《水泥与减水剂相容性试验方法》行业标准介绍
水泥与减水剂相容性的检验与探索

关于水泥与减水剂的相容性,发改委于2008年颁布并实施了行业标准JC/T1083《水泥与减水剂相容性试验方法》,使水泥行业对水泥与减水剂相容性的检验、评价有了标准依据。
我国水泥厂重视和控制水泥流变性能的历史较短,对水泥流变性的研究处于初级阶段。
修订与颁布《水泥与减水剂相容性试验方法》标准时,国内减水剂市场还是蔡系减水剂的天下,现在减水剂市场呈多元化状态,聚竣酸系减水剂成为市场主角。
减水剂市场的变化使得《水泥与减水剂相容性试验方法》在某些方面存在滞后的情况。
1水泥与减水剂相容性的现象特征关于水泥与减水剂相容性的现象特征,《水泥与减水剂相容性试验方法》对水泥与减水剂相容性的定义包含了初始流动性、流动性经时损失和减水剂用量三个要素。
实际上,在饱和掺量(或接近饱和掺量,下同)下的保水性也是水泥与减水剂相容性的一个重要方面。
要全面表征水泥与减水剂相容性,至少应包括以下指标:减水剂的饱和掺量、减水剂推荐掺量下的净浆初始流动度、减水剂推荐掺量下的净浆60min(30min)经时流动度、一定减水剂掺量下净浆的保水性。
《水泥与减水剂相容性试验方法》中定义的水泥与减水剂相容性未包含保水性,也未包含保水性检验方法。
某些减水剂和水泥虽然可以得到很大的净浆流动度,但如果已经产生明显泌水,则净浆流动度再大也是没有应用意义的。
上述表征水泥与减水剂相容性的指标,对应着混凝土性能的不同方面,全部被水泥的使用者所关注。
水泥厂对水泥与减水剂相容性的控制,应该至少包括上述4项指标。
水泥与减水剂相容性良好,应包括以下现象特征:饱和掺量点明确;饱和掺量不高,初始流动度较大;经时流动度损失较小;一定减水剂掺量时净浆没有明显泌水。
上述任何一个方面存在问题,均视为水泥与减水剂相容性不好。
某种与减水剂相容性不好的水泥,可能存在其中一个问题,也可能同时存在多个问题。
问题不同,给混凝土带来的影响不同,在水泥厂的质量控制方法、纠正措施也不同。
减水剂的饱和掺量是随减水剂掺量增加、净浆初始流动度不再明显增加的掺量,也可以是经时流动度损失不再明显减小的掺量。
混凝土减水剂密度、 与水泥相容性快速测定方法

DB53/T XXXXX—202030附录A(资料性附录)混凝土减水剂密度、与水泥相容性快速测定方法A.1试验材料、仪器A.1.1试验材料本方法所使用的材料为实际工程所用的水泥、减水剂、细集料和水,对各种材料的要求如下:a)测试前水泥、减水剂、细集料和水应提前放置在A.2要求的环境中直至恒温;b)细集料性能应满足本标准规定的连续级配以及有害物质含量要求;c)减水剂密度测试时应保证其温度为(20±1)℃,如有沉淀应滤去。
A.1.2仪器仪器要求如下:a)波美比重计,量程1.000 g/cm3~2.000 g/cm3,1支,精度为0.001 g/cm3;b)精密密度计,量程分别为1.000 g/cm3~1.100 g/cm3、1.100 g/cm3~1.200 g/cm3、1.200 g/cm3~1.300 g/cm3、1.300 g/cm3~1.400 g/cm3、1.400 g/cm3~1.500 g/cm3各1支,精度为0.001 g/cm3;c)超级恒温器或同等条件的恒温设备;d)水泥净浆搅拌机,其性能参数应符合《水泥净浆搅拌机》JC/T729的要求;e)净浆流动度试模,为深60 mm、顶内径Ф36 mm、底内径Ф60 mm的截顶圆锥体。
试模由耐腐蚀的、有足够硬度的、内壁光滑无暗缝的金属制成;f)玻璃板,边长为400 mm、厚度5 mm的平板玻璃,稠度试验每个试模应配备一个边长或直径约100 mm、厚度4 mm~5 mm的平板玻璃底板;g)刮刀;h)直尺,量程300 mm,分度值1 mm;i)天平,量程100 g,分度值0.01 g;量程1000 g,分度值1 g;j)烧杯,容量400 mL;k)量筒,容量250 mL,分度值1 mL;l)抹刀。
A.2环境条件A.2.1试验室的温度应保持在(20±2)℃,相对湿度应不低于50 %。
A.2.2水泥试样、拌合水、仪器和用具的温度应与试验室一致。
200935水泥与减水剂相容性试验记录

水泥与减水剂相容性试验记录
XJ/SQDC35-2009 水泥代号、强度等级 减水剂名称、 规格型号 委托单位 委托日期 样品数量 检验依据 检验单位 检 方法 项目 初始 60min Marsh 筒法 验 内 容 判断 水泥: 年 月 日 (㎏) 样品状态 代表批量 检验日期 检验编号 XY 水泥: (t) 减水剂 (t) ; 商 标 生 产 厂 名 委托人
不符合协定 要求处理意见
备注 批准 审核 主检
(㎏) ;减水剂 JC/T1083-2008
水泥(g) 水(mL) 减水剂 (g/%) Marsh 时间或流动度 (㎜) 指标
流动 度法175 (145)
经 时 损失率
Marsh 法 流动度法
FL(%)=(T60-Tin)×100/Tin= FL(%)=(Fin-F60)×100/Fin=
2016混凝土行业最新标准目录

103
JC/T949-2005
混凝土制品用脱模剂
104
JC/T950-2005
预应力高强混凝土管桩用硅砂粉
105
JC474—2008
砂浆、混凝土防水剂(代替JC474—1999)
106
JC475—2004
混凝土防冻剂(代替JC475—1992(1996))
107
JC477—2005
146
JGJ 94-2008
建筑桩基技术规范
147
GB 50046-2008
工业建筑防腐蚀设计规范
148
GB 50086-2001
锚干喷射混凝土支护技术规范
149
CJJ 37-2012
城市道路设计规范
150
GB50209-2010
建筑地面工程施工及验收规范
151
CJJ/T/T135-2009
透水水泥混凝土路面技术规程
水泥压蒸安定性试验方法(代替GB750—1965)
49
GB/T8074—2008
水泥比表面积测定方法(勃氏法)(代替GB/T8074—1987)
50
GB/T8075—2005
混凝土外加剂定义、分类、命名与术语
51
GB/T8170-2008
数值修约规则与极限数值的表示和判定
52
GB12573—2008
15
GB/T14684—2011
建筑用砂(代替GB/T14684—2011)
16
GB/T14685—2011
建筑用卵石、碎石(代替GB/T14685—2011)
17
GB 50666-2011
混凝土结构工程施工规范
18
混凝土减水剂质量标准和试验方法

中华人民共与国城乡建设环境保护部标准混凝土减水剂质量标准与试验方法Water Reducing Admixture UsedforConcrete——Quality Requirements andTestingMethodsJGJ56—84中华人民共与国城乡建设环境保护部批准1984—12—25发布1985—07—01实施目录1、总则1、1 适用范围1、2 定义及分类2、混凝土减水剂质量标准2、1 混凝土减水剂质量标准2、2 混凝土试验条件2、3 混凝土减水剂试验项目3、混凝土减水剂试验方法3、1 减水率3、2泌水率3、3 含气量(气压法)3、4 含气量(水压法)3、5凝结时间(贯入阻力法)3、6 立方体抗压强度3、7 收缩附录A减水剂匀质性试验方法(参考件)A、1 固体含量或含水量A、2PH值A、3 比重A、4 密度A、5松散容重A、6 表面张力(铂环法)A、7 表面张力(毛细管法)A、8 起泡性(机摇法)A、9 起泡性(手摇法)A、10氯化物含量A、11硫酸盐含量(重量法)A、12 硫酸盐含量(转换法)A、13 全还原物含量A、14木质素含量(盐酸法)A、15木质素含量(β—萘胺法)A、16钢筋锈蚀快速试验(钢筋在饱与氢氧化钙溶液中阳极极化电位得测定)A、17 钢筋锈蚀快速试验(钢筋在新拌砂浆中阳极极化电位得测定)A、18钢筋锈蚀快速试验(钢筋在硬化砂浆中阳极极化电位得测定)附录B掺减水剂得净浆及砂浆试验方法(参考件)B、1水泥净浆流动度B、2 净浆减水率B、3 砂浆减水率B、4砂浆含气量附录C 掺减水剂得混凝土试验方法(参考件)C、1塌落度及塌落度损失C、2 抗冻融性C、3 混凝土中钢筋锈蚀试验1、总则1、1 适用范围本标准适用于工业、民用建筑及构筑物混凝土用减水剂质量得鉴定。
工程选用减水剂时,可参照本标准(试验时可采用该工程所用得材料)。
1、2定义及分类减水剂就是在不影响混凝土与易性条件下,具有减水及增强作用得外加剂。
混凝土减水剂质量标准和试验方法

部标准混凝土减水剂质量标准和试验方法中华人民共和国城乡建设环境保护部部标准混凝土减水剂质量标准和试验方法中华人民共和国城乡建设环境保护部批准发布实施目录总则适用范围定义及分类混凝土减水剂质量标准混凝土减水剂质量标准混凝土试验条件混凝土减水剂试验项目减水率泌水率立方体抗压强度收缩附录固体含量或含水量值比重密度松散容重全还原物含量附录净浆减水率砂浆含气量附录塌落度及塌落度损失混凝土中钢筋锈蚀试验总则适用范围定义及分类减水剂是在不影响混凝土和易性条件下具有减水及增按其作用分为普通型减水剂高效型减水普通型减水剂高效型减水剂早强型减水剂缓凝型减水剂引气型减水剂混凝土减水剂质量标准鉴定任何一种减水剂均需测定掺减水剂混凝土的性能并应满足表混凝土试验条件列规定材料水泥含量在二水石膏作调凝剂的号或量不宜超过调凝剂总量的石子采用粒径为的卵石或碎石水基准混凝土水泥用量砂率通过试拌坍落度试验混凝土掺坍落度按研制单位或生产厂推荐的掺试块制作及养护搅拌方法试验混凝土应与基准混凝土在相同条件下搅拌试块制作及养护试块的成型振捣方法应与含秒用以防止水分蒸发在室温为混凝土减水剂试验项目泌水率松散容重钢掺减水剂的混凝土性能除按表要求的项目减水率仪器设备坍落度筒试验步骤测定基准混凝土的塌落度记录达到该塌落度试验结果处理式中泌水率仪器设备容重筒升注表中所列数据为试验混凝土与基准混凝土的差值或比值自本标准实施之日起原国家基本建设委员会年批准的的第七条作废带盖称量感量试验步骤称重然后用抹刀将顶面轻轻抹平试样表面比筒口边低称出筒及试样的总重自抹面开始计算时间前分钟每隔分钟用吸液管吸出泌水一次以后每隔直至连读出每次吸出水每次吸出泌水前厘米取出泌水后仍将筒轻轻放试验结果处理泌水率按下式计算式中如其中一个与平均值之差大于平均值的泌水率比按下式计算掺减水剂的混凝土泌水率基准混凝土泌水率含气量参照国标混凝土基本性能试验拌合物性能试注检测减水剂成型时装料和振捣方法与国标不同应按下列规定混凝土试样一次装满容器并略高于容器成型棒头沿试样中心插入厘米含气量参照国标混凝土基本性能试验拌合物性能试注检测减水剂成型时装料和振捣方法与国标不同应按下列规定混凝土试样一次装满容器并略高于容器成型棒头沿试样中心插入厘米凝结时间仪器设备最大负荷为精度附有可度试针两其断面积分别为和无油渍截面为圆形或方形直径或边长为高度为筛子孔径为试验步骤试样制备将混凝土拌合物通过筛振动筛出的砂浆装在充分拌匀筛出砂浆在震动台上震秒钟置于贯入阻力测试然后先用断面为将试针的秒钟内缓慢而均匀地垂直压入砂浆内部深度记录所需的压力和时间贯入阻力值达以换用断面为每次测点应避开前一次的测试孔其净距为试针直径的至少不小于试针距容器边缘不小于在普通混凝土贯入阻力初次测试一般在成型后以后每隔小时测定一次掺早小时开始以掺缓凝型减水剂的混凝土初测可小时或更多以后每隔小时进行一次直试验结果处理贯入阻力按式计算式中时所需的净压力绘以和直线与曲线交点试验精度凝结时间取三个试样的平均值试验误差立方体抗压强度参照国标混凝土基本性能试验收缩参照国标混凝土基本性能试验附录减水剂匀质性试验方法固体含量或含水量仪器设备扁平式称量瓶或电热鼓风干燥箱分析天平感量干燥器试验步骤称取样品置于洁净恒重的扁平式称量瓶中在烘箱中以试验结果处理固体含量按下式计算固体含量含水量按下式计算含水量式中取三个试样测定数据的平均值为试验结果精值仪器设备试验步骤电极安装然后将已在蒸馏水中浸泡小时的玻璃电极和浸在饱和氯化钾溶液中的甘汞电极夹将两以便紧固在校正将两支电极浸入溶将温度补偿器调至在被测缓冲液的实际温度位置使电表指针指在标准溶液的使其处在放开位置电表指针应退回以蒸馏水冲洗电极校正后切勿再旋测量用滤纸将附于电极上的剩余溶液吸干或用被测溶液洗涤电极电复按读数开关使电表指针退回位精度精确至试验在比重仪器设备试验步骤天平的安装和调整将测锤和玻璃量筒用纯水或酒精洗净再将支柱紧定螺钉旋松托架横梁置于托架之玛瑙刀座用等重砝码挂于横梁右端之小钩上调整水平调节螺钉使横梁上的指针与托架指针尖成水平线以示平衡如无法调整平衡时首先将平衡调节器上的定位小螺钉松开然后略微转动平衡调节器直至平衡止仍将中间定位螺钉旋紧严防松动将等重砝码取下但则将重心调节器反之测试步骤图液体比重天平示意图托架横梁玛瑙刀座支柱紧固螺钉测锤玻璃量筒等重砝码水平调节螺钉平衡调节器重心调节器在横即是测得液读数方法横梁上注意事项部件及横精度精确到试验在密度仪器设备比重瓶或分析天平感量干燥器或试验步骤校正比重瓶的容积乙醚洗净比重瓶放入装有硅胶的称量空瓶重量将它置于小时后称量比重瓶装水后的重量计算比重瓶的校正容积式中比重瓶的校正容积烧杯中或装入容再加少许蒸小时后称量比重瓶装入减水剂溶液后的重量试验结果处理减水剂溶液的密度按下式或计算或式中或精度精确至试验在松散容重仪器设备容重筒内径高药物天平感量试验步骤容重筒容积校正用盖住筒口容重筒的校正容积式中玻璃板及水总重松散容重测定称量干燥的空容重筒的重量处装入容重筒内直用直尺沿筒口中心向两侧方向轻轻刮平然后称其重量试验结果处理松散容重按下式或计算或式中松散容重或取三个试样测定数据的平均值为试验结果精确表面张力仪器设备界面张力仪比重瓶或感量试样制备试验步骤配制试样用质量法对仪器进行校正调节微调使并使铂金环浸入液体内同时下降样品座使向上与向下的二个力保持平衡试验结果处理溶液表面张力按下式或计算或校正因子按下式计算式中表面张力或或铂金丝半径铂环等须保持相同试验需在铂环必须保持清洁不得铂环在液面上要保持水平在接近分离点时如果被测样品内有沉淀物必须过滤去除沉表面张力仪器设备电热鼓风干燥箱比重瓶或分析天平感量试样制备减水剂按在混凝土中推荐掺量的两倍定为被测溶液的百试验步骤配制试样将清洗过的干燥的毛细管垂直固定于溶液开始时毛细管放得比实验位置低并且在此位稳测量毛细管中液面上升高度反复试验两读数之差不应大于试验结果处理溶液的表面张力按或式计算或式中表面张力或起泡性仪器设备摇泡机具塞量筒容量瓶移液管试样制备减水剂按在混凝土中推荐掺量的两倍定为被测溶液的百瓶配制所需浓度的减水剂溶图摇泡机示意图主架升降机具塞量筒曲臂减速箱电动机底座在具塞量筒沿壁装入一定浓度的减水将具塞量筒固定开动摇泡机静置立即迅记录从停机开始到泡沫消退至刚试验结果处理发泡体积等于起始体积消泡时间为从停机开始到泡沫消退至刚露出起泡性仪器设备具塞量筒容量瓶移液管试样制备试验步骤容量瓶配制所需浓度的减水剂溶在具塞量筒中沿壁装入一定浓度的减水剂溶立即迅速量出泡沫记录从静置开始到泡沫消退至刚露出水面的试验结果处理起始体积消泡时间为从停机开始到泡沫消退至刚露出氯化物含量仪器设备电位测量仪直流数字电压表或自动电位滴定计或酸度计自动滴定管自动滴定管试剂分析纯摇匀干小此溶液即为硝酸银溶液分析纯用蒸馏水溶解放入一升棕色容量瓶中稀释至摇匀标准溶液对硝酸银溶液进行标硝酸银溶液加蒸馏水用电位法滴定终点按下式计算式中标液体积分析纯分析纯饱和高纯试剂试验步骤放入烧杯中搅拌至全部插入银电极和相连接电磁搅记录电势故要定量加入得到第一个终点时按上述方法继续用得到溶液消耗的体积试验结果处理或用差示滴定曲线来计算以记录所上升的毫伏数然后以此数作纵坐标曲线峰尖的横坐标值即为滴定终点所需的两次加入标准减水剂中氯离子所消耗的按下式计算减水剂中氯离子百分含量按下式计算式中试样溶液加标准溶液所消耗标准溶液所消耗浓标浓标即获得减水剂中等当量的无水按下式进行计算注意事项要用蒸馏以便使用后用蒸馏水清洗甘汞电极应经常添加饱和及更换盐桥内的保证碳酸盐含量仪器设备高温炉分析天平瓷坩埚其它烧杯紧密定量滤纸试剂溶液水溶液溶液溶液试验步骤烧蒸馏水搅拌溶解基红在在上部直至无更多沉淀生成时取下烧杯置于加热板控制置小或烧杯中的沉淀用热蒸再洗至无氯离子将沉淀和滤纸移入已灼烧恒重的瓷坩埚中然后在干燥器中冷却至室温称量至恒重试验结果处理硫酸根离子含量按下式计算硫酸钠含量按下式计算式中硫酸盐含量仪器设备离心沉淀机离心试管分析天平容量瓶试剂氢氧化钠碳酸钠溶液硫酸试验步骤溶于少量蒸馏水摇匀备注入放在水浴中加热滴加氯化钡溶液边滴边搅取出试管趁热离心沉淀若无白色沉淀则表明硫酸钡离子存在加入洗离心沉淀取清左右则有白色沉淀生成重新在沉淀检若溶液透明则表明硫酸钡已全部转换成碳酸钡用蒸馏水若没有白色沉淀出经溶解碳酸钡水浴加热驱走二氧化碳加经标定的氢记试验结果处理硫酸钠含量按下式计算式中注意事项移取溶液弃去清液等操作应配制减水剂测定蒽系减水剂时洗涤硫酸钡沉淀时除用全还原物含量仪器设备磨口具塞量筒三角烧瓶移液管试剂醋酸铅溶液称量中性溶于水酸磷酸氢二钠混合液称取硫酸铜溶稀称取酒石酸钾钠次甲基蓝在玛瑙研钵中加少量水研溶后试验步骤具塞量筒中加将量筒颠倒数使之混匀放置澄取上层清液作为试吸取斐林溶液三角烧置于三角烧瓶中在电炉上加热待继续用保持沸腾状态直到最试验结果处理全还原物含量按式计算全还原物力价力价葡萄糖溶液消耗毫升数注意事废液加醋酸铅溶液脱色是为了使还原物等磷酸氢二钠溶液是为了除去溶液中的铅若过量也会影使沸腾后木质素含量仪器设备分析天平抽滤瓶真空泵移液管烧杯试验步骤样品溶液溶于趁热用用热水洗涤至无酸性为止试验结果处理木质素沉淀的木质素重量木质素含量仪器设备分析天平移液管水浴锅试剂盐酸若不溶解可略加热待溶试验步骤盐酸调节分搅拌均匀逐渐形成细粒黄色沉淀知重量的在试验结果处理木质素磺酸钙的含量按下式计算因在用时钢锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极烧杯塑料桶或广口玻璃瓶试剂与材料氢氧化钙或氧化钙硝酸钾琼脂铜芯塑料线绝缘涂料试验步骤光洁并在钢使钢筋中间暴露长度为制备盐桥灌入型玻璃管内冷凝后即可使用制备电解质溶液化学纯氢氧化钙试剂溶于常温蒸馏水中搅拌至充分溶解稍静置后呈微浑浊状便将减水剂按推荐掺量按照图分钟记录阳极极化电位试验结果处理以三个试验电极测量结果的平均值作为钢3o p y c l i p z阳极极化电位绘制电位时间曲线根据电位阳极极化电位测试装置图恒电位仪饱和氢氧化钙溶液有机玻璃盖板铂金电极或钢筋阴极钢筋阳极饱和氯化钾溶液烧杯烧杯电极通电后并在电位值无明显表明阳极钢筋表面钝化膜完好无损通电后说明钢筋表面钝化膜已部分受损说明钢筋出现上述非钝化曲线状态时则需再以进一步判别减水剂对钢钢筋锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极定时钟铜芯塑料线绝缘涂料试模用木模或塑料有底活动模试验步骤制作钢筋电极将光并的导线再用乙醇仔细擦去焊油使钢筋中间暴露长度拌制新鲜砂浆在无特定要求时水为蒸馏水水泥品种为普通硅酸盐砂浆及电极入模入试模中先浇一半左将两根处理好的钢筋电极平行放在砂浆表面间拉出导线然后灌满砂浆抹平并轻敲几下侧板连接试验仪器按图与另一根钢筋为阴极接仪器的接线孔再将甘汞电极或硫酸铜电极测试试验结果处理作为钢阳极极化电位绘制电位时间曲线根据电位减水AV 123465*63600400+200-200-400辅参研比助究*参比研究电位(m V电位时间曲线分析图新鲜砂浆极化电位测试装置图恒电位仪木模或硬塑料模甘汞电极或硫酸铜电极新拌砂浆钢筋阴极钢筋阳极并在电位值无明显完好无所测减水剂对钢筋是无害通电后说明钢筋表面钝化膜已部分受说明钢筋钝化膜破验砂浆中所含的水泥减水剂对钢筋锈蚀的影响仍不能作出明确的判断以钢筋锈蚀快速试验仪器设备恒电位仪铂金电极甘汞电极定时钟铜芯塑料线绝缘涂料试模的棱柱体模板两端中心带有固定钢筋的凹孔半通孔塑料试验步骤制备埋有钢筋的砂浆电极光丙酮依次浸擦除去油脂放入干燥器中备用成型砂浆电极软练标准蒸馏水减置砂浆电极的养护及处理移入标准养护室养护后脱模继续标准养护仔细擦净外露钢筋头用乙醇擦去焊油使试件中间如图进行测试将处理好的硬化砂浆电极置于饱和氢氧化钙溶液中并注意不同类型或不同掺量减水剂的试件不得放置同一容器内浸把一个浸泡后的砂浆电极移入盛有饱和氢氧化钙溶液的玻璃缸内以它作为阳1567234AV45辅助参比*研究以甘汞电极极作为参按图求接好试验线钢筋砂浆电极导线石蜡砂浆筋硬化砂浆极化电位测试装置图烧杯有机玻璃盖铂金电极或钢筋阴极甘汞电极或硫酸铜电极硬化砂浆电极饱和氢氧化钙溶液未通外加电流前的自然电位接通外加电流表到需要值同时开始计算时间依分别记试验结果处理取一组三个埋有钢筋的硬化砂浆电极极化绘制阳极极化电位根据电位减电极通电后并在电位值无明显表面钝化膜完好无损通电后说明钢筋表面钝化膜已部分受说明钢筋钝化膜破所测减水剂附录掺减水剂的净浆及砂浆试验方法水泥净浆流动度仪器设备软练水泥净浆搅拌机截锥圆模高内壁光滑无接缝的金属制品药物天平药物天平试验步骤将锥模置于水平玻璃板上锥模和玻璃板均用湿布擦过倒入用湿布擦过的搅拌锅搅迅速注入截锥模内刮平将锥三十秒钟时量取互相垂直的两直径试验结果处理表达净浆流动度净浆减水率仪器设备软练水泥净浆搅拌机跳桌截锥圆模捣棒和游标卡尺或钢直尺试验步骤加水搅拌搅拌三分钟并抹平表面以每秒一次的速度使跳桌跳动三十次取两个数的平均时的用水量为基准水泥净浆用水量以同样的方法测定掺减水时的用水量即为减水后水泥净浆用水量试验结果处理净浆减水率按下式计算净浆减水率式中时的用水量时的用水量砂浆减水率仪器设备胶砂搅拌机捣棒由金属材料制直长约上模套须与截锥圆模配合直尺抹刀台秤试验步骤测出基准砂浆的用水量开动搅拌机截锥圆模和模套内壁并把它们置于玻璃板中盖上湿第一层装至圆锥模高约三分之二同样用圆柱棒捣以免产生移捣好后取下模套用抹刀将高出截锥圆模的砂浆刮以跳动完毕取互相垂直的两个直径的平均值为该用水量时的砂浆扩散度用。
水泥与减水剂相容性的评价方法

水泥与减水剂相容性的评价方法随着预拌商品混凝土的飞速发展,商品混凝土配合比设计除了考虑商品混凝土的强度、耐久性之外,还更注重其工作性能。
水泥与减水剂的相容性是影响商品混凝土工作性能的重要因素。
目前,评价水泥与减水剂相容性通常采用水泥净浆流动度法,但实践表明,水泥净浆的流变性能不能完全代表商品混凝土的流变性能,这主要是由于分散相为水的水泥浆体系与分散相为砂浆的商品混凝土体系中的粒径差别太大所致。
本试验选择分散相为水泥浆的砂浆体系为对象来评价水泥与减水剂相容性,确定商品混凝土减水剂的饱和掺量及最佳掺量,并与净浆流动度法进行对比。
1试验材料与方法1.1试验材料试验用水泥为日本佐伯产的小野田水泥PⅡ52.5、PO42.5,其化学成分见表l,物理性能见表2。
外加剂为3种萘系减水剂,品质指标见表3。
1.2试验方法1.2.1水泥胶砂扩展度试验方法1)测试仪器①GB/T2419-2005中规定的水泥胶砂流动度截锥试模,高60mm,上FI内径70mm,下口内径lOOmm;②玻璃板500mm*500mm*5mm;③水泥胶砂拌合机。
2)材料一次试验材料用量为:水泥450g,水泥标准砂l350g,水225ml。
3)试验方法掺减水剂的砂浆先干拌30s,加拌和水,搅拌3min。
一次性将搅拌后的砂浆装入试模,刮平后,将试模提起。
扩展度值取砂浆纵向及横向直径的平均值。
一次性胶砂扩展度试验过程需时约3-5min。
如果减水剂掺量由低到高增加,预先计算并称取相邻掺量间减水剂的增加量;完成前一次扩展度的测量后,将砂浆倒回搅拌锅,然后将增加的减水剂加入,搅拌1min再测量。
按此方法做至两次扩展度几乎无变化或扩展度缩小,或砂浆出现泌水环为止。
一般3~4 次试验即可完成,全部试验约为20min左右。
1.2.2其他检验方法水泥的物理性能检验按GB1346-2000《水泥标准稠度用水量、凝结时间、安定性检验方法》及GB/T17671-1999《水泥胶砂强度检验方法(ISO法)》进行;水泥的净浆流动度及减水剂检验按GB/T8O77-2000《商品混凝土外加剂匀质性试验方法》、GB8076-1997(商品混凝土外加剂》及GB50119-2003《商品混凝土外加剂应用技术规范》进行;商品混凝土试验按JGJ55-2000(普通商品混凝土配合比设计规程》及GB/T5008O-2002(普通商品混凝土拌合物性能试验方法标准》进行。
《水泥与减水剂相容性试验方法》行业标准介绍

《水泥与减水剂相容性试验方法》行业标准介绍0 引言为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水泥的使用。
这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。
同时, 当出现相容性问题时, 没有评判依据。
为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。
经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。
为了便于标准的实施, 现将该标准简要介绍如下。
1 关于标准中相容性术语问题综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。
根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。
当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。
因此, 两者的关系应该叫相容性, 而非适应性。
2 关于水泥与减水剂相容性的定义问题什么叫水泥与减水剂相容性, 至今没有一个明确的定义。
许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。
因此, 从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《水泥与减水剂相容性试验方法》行业标准介绍
0 引言
为了改善水泥与减水剂的相容性或进行水泥质量稳定性的考核, 水泥用户和部分水泥企业引用GB8076《混凝土外加剂》中的净浆流动度试验方法进行水泥与减水剂相容性试验, 从而进行生产控制和指导水泥的使用。
这样做, 虽然解决了试验方法的问题,但由于没有统一的评价基准, 导致结果没有可比性。
同时, 当出现相容性问题时, 没有评判依据。
为此,2006 年国家改革与发展委员会下达了《水泥与减水剂相容性试验方法》行业标准制定工作计划。
经过大量的工作, 该标准于2007 年8 月通过了水泥标准化技术委员会的审议,并建议2008 年6 月1 日实施。
为了便于标准的实施, 现将该标准简要介绍如下。
1 关于标准中相容性术语问题
综观现有的文献资料, 就水泥与减水剂两者的关系问题, 出现两个术语: 适应性和相容性。
根据词典的解释, 适应性指的是两个独立的个体之间的关系, 最终的结果是一方被征服或逃避, 而另一方丝毫没有变化; 而相容性指的是两个独立的个体形成一个整体之后的关系, 最终的结果是一损俱损、一荣俱荣。
当水泥和减水剂加水搅拌后, 两者就形成了一个不可分割的整体, 两者相互努力的结果就是拌和物的性能好还是坏, 没有哪一方被征服, 也没有哪一方逃避。
因此, 两者的关系应该叫相容性, 而非适应性。
2 关于水泥与减水剂相容性的定义问题
什么叫水泥与减水剂相容性, 至今没有一个明确的定义。
许多文献中, 都有关于水泥与减水剂相容性/适应性的描述, 其基本意思如下: 由于水泥矿物组成、细度、所掺加的混合材的品种和掺量的不同, 以及减水剂的匀质性、稳定性等原因, 会导致人们常说的水泥与减水剂相容性差的问题, 具体表现为经时坍落度损失快、要达到规定的流动度或坍落度时的减水剂用量大等, 有的甚至出现急凝、缓凝等现象。
因此, 从广义上来讲, 水泥与减水剂相容性应包括水泥浆体的流动性能、力学性能、凝结行为和泌水现象等。
同时, GB8076《混凝土外加剂》对泌水率比、凝结时间变化幅度和强度比进行了规定, GB8077《混凝土外加剂匀质性试验方法》对试验方法进行了规定。
因此本标准将水泥与减水剂相容性定义为水泥浆体流动性的变化, 具体为“使用相同减水剂或水泥时, 由于水泥或减水剂质量的变化而引起水泥浆体流动性、经时损失的变化程度, 以及为获得相同的流动性而导致减水剂掺量的变化程度”。
3 关于水泥与减水剂相容性的评价参数及基准点
经过试验研究表明( 见表1) : 不同的水泥具有不同的饱和掺量点; 不同的水泥在饱和掺量点时的Ma rsh 时间和经时损失不同; 不同的水泥在减水剂掺量相同时Marsh 时间和经时损失不同。
另外, 水泥中加入减水剂所追求的是: 1) 获得尽可能高的流动性, 利于混凝土的搅拌、成型; 2) 保证混凝土的可施工性, 在保证一定的流动性时, 还要求混凝土坍落度( 流动性) 损失不要太快, 即经时损失率要小; 3) 以尽量少的减水剂用量获得最大的技术效果,以降低混凝土的生产成本。
因此, 作为评价水泥与减水剂相容性的参数不应是这些参数中的某一个, 而应是流动性、饱和掺量和经时损失3 个参数, 这样才能客观、公正地评价某一水泥与减水剂的相容性。
在3 个评价参数中, 对于一个水泥而言, 只有饱和掺量点是固定不变的, 而流动性和经时损失率在减水剂掺量不同时的结果不同( 见图1) , 因此应确定流动性和经时损失率的评价基准点, 才能建立一个统一的评价体系。
经过研究, 水泥浆体的流动性和经时损失率在减水剂饱和掺量点之后趋于稳定。
经试验, 大多数水泥的饱和掺量点小于0.8%, 个别的大于0.8%, 因此选择了0.8%的减水剂掺量作为水泥浆体的流动性和经时损失率的评价基准点。
4 关于方法问题
根据资料[1~4], 水泥与减水剂相容性试验方法有净浆流动度法、Marsh 筒法和胶砂坍落度法几种, 而且不同的文献对这几种方法给出了不同的评价。
考虑经济因素, 排除了胶砂坍落度法, 并对净浆流动度法和Marsh 筒法进行了对比研究, 结果表明:
1) 两者的原理有所侧重, 但基本一致, 特别是Marsh 筒法的高水灰比与混凝土的实际情况接近;
2) 用Marsh 筒法测定饱和掺量点较净浆流动度法更为直观、便捷、可靠;
3) 用Marsh 筒法测定经时损失率比净浆流动度法敏感;
4)Marsh 时间随水泥中混合材掺量的变化与水泥标准稠度用水量和胶砂流动性的变化规律一致, 较净浆流动度法具有更好的相关性;
5)Marsh 时间与混凝土坍落度具有较好的相关性( 见图2) ;
6)Marsh 筒法试验误差影响因素少, 重复性误差小于净浆流动度法。
考虑到净浆流动度法的应用历史和普遍性, 以及与GB8076 的兼容性, 本标准将两个方法并列, 供标准使用方选择。
但有争议时, 以Marsh 筒法为准。
同时, 作为标准起草单位, 为了方便试验操作、减小试验误差, 和河北科析仪器设备有限公司联合开发了自动Marsh 时间测定仪, 供大家选择。
5 关于基准减水剂问题
在GB8076 中规定了基准水泥, 用以评价减水剂的质量。
同理, 要评价水泥, 必须固定减水剂, 确定评价基准和尺度, 才能进行横向比较。
基于减水剂的技术、生产和使用现状, 选择了占市场80%以上的萘系减水剂作为基准减水剂, 并于20 06 年研制成功, 向社会提供。
在规定基准减水剂的同时, 为了提高标准的可操作性和降低试验成本, 本标准不排除标准使用方自己选择评价基准( 但必须均匀、稳定) , 用以控制和考核水泥质量的稳定性。
但进行横向对比和处理质量纠纷时, 必须采用标准规定的基准减水剂。
6 关于初始和60min 的时间问题
本标准规定的初始时间指的是自加水搅拌算起,经过搅拌、装料步骤, 开始测试的时间。
根据标准规定的试验步骤, 此时间在4.5~5min。
本标准规定的60min 时间指的是自加水搅拌算起, 经过60min 后重新搅拌、装料, 开始测试的时间,根据标准规定的试验步骤, 此时间在64.5~65min。
7 关于搅拌机的问题
在测试完初始流动性后, 水泥浆体要在密封的容器中静置近1h 的时间, 在此期间, 浆体中的固体颗粒发生沉降, 形成上稀下稠的浆体分布。
虽然另配容器进行装盛前尽量将浆体重新返回搅拌锅, 但总会有部分浆体遗留在容器底部和内壁上, 从而改变浆体的水灰比。
为了减小此步骤造成的试验误差, 本标准规定搅拌机配6 只搅拌锅, 使浆体自始至终全部在锅内, 避免浆体损失对试验结果造成影响。
8 关于Mar sh 漏斗的问题
在本标准的方法中, 影响试验结果最大的因素是Marsh 漏斗。
其机械尺寸、加工精度, 特别是下料管部分, 都对试验结果有影响。
因此, 为了保证试验结果具有可比性, 在此次标准制定过程中, 吸取原先的经验教训, Marsh 漏斗的加工生产只由一家单位进行, 并开发了自动Marsh 时间测定仪。
同时, 为了保证产品质量, 生产的测定仪必须经过建筑材料工业水泥检验专用仪器设备质量监督检验测试中心的检验, 合格后方能出厂。
9 关于基准减水剂掺量点的问题
本标准在水泥浆体的配合比中给出了基准减水剂的掺量点, 同时在备注中又提示“根据水泥和减水剂的实际情况, 可以增加或减少基准减水剂的掺量点”。
这是因为不同的水泥的饱和掺量点不同, 进行大的减水剂掺量试验没有意义。
但无论如何调整, 0.8%的掺量点必须做, 以进行流动性和经时损失率的评价。
10 关于水泥企业检测频率的问题
对于水泥企业而言, 本标准的制定有两个作用:
一是对本单位水泥产品质量的了解、掌握以及控制、调整; 二是应对发生的质量纠纷。
因此, 建议水泥企业首先进行一次全面的质量情况摸底, 进行饱和掺量点、流动性和经时损失的试验测试。
然后根据用户的要求进行调整, 使水泥与减水剂的相容性达到一个理想的水平。
在正常情况下, 每周进行1~2 次的流动性和经时损失测试, 以考察水泥质量的稳定性即可。
参考文献:
[1] 吴笑梅, 樊粤明, 简运康.用Marsh 筒法研究水泥与减水剂的相容性问题[J].水泥, 2002, (12): 8- 11.
[2] 徐海军.对制约当前商品( 预拌) 混凝土质量的关键技术问题的研究[D].广州: 华南理工大学,20 01.
[3] 覃维祖.水泥- 高效减水剂相容性及其检测研究[J].混凝土, 1996,(2):11- 17.
[4] 徐永模,彭杰,赵昕南.评价减水剂的新方法———砂浆坍落扩展度[J].硅酸盐学报, 2002, (增刊):124- 130.
[5] 肖忠明,郭俊萍, 席劲松, 等.Marsh 筒法和净浆流动度法用于水泥与减水剂适应性测试的比较
[J].水泥, 2006,(8):1- 4.。