A P P B①()][()()110y k x y k x y px qy r λμ⎡⎤--⋅--+++⋅++=⎣⎦与椭圆方程②22126x y +=代表同一条二次曲线, 故比较①②中项系数, 可得:, 即为所求.xy pq-=【例17】 已知为椭圆 的左右顶点, 在直线 上任取一点, 连接,A B 22221(0)x y a b a b+=>>:l x m =P , 分别与椭圆交于, 连交轴于点, 求证: .PA PB ,C D ,CD CD x (),0Q n 2mn a =【答案】见解析【解析】设, 则,(),P m t ()():0:0:0:0PA tx m a y at PB tx m a y at AB y CD kx y kn ⎧-++=⎪---=⎪⎨=⎪⎪--=⎩用双直线和椭圆表示双直线得,PA PB 222210x y a b+-=,AB CD ()()()()()22221x y tx m a y at tx m a y at kx y kn y a b λμ⎛⎫⎡⎤+-+-++---=-- ⎪⎣⎦⎝⎭比较的系数得, 即xy ()()()k t m a t m a μ=---+2k tmμ=-比较的系数得, 即y ()()()kn at m a at m a μ-=--++22kn ta μ-=所以.2mn a =【例18】 已知椭圆, 四点2222:1(0)x y C a b a b+=>>()()1231,1,0,1,1,P P P -中恰有三点在椭圆上.C (1) 求的方程;C (2) 设直线不经过点, 且与相交于两点. 若直线与直线的斜率的和为, 证明:l 2P C ,A B 2P A 2P B 1-过定点.l 【答案】(1) (2)见解析.221;4x y +=【解析】 (1) (过程略)221;4x y +=(2)设斜率分别为,其中22,P A P B 12,k k 121k k +=-则2122:10,:10P A k x y P B k x y -+=-+=将两直线方程合并为:()()12110 k x y k x y -+-+=联立方程组,(此方程组的解为三点的坐标)()()122211044k x y k x y x y ⎧-+-+=⎨+=⎩2,,P A B 整理得()()()2212212121(1)0411k k x y x y k k x k k y y ⎧+-+-=⎪⎨-=+-⎪⎩进而()()()2121(1)411y x y k k y y -+-=+-所以或(即点或)1y =()()12141x y k k y +-=+2P AB l 故直线的方程为:, 显然恒过定点.l ()()12141x y k k y +-=+l ()2,1-【例19】已知分别为椭圆的左、右顶点, 为的上顶点,A B 、222:1(1)x E y a a+=>G E 为直线上的动点,与的另一交点为与的另一交点为.8,AG GB P ⋅=6x =PA E ,C EB E D (1) 求的方程; (2) 证明:直线过定点.E CD 【答案】 (1) (2) 见解析221;9x y +=【解析】 (1) (过程略)2219x y +=(2) 设, 则()6,P t :930:330:0:0PA tx y t PB tx y t AB y CD x my n -+=⎧⎪--=⎪⎨=⎪⎪--=⎩用双直线和椭圆表示双直线,,PA PB 22990x y +-=,AB CD 得()()()()22999333x y bx y t tx y t y x my n λμ+-+-+--=--⎡⎤⎣⎦,比较的系数得;xy 121t μ-=比较的系数得, 所以.y 18t n μ=-32n =直线的方程为, 显然直线过定点.CD 32x my =+CD 3,02⎛⎫⎪⎝⎭【例20】 已知椭圆和定点 过点2222:1(0)x y E a b a b+=>>()(),0,,0, (,0).M m N n a m n a m n -<<<⋅≠M作直线交椭圆于点, 直线分别交椭圆于另一个点. 设直线和E ,A B ,AN BN E ,P Q AB PQ的斜率为 证明:21,.k k (1) 直线经过定点;PQ ()22222,02a n m mn a mn n ⎛⎫-- ⎪ ⎪-+⎝⎭(2) 为定值.2212222k a n k a mn n -=-+【答案】见解析.【解析】证明:如图, 设直线, 即()():,:A B AP y k x n BQ y k x n =-=-0A A k x y k n --=.则下面的曲线系方程表示经过点四点的曲线:0B B k x y k n --=,,,A B P Q ()()222210A AB B x y k x y k n k x y k n a b λ⎛⎫----++-= ⎪⎝⎭展开此方程得()()()222Λ22120A B A B A B B A B k k x y k k xy k k n x k k n y k k n a b λλλ⎛⎫⎛⎫++++--+-++⋅+-= ⎪ ⎪⎝⎭⎝⎭即①()2222222222011111A B A B A b A B A B k k k k n k k n k k k k n a x y xy x y b b b b bλλλλλλλ++----⋅++⋅+⋅+⋅+=+++++取特殊的, 使该方程表示为直线和组合体对应的曲线方程λ()1:AB y k x m =-2:PQ y k x t =+,展开此方程得()()1120k x y mk k x y t ---+=②()()()()2212121121102k k x y k k xy k t k k m x t k m y k mt ⋅++--+-+-+-=由此存在实数, 使得方程①和方程②为同一个方程, 对照和项系数得,λxy y 112t k mn k k -+-=--即()12t k m n n k =--⋅由此知直线,()212:PQ y k x k m n n k =+--⋅其与轴的交点为.x ()212,0n k k m n E k ⋅--⎛⎫⎪⎝⎭设直线的交点为, 点在椭圆关于点的极线上,,AB PQ T T 2222:1(0)x y E a b a b +=>>(),0N n 2:a l x n=设极线与轴的交点为. 由此得l x 2,0a K n ⎛⎫⎪⎝⎭()()22211122222n k k m n k a a n m n k n k n k KN a a k KMm m n n⋅----+-⋅===--解得2212222k a n k a mn n -=-+故此时的方程为,PQ ()()22222222an m n y k x k n k a mn n --=+⋅-⋅-+即()22222222a m n mn y k x k a mn n -+=+⋅-+从而直线经过定点.PQ ()22222,02a n m mn a mn n ⎛⎫-- ⎪ ⎪-+⎝⎭类型6: 证明圆锥曲线内接四边形的性质【例21】 试证明, 椭圆的内接矩形的两相邻边分别与椭圆的长短轴平行.【答案】见解析【解析】建立坐标系, 设矩形各边:,(), 1,2i i y k x h i ===则椭圆方程可写为,()()()()12120y k y k x h x h λμ--+--=显然,项系数为0, 故得证.xy。

2014-2015学年人教A版选修2-1高中数学《2.3.2双曲线方程及性质的应用(2)》课件

2014-2015学年人教A版选修2-1高中数学《2.3.2双曲线方程及性质的应用(2)》课件

2 y2 x 1 , 由 消去y并整理得x2+4x-6=0, 2 y x 2
因为Δ>0,所以直线与双曲线有两个交点,
设D(x1,y1),E(x2,y2),则x1+x2=-4,x1·x2=-6,
故|DE|=
x1 x 2 y1 y 2
2 2
2


2 x (2)①双曲线C1: y 2 1,左顶点 A( 2 ,, 0) 渐近线方程: 1 2 2 y 2x.
过点A与渐近线 y 2x 平行的直线方程为
2 ), 即 y 2x 1. 2 2 x , y 2x , 4 解方程组 得 y 1, y 2x 1 2 所求三角形的面积为 S 1 OA y 2 . 2 8 y 2(x
3 3 3
共点,经验证②④表示的直线与双曲线有交点 . 答案:②④
2 3 c2 4 (2)①由 e 可得 2 ,所以a2=3b2,故双曲线方程可化为 3 a 3 2 2 x y 2=1. 将点 代入双曲线 C 的方程,可解得 b 1 , P( 6 , 1) 3b 2 b 2 2 x 所以双曲线C的方程为 y 2 1. 3
6 3m2 6 由根与系数的关系得 x1 x 2 m, x1x 2 5 10

又|AB|= x1 x 2 2 y1 y 2 2 =
1 4 x1 x 2
2
4.
所以5[(x1+x2)2-4x1x2]=16 将①式代入②,解得 m 210 .
y1 y 2 标为 ( x1 x 2 , ). 2 2
2.|AB|=
x1 x 2

过两曲线交点的曲线系方程及应用

过两曲线交点的曲线系方程及应用

过两曲线交点的曲线系方程及应用浙江曾安雄高中数学第二册(上)(修订试验本)的第88页B 组第4题是: 两条曲线的方程是f 1(x ,y )=0和f 2(x ,y )=0,它们的交点是P (x 0,y 0),求证方程:f 1(x ,y )+λf 2(x ,y )=0的曲线也经过点P (λ是任意实数).本题证明较易,在此略.它揭示了“过两曲线交点的曲线系方程(不含曲线f 2(x ,y ))”,在解决过两曲线交点问题极其简捷,下面举例说明.一、求直线方程例1 求经过两条曲线x 2+y 2+3x -y =0和3x 2+3y 2+2x +y =0交点的直线的方程.解:过两已知曲线的交点的曲线系方程是: (x 2+y 2+3x -y )+λ(3x 2+3y 2+2x +y )=0整理,得(3λ+1)x 2+(3λ+1)y 2+(2λ+3)x +(λ-1)y =0. 令3λ+1=0,即λ=-31,故所求的直线为 7x -4y =0. 二、求定点坐标例2求证:不论m 取何实数,方程(3m +4)x +(5-2m )y +7m -6=0所表示的曲线必经过一个定点,并求这一定点的坐标.解:由原方程整理,得(4x +5y -6)+m (3x -2y +7)=0令45603270x y x y +-=⎧⎨-+=⎩,解得12x y =-⎧⎨=⎩故知定点应是(-1,2). 三、求圆的方程例3求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程.解:过两圆交点的曲线系为(x 2+y 2+6x -4)+λ( x 2+y 2+6y -28)=0,整理得 (1+λ)x 2+(1+λ)y 2+6x +6λy -4-28λ=0 ①圆心为33,11λλλ⎛⎫-- ⎪++⎝⎭(λ≠-1),由题意知在直线x -y -4=0上,即31λ-++31λλ+-4=0,解得λ=-7.代入①知所求的圆方程是 x 2+y 2-x +7y -32=0. 四、证明相关问题例4 证明椭圆22205x y +=1与双曲线22123x y -=1的交点在同一个圆上. 证明:由椭圆22205x y +=1即为x 2+4y 2-20=0,双曲线22123x y -=1即x 2-4y 2-12=0,故过椭圆及双曲线的交点的所有曲线(不含f 2(x ,y )=0)的方程为(x 2+4y 2-20)+λ(x 2-4y 2-12)=0即(1+λ)x 2+(4-4λ)y 2-20-12λ=0 ① 令1+λ=4-4λ≠0,得λ=35,代入①得x 2+y 2=17 这说明椭圆与双曲线的交点在同一个圆x 2+y 2=17上.运用曲线系解曲线方程问题张宽锁在《解析几何》中,有关求曲线方程的问题,大都采用待定系数法求解,而采取这种方法有时未知数多,解方程组比较麻烦,有些还要分类讨论,因此,有没有一些更简便的方法解决这些问题呢?本文就此谈谈曲线系方程的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双直线二次曲线系方程的几个应用实例
具体可以参考中等数学2009年第8期文章《二次曲线中点弦、切线、切点弦及双切线方程》,华东师大《奥数教程》高二分册,本文为原创,如有雷同,纯属巧合!
大家都知道解析几何里有一个重要的工具:曲线系。

灵活用好曲线系,可以一定程度上减少计算量,甚至收获意想不到的效果。

不管是参加高考还是联赛,都有必要了解一下设曲线系一些基本思路。

一、首先要了解的是二次曲线的三条线: 1、过曲线上一点与曲线相切的直线,称为切线。

2、过曲线外一点引两条切线,得到两个切点,这两个切点连成的直线,称为切点弦。

3、过曲线一点任作两条弦,与曲线有四个相异的交点,与两条弦相异的两组点连成的两条直线的交点的轨迹。

(特别地,当这两条弦重合时,即过该点作一条弦与曲线交于两点时,对应的交点为过这两点的切线的交点,称为虚切线。


二、二次曲线一般形式为
022=+++++F Ey Dx Cy Bxy Ax (A 和C 不同时为0)。

注:上述二次曲线方程可以表示:圆,椭圆,抛物线,双曲线(圆锥曲线);两条相交直线;两条
平行直线(可以通过因式分解得到);一条直线(直线一般式方程平方即可得到);一个点(例如点圆,在圆的方程中令r 为0即可)。

三、贯穿本文的一个基本原理是:
过二次曲线f(x,y)和g(x,y)的交点的二次曲线系,可以记为:λf(x,y)+μg(x,y)=0. 目录
第一题:2008全国高中数学联赛一试解析几何题
第二题:2010全国高中数学联赛A 卷一试解析几何题 第三题:比较常见的高考解析几何题
第四题:2012版天利38套,市高三模拟考试(一) 第五题:2012版天利38套,市高三年级调研考试 第六题:2010全国高中数学联赛B 卷一试解析几何题
第一题:(2008全国高中数学联赛一试,改编)P (t t 2,22
)是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=切于PBC ∆,求将B,C 两点间距离表示为关于t 的函数关系式。

【解答过程】
第二题:(2010全国高中数学联赛A卷一试)
【解答过程】
【总结】过圆锥曲线上任意一点作两条斜率互为相反数的直线,那么两条直线与曲线的两个交点连线的斜率为定值。

【解答过程】
【解答过程】
【解答过程】
前五题已经解答完成了,总结一下:
第一,都没有使用韦达定理。

韦达定理是个经典的不能再经典的工具,固然强大,但联立方程计算易错,两根和,两根积,一般是一摞一摞的分式,在卷面上总是有点那什么呢。

第二,利用曲线系方程,实际上把计算难度转移到直线方程系数比较上。

但是,比较系数,直观,不易错,原理也不难理解。

调整两个多项式恒等,其对应系数必须都相等。

第三,设出来的曲线系含有待定的系数“λ”或者“u”,有些时候我们需要先计算出待定系数的值,再去比较系数。

更多的时候设而不求,因为这个待定系数对整个多项式的x,y,xy没有贡献。

第四,要联系几何意义,知道它表示什么曲线。

要表示这种曲线,就必须满足什么条件。

由此得到系数间的一些关系。

第五,话不能说绝了,这种方法有它缺点。

参见下面的第六题。

第六题:。

相关文档
最新文档