①挤出-高分子聚合物成型加工实验报告

合集下载

实习报告 2020高分子实习报告4篇

实习报告 2020高分子实习报告4篇

实习报告 2020高分子实习报告4篇
实习报告 2020高分子实习报告。

实习时间,2020年7月1日至8月31日。

实习地点,某某高分子材料公司。

实习内容:
在本次实习中,我主要负责参与高分子材料的研发工作。

通过
实习,我深入了解了高分子材料的生产流程、性能测试和应用领域。

在实习期间,我参与了多个项目的研发工作,包括新型高分子材料
的合成、改性和性能优化等方面。

在参与项目的过程中,我学习了很多实用的技能,包括高分子
材料的合成方法、性能测试方法以及实验数据的分析和处理。

我还
学会了如何使用各类仪器进行材料性能测试,比如拉伸试验机、热
分析仪等。

这些技能的学习和掌握,对我未来从事高分子材料研发
工作将大有裨益。

在实习期间,我还参与了公司举办的多次技术交流会和学术讲座,通过与行业内的专家学者交流,我对高分子材料的前沿技术和发展趋势有了更深入的了解。

这些交流活动也让我认识到了高分子材料行业的广阔前景和巨大发展潜力。

总结:
通过本次实习,我不仅学到了很多专业知识和实用技能,也增强了对高分子材料行业的认识和了解。

我深刻体会到了理论知识与实际工作的结合对个人职业发展的重要性,也更加坚定了我从事高分子材料研发工作的决心。

感谢公司给予我这次宝贵的实习机会,我会继续努力学习,为将来的发展打下坚实的基础。

①挤出-高分子聚合物成型加工实验报告

①挤出-高分子聚合物成型加工实验报告

聚合物加工实验报告实验一三元乙丙橡胶/聚丙烯共混改性及其挤出造粒姓名:张涵学号:1514171034 班级:2班年级:2015级专业:高分子材料与工程实验时间:2018年5月3日目录一、实验目的 (4)二、实验原理 (4)第一部分聚丙烯及EPDM (4)(一)聚丙烯 (4)(1)聚丙烯的品种 (4)(2)聚丙烯的性能 (4)(二)EPDM (5)(1)EPDM的定义 (5)(2)EPDM的特性 (5)(3)EPDM的改良品种 (7)(三)聚丙烯与EPDM的共混增韧 (8)第二部分聚合物共混物的界面层 (8)(一)界面层的形成 (8)(二)界面层的结构和性质 (10)第三部分挤出机结构 (11)23(1)传动部分 (12)(2)加料部分 (12)(3)机筒 (13)(4)螺杆 (13)(5)机头和模口 (13)(6)排气装置及其机理 (13)三、原料及主要设备 (13)四、注意事项 (15)五、实验步骤、现象及分析 (15)(一)实验前准备工作 (15)(二)实验过程 (16)(三)停机 (18)六、实验结果及分析 (19)七、思考题 (21)一、实验目的1.聚烯烃改性的基本原理和方法;2.认识EPDM对聚丙烯的增韧改性;3.理解双螺杆挤出机的基本工作原理,学习挤出机的操作方法;4.了解聚烯烃挤出的基本程序和参数设置原理。

二、实验原理第一部分聚丙烯及EPDM(一)聚丙烯(1)聚丙烯的品种以丙烯聚合而得到的聚合物称为聚丙烯.聚丙烯颗粒外观为白色蜡状物透明性也较好。

它易燃,燃烧时熔融滴落并发出石油气味。

比聚乙烯更轻。

大多数工业聚丙烯是仅由丙烯一种单体聚合而得到的、即为均聚聚丙烯。

有时为了满足各种性能需要,在聚丙烯合成过程中,常引入少量乙烯单体(或丁烯-1、己烯—1等)进行共聚,得到共聚聚丙烯。

共聚聚丙烯中最重要的是乙烯与丙烯的共聚物。

(2)聚丙烯的性能工业聚丙烯结晶性好,其结晶度一般为50%-70%、有时可达80%。

高分子聚合反应实验报告

高分子聚合反应实验报告

高分子聚合反应实验报告一、实验目的通过进行高分子聚合反应实验,探究高分子聚合反应的原理及过程,并获得聚合物材料的性能测试结果。

二、实验原理高分子聚合反应是指通过一系列化学反应将单体分子逐渐连接成大分子的过程。

其中,自由基聚合反应是最常见的一种高分子聚合反应类型。

自由基聚合反应中,通常使用引发剂将稳定的自由基中间体引发聚合反应。

聚合反应的过程包括引发、传递和终止三个步骤。

引发步骤是通过引发剂产生自由基中间体,传递步骤是将自由基传递给单体分子,使其发生聚合反应,而终止步骤则是通过添加适量的终止剂来终止聚合反应,以防止链的过长。

三、实验步骤1. 实验前准备:准备实验所需的试剂和仪器设备。

2. 合成聚合物样品:按照实验方案中的比例混合单体和引发剂,加入适量的溶剂,通过恒温反应器进行反应。

3. 分离和提取聚合物:通过溶剂溶解和萃取等步骤,将聚合物从反应体系中分离和提取出来。

4. 聚合物性能测试:对提取得到的聚合物样品进行性能测试,包括分子量、熔点、玻璃化转变温度等方面的测试。

5. 结果记录和分析:将实验得到的数据进行整理、记录和分析,得出实验结论。

四、实验结果与讨论根据实验步骤进行实验后,得到了聚合物样品,并对其进行了性能测试。

实验结果显示,聚合物样品的分子量在一定范围内,熔点和玻璃化转变温度符合预期的范围。

这表明实验中成功合成了目标聚合物,并具备一定的热稳定性和物理性能。

五、实验结论通过高分子聚合反应实验,成功合成了目标聚合物。

实验结果表明,该聚合物具备一定的热稳定性和物理性能。

实验所采用的反应方案和操作步骤得到了验证,并为后续相似实验提供了指导和参考。

六、实验心得通过本次实验,我对高分子聚合反应的原理和过程有了更深入的理解。

同时,我也了解到了实验操作的重要性和细节处理的必要性。

在今后的实验中,我将更加注重实验操作的规范性和细致性,以获得更准确的实验结果。

七、参考文献[1] 参考文献1[2] 参考文献2[3] 参考文献3以上为本次高分子聚合反应实验报告,感谢您的耐心阅读。

高分子材料加工实验报告

高分子材料加工实验报告

一.实验目的要求1. 理解单螺杆挤出机、移动螺杆式注射机、拉力试验机的基本工作原理,学习挤出机单螺杆挤出机、移动螺杆式注射机、拉力试验机的操作方法。

2. 了解聚烯烃挤出、流变、及注射成型、拉伸的基本程序和参数设置原理。

二.实验原理挤出造粒原理:在塑料制品的生产过程中,自聚合反应至成行加工前,一般都要经过一个配料混炼环节,以达到改善其使用性能或降低成本等目的。

一般用螺杆挤出机进行混炼,其组成部件有(1)传动部分(2)加料部分(3)机筒(4)螺杆(5)机头和模口(6)排气装置。

流变性能测试原理:由于流体具有粘性.它必然受到自管体与流动方向相反的作用力.根据粘滞阻力与推动力相平衡等流体力学原理进行推导,可得到毛细管管壁处的剪切应力和剪切速率与压力、熔体流率的关系。

(33-I)(33-2)(33-3)式中R 毛细管半径,cm;L 毛细管长度,cm;毛细管两端的压差,pa;Q 熔体流率,;熔体表观粘度,Pa。

在温度和毛细管长径比L/D一定的条件下。

测定不同压力下聚合物熔体通过毛细的流动速率Q.由式(33—1)和式(33—2)计算出相应的和,将对应的和在双对数坐标上绘制—流动的曲线图.即可求得非牛顿指数n和熔体表观粘度。

改变温度和毛细管径比.可得到代表粘度对温度依赖件的粘流活化能以及离模膨胀比B等表征流变特性的物理参数。

注射过程原理:注射成型是高分子材料成型加工中一种重要的方法,应用分广泛,几乎所有的热塑性塑料及多种热固件塑料都可用此法成型。

热塑性塑料的注射成型又称注塑,是将粒状或粉状塑料加入到注射机的料筒。

经加热熔化后呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下。

从料筒前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。

充满模腔的熔体在受压的情况下,经冷却固化后,开模得到与模具型腔相应的制品。

分为以下几个工序:(1)合模与锁紧、(2)注射充模、(3)保压、(4)制品的冷却和预塑化、(5)脱模。

赵梦歌--实验报告 ————聚乙烯挤出实验

赵梦歌--实验报告  ————聚乙烯挤出实验

实验二聚乙烯的挤出成型实验一、实验目的:1、了解高分子材料挤出加工的原理2、了解高分子材料挤出加工的过程3、以聚乙烯为代表,熟悉高分子材料的挤出操作二、实验内容和原理:1、挤出成型工艺特点:连续成型,产量大,生产效率高。

制品外形简单,是断面形状不变的连续型材。

制品质量均匀密实,尺寸准确较好。

适应性很强,几乎适合除了PTFE 外所有的热塑性塑料。

只要改变机头口模,就可改变制品形状。

可用来塑化、造粒、染色、共混改性,也可同其它方法混合成型此外,还可作压延成型的供料。

2、挤出成型的基本原理:塑化:在挤出机内将固体塑料加热并依靠塑料之间的内摩擦热使其成为粘流态物料。

成型:在挤出机螺杆的旋转推挤作用下,通过具有一定形状的口模,使粘流态物料成为连续的型材。

定型:用适当的方法,使挤出的连续型材冷却定型为制品。

三、主要仪器设备及原料:1、主要仪器:挤压机2、主要原料:聚乙烯或聚丙烯四、操作方法和实验步骤:1、启动总电源;2、调节设备每个区域温度,等待升温;3、根据设备说明依次打开不同开关;4、装填原料;5、控制挤出的过程,并且使挤出高分子冷却成型;6、检查原料是否完全挤出,每次实验完成后尽量不要有原料的积存;7、挤出实验完成后将设备按照开关打开的顺序进行关闭;8、清理设备,整个实验完成。

五、实验数据:机头压力:10.0喂料:4.50切料机5.00主机:6.50六、注意事项:1、注意每次挤出实验完成后不要有原料积存;2、在挤出实验进行时,要注意挤出的速度,并且挤出形状,给其一个力,使其挤出形状均匀。

3、喂料温度要低一些,以防止物料提前融化堵塞进料口。

4、为防止固体原料堵塞,喂料的转速要比主机的低些。

5、每次实验完成后尽量不要有原料的积存。

七、思考题:影响挤出实验均匀性的影响因素有那些?(1)温度。

温度对塑料的挤出及型坯的性能有明显影响:可以降低熔体黏度,改善熔体的流动性,降低挤出机的功率消耗;可适当提高螺杆转速,而不影响物料的混炼塑化效果;有利于改善最终制品的强度和光亮度;有利于改善最终制品的透明度。

高分子实验报告

高分子实验报告

高分子实验报告一、实验目的本实验旨在通过合成高分子材料,了解高分子合成的基本原理和实验操作方法,并通过实验结果的分析,探究高分子材料的性质和应用。

二、实验原理高分子合成是通过聚合反应将单体分子(或多聚体分子)连接起来形成较大分子量的聚合物的过程。

常用的高分子合成方法包括聚合反应和缩聚反应等。

聚合反应通常是指开环聚合和链聚合两种方式,其中开环聚合以环氧树脂为代表,链聚合以聚酯、聚氨酯、聚丙烯、聚苯乙烯等为代表。

三、实验步骤1. 实验材料准备:根据实验需要,准备所需高分子材料、溶剂、催化剂、催化剂活化剂等。

2. 实验装置准备:准备好反应容器、热源、搅拌器、温度控制装置等实验装置。

3. 实验条件设置:根据实验需要,设置反应温度、反应时间、搅拌速度、配比比例等实验条件。

4. 实验操作步骤:按照预设实验条件,依次将原料加入反应容器中,并进行反应。

注意控制反应温度和反应时间。

5. 实验产物处理:根据实验需要,对实验产物进行过滤、洗涤、干燥等处理步骤。

6. 实验结果分析:使用合适的理化性质测试方法,对实验产物的性质进行分析和测试,如分子量测定、热性能测试等。

四、实验结果及分析根据实验操作步骤,我们成功合成了聚合物材料,并对其进行了性质测试。

实验结果显示,合成的高分子材料具有良好的热稳定性、机械强度和耐腐蚀性,适用于制备电子器件、涂料、塑料等方面。

五、实验总结通过本实验,我们深入了解了高分子合成的基本原理和实验操作方法。

合成的高分子材料具有较好的性能,说明实验操作正确、条件合适。

然而,在实验过程中,仍然遇到了一些问题,如反应温度控制不准确、产物处理不彻底等,需要进一步改进实验方法。

六、参考文献[1] 张三, 李四. 高分子化学实验室教程. 北京: 化学工业出版社,20XX.[2] 王五. 高分子材料制备与应用. 北京: 科学出版社, 20XX.以上即为高分子实验报告的内容,通过本次实验,我们深入了解了高分子合成的原理和操作方法,得到了合成材料的实验结果,并对实验结果进行了分析。

②注塑 -高分子,聚合物成型加工实验报告

②注塑 -高分子,聚合物成型加工实验报告

聚合物加工实验报告实验二三元乙丙橡胶/聚丙烯共混改性及其注塑成型姓名:张涵学号:********** 班级:2班年级:2015级专业:高分子材料与工程实验时间:2018年5月3日目录一、实验目的 (3)二、实验原理 (3)(一)注射过程原理 (3)(二)注射系统 (6)(三)锁模系统 (9)(四)模塑 (10)(五)注射机的主要技术参数 (11)(六)注射过程 (11)(1)充模阶段 (12)(2)压实阶段 (13)(3)倒流阶段 (13)(4)冻结后的冷却阶段 (14)(七)注射模塑工艺条件的分析讨论 (14)(1)塑料的特性 (14)(2)塑料的来源和牌号 (15)(3)注射机的类型 (15)(4)制品壁厚及形状 (15)三、主要设备及原料 (19)四、注意事项 (21)五、实验步骤、现象及分析 (21)(一)实验前准备工作 (21)(二)实验过程 (22)六、实验结果及分析 (24)七、数据处理 (25)八、思考题 (25)2一、实验目的1.聚烯烃改性的基本原理和方法;2.认识EPDM对聚丙烯的增韧改性;3.了解柱塞式和移动螺杆式注射机的结构特点及操作程序;掌握热塑性塑料注射成型的实验技能;4.了解注射成型工艺条件与注射制品质量的关系。

二、实验原理在聚丙烯、乙丙橡胶混合造粒过程中,主要采用螺杆挤出机作为主要的混炼设备,以螺杆注塑机作为加工成型的主要设备。

单螺杆挤出机的作用及其原理,在前一实验中已经详细讨论,以下主要讨论螺杆注塑机的基本工作原理和影响因素。

(一)注射过程原理注射模塑(又称注射成型或注塑)是高分子材料成型加工中一种重要的方法,应用分广泛,几乎所有的热塑性塑料及多种热固件塑料都可用此法成型。

热塑性塑料的注射成型又称注塑,是将粒状或粉状塑料加入到注射机的料筒。

经加热熔化后呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下。

从料筒前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。

⑤开炼 - 高分子,聚合物成型加工实验报告

⑤开炼 - 高分子,聚合物成型加工实验报告

聚合物加工实验报告实验五天然橡胶开炼机混炼姓名:张涵学号:1514171034 班级:2班年级:2015级专业:高分子材料与工程实验时间:2018年5月31日目录一、实验目的 (3)二、实验原理 (3)(一)胶料的混炼 (3)(二)橡胶配合剂 (4)(三)开炼机混炼的工艺方法 (4)(四)开炼机混炼的工艺条件 (5)三、主要设备及原料 (6)四、注意事项 (9)五、实验步骤、现象及分析 (9)(一)实验准备工作 (9)(二)实验步骤 (9)六、实验结果及分析 (12)七、思考题 (13)2一、实验目的(1)掌握橡胶制品配方设计的基本知识,熟悉开炼机进行橡胶混炼工艺;(2)了解开炼机基本结构及操作方法;(3)掌握橡胶物理机械性能测试试样制备工艺及性能测试方法。

二、实验原理(一)胶料的混炼混炼就是将各种配合剂与塑炼胶在机械作用下混合均匀,制成混炼胶的过程。

混炼过程的关键是使各种配合剂能完全均匀地分散在橡胶中,保证胶料的组成和各种性能均匀一。

对混炼胶的质量要求主要有两个方面:一是胶料能保证制品具有良好的物理机械性能;二是胶料本身要具有良好的工艺加工性能。

为了获得配合剂在生胶中的均勿混合分散,必须借助炼胶机的强烈机械作用进行混炼。

混炼胶的质量控制对保持橡胶半成品和成品性能有着重要意义。

混炼胶组分比较复杂,不同性质的组分对混炼过程、分散程度以及混炼胶的结构响很大的影响。

本实验混炼是在开炼机上进行的。

当胶料加到辊筒上时,由于两个辊筒以不同的线速度相对回转,胶料在被辊筒挤压的同时,在摩擦力和粘附力的作用下,被拉入辊隙中。

形成楔形断面的胶条。

在辊隙中由于速度梯度和辊筒温度的作用致使胶料受到强烈的碾压、撕裂,同时伴随着橡胶分子链的氧化断裂作用。

从辊隙中排出的胶片,由于两个辊筒表面速度和温度的差异而包覆在一个辊筒上,又重新返回两滚筒间,这样多次反复,完成炼胶作业。

为了取得具有一定的可塑度且性能均匀的混炼胶,除了控制辊距的大小、适宜的辊温小于90℃之外,必须按一定的加料混合程序操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物加工实验报告实验一三元乙丙橡胶/聚丙烯共混改性及其挤出造粒姓名:张涵学号:1514171034 班级:2班年级:2015级专业:高分子材料与工程实验时间:2018年5月3日目录一、实验目的 (4)二、实验原理 (4)第一部分聚丙烯及EPDM (4)(一)聚丙烯 (4)(1)聚丙烯的品种 (4)(2)聚丙烯的性能 (4)(二)EPDM (5)(1)EPDM的定义 (5)(2)EPDM的特性 (5)(3)EPDM的改良品种 (7)(三)聚丙烯与EPDM的共混增韧 (8)第二部分聚合物共混物的界面层 (8)(一)界面层的形成 (8)(二)界面层的结构和性质 (10)第三部分挤出机结构 (11)23(1)传动部分 (12)(2)加料部分 (12)(3)机筒 (13)(4)螺杆 (13)(5)机头和模口 (13)(6)排气装置及其机理 (13)三、原料及主要设备 (13)四、注意事项 (15)五、实验步骤、现象及分析 (15)(一)实验前准备工作 (15)(二)实验过程 (16)(三)停机 (18)六、实验结果及分析 (19)七、思考题 (21)一、实验目的1.聚烯烃改性的基本原理和方法;2.认识EPDM对聚丙烯的增韧改性;3.理解双螺杆挤出机的基本工作原理,学习挤出机的操作方法;4.了解聚烯烃挤出的基本程序和参数设置原理。

二、实验原理第一部分聚丙烯及EPDM(一)聚丙烯(1)聚丙烯的品种以丙烯聚合而得到的聚合物称为聚丙烯.聚丙烯颗粒外观为白色蜡状物透明性也较好。

它易燃,燃烧时熔融滴落并发出石油气味。

比聚乙烯更轻。

大多数工业聚丙烯是仅由丙烯一种单体聚合而得到的、即为均聚聚丙烯。

有时为了满足各种性能需要,在聚丙烯合成过程中,常引入少量乙烯单体(或丁烯-1、己烯—1等)进行共聚,得到共聚聚丙烯。

共聚聚丙烯中最重要的是乙烯与丙烯的共聚物。

(2)聚丙烯的性能工业聚丙烯结晶性好,其结晶度一般为50%-70%、有时可达80%。

结晶性越好,密度越大。

聚丙烯的密度一般为0.90—0.918 g/cm3。

工业聚丙烯的熔点为164一170℃,与聚乙烯相比,有较好的耐热性,其制品能耐100 ℃以上的温度,耐寒性较差,脆化温度高。

低温使用温度极限一般为一20℃到一15℃。

实际上在0℃附近,聚丙烯就显得有点发脆。

聚丙烯的拉伸强度、屈服强度、刚性、硬度都较聚乙烯高。

聚丙烯的电气性能与聚乙烯相似。

有优良的电绝缘性。

聚丙烯的基本化学性能与聚乙烯相似.对大多数介质稳定。

无机酸、碱或盐的溶液,除具有强氧化性者外,在100℃以下对它几乎无破坏作用。

室温下任何液体对聚丙烯不发生溶解作用。

45聚丙烯对氧很敏感,易发生热氧老化和光氧老化,老化速度比聚乙烯快得多。

铜离子对聚丙烯的老化有强烈的催化作用。

聚丙烯的加工温度一般为210一250℃。

过高的温度或过长的受热时间.会由于热降解而使分子量明显下降,而引起性能变劣。

聚丙烯急待克服的缺点为:成型收缩串较大,低温易脆裂,酌磨性不足,热变形温度不高,耐光性差,不易染色等。

通过共混对聚丙烯改性获得显著成效,例如聚丙烯与乙—丙共聚物、聚异丁烯、聚丁二烯等共混均可改善其低温脆裂性,提高抗冲强度;与尼龙共混不仅增加韧性而且使耐磨性、耐热性、染色性获得改善,与乙烯—醋酸乙烯共聚物共混在提高抗冲强度的同时,改进了加工性、印刷性、耐应力开裂性。

聚丙烯的共混改性普遍采用机械共混法,近年来,聚丙烯用嵌段共聚—共混法改性得到发展与重视,该法已用于聚丙烯/聚乙烯、聚丙烯/乙—丙共聚物等共混物的制品,并有取代机械共混法的趋势。

(二) EPDM(1) EPDM 的定义乙烯(质量百分数45%~70%)、丙烯(质量百分数30%~40%)和双烯第三单体(质量百分数1%~3%)形成的无规共聚物。

第三单体通常为双环戊二烯、1,4-己二烯或2-亚乙基降冰片烯。

1963年开始商业化生产。

每年全世界的消费量是80万吨。

EPDM 最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。

由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。

在所有橡胶当中,EPDM 具有最低的比重。

它能吸收大量的填料和油而影响特性不大。

因此可以制作成本低廉的橡胶化合物。

(2) EPDM 的特性低密度高填充性:乙丙橡胶的密度是较低的一种橡胶,其密度为0.87。

加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了乙丙橡胶生胶价格高的缺点,并且对高门尼值的乙丙橡胶来说,高填充后物理机械能降低幅度不大。

耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。

乙丙橡胶制品在120℃下可长期使用,在150- 200℃下可短暂或间歇使用。

加入适宜防老剂可提高其使用温度。

以过氧化物交联的三元乙丙橡胶可在苛刻的条件下使用。

三元乙丙橡胶在臭氧浓度50pphm、拉伸30%的条件下,可达150h以上不龟裂。

耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等)及矿物油中稳定性较差。

在浓酸长期作用下性能也要下降。

在ISO/TO7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料,并规定了1-4级表示其作用程度,腐蚀性化学品对橡胶性能的影响:等级体积溶胀率/%硬度降低值对性能影响:1<10<10:轻微或无210-20<20:较小330-60<30:中等4>60>30:严重耐水蒸汽性能:乙丙橡胶有优异的耐水蒸汽性能并估优于其耐热性。

在230℃过热蒸汽中,近100h后外观无变化。

而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。

耐过热水性能:乙丙橡胶耐过热水性能亦较好,但与所有硫化系统密切相关。

以二硫化二吗啡啉、TMTD为硫化系统的乙丙橡胶,在125℃过热水中浸泡15个月后,力学性能变化甚小,体积膨胀率仅0.3%。

6电性能:乙丙橡胶具有优异的电绝缘性能和耐电晕性,电性能优于或接近于丁苯橡胶、氯磺化聚乙烯、聚乙烯和交联聚乙烯。

弹性:由于乙丙橡胶分子结构中无极性取代基,分子内聚能低,分子链可在较宽范围内保持柔顺性,仅次于天然橡胶和顺丁橡胶,并在低温下仍能保持。

粘接性:乙丙橡胶由于分子结构缺少活性基团,内聚能低,加上胶料易于喷霜,自粘性和互粘性很差。

(3)EPDM的改良品种三元乙丙和三元乙丙橡胶从20世纪50年代末,60年代初开发成功以来,世界上又出现了多种改性乙丙橡胶和热塑性乙丙橡胶(如EPDM/PE),从而为乙丙橡胶的广泛应用提供了众多的品种和品级。

改性乙丙橡胶主要是将乙丙橡胶进行溴化、氯化、磺化、顺酐化、马来酸酐化、有机硅改性、尼龙改性等。

乙丙橡胶还有接枝丙烯腈、丙烯酸酯等。

多年来,采用共混、共聚、填充、接枝、增强和分子复合等手段,获得了许多综合性能好的高分子材料。

乙丙橡胶通过改性,也在性能方面获得很大的改善,从而扩大了乙丙橡胶应用范围。

溴化乙丙橡胶是在开炼机上以经溴化剂处理而成。

溴化后乙丙橡胶可提高其硫化速度和粘合性能,但机械强度下降,因而溴化乙丙橡胶仅适用于作乙丙橡胶与其他橡胶粘合的中介层。

氯化乙丙橡胶是将氯气通过三元乙丙橡胶溶液中而制成。

乙丙橡胶氯化后可提高硫化速度以及与不饱和商榷的相容性,耐燃性、耐油性,粘合性能也所改善。

磺化乙丙橡胶是将三元乙丙橡胶溶于溶剂中,经磺化剂胶中和剂处理而成。

磺化乙丙橡胶由于具有热塑性弹性体的体质和良好的粘着性能,在胶粘剂、涂覆织物、建筑防水瘦肉、防腐衬里等方面将得到广泛的应用。

丙烯腈接枝的乙丙橡胶以甲苯为溶剂,过氯化苯甲醇为引发剂,在80℃下78使丙烯腈接枝于乙丙橡胶。

丙烯腈改性乙丙橡胶不但保留了乙丙橡胶耐腐蚀性,而且获得了相当于丁腈-26的耐油性,具有较好的物理机械性能和加工性能。

热塑性乙丙橡胶(EPDM/PP )是以三元乙丙橡胶为主体与聚丙烯进行混炼。

同时使乙丙橡胶达到预期交联程度的产物。

化不但在性能上仍保留乙丙橡胶所固有的特性,而且还具有显著的热塑性塑料的注射、挤出、吹塑及压延成型的工艺性能。

(三) 聚丙烯与EPDM 的共混增韧聚丙烯作为世界上五大通用塑料之一,它的应用时非常广泛的,然而,纯的聚丙烯抗冲击能力是很差的,也就是说它是非韧性材料,而在不同的工程应用中韧性是影响聚合物工作情况的关键因素。

因此,聚丙烯无法作为工程塑料来使用。

但是,如果聚丙烯经过增韧改性以后,其增韧会得到显著的增加,完全可以作为适用于各行各业的工程塑料使用,针对聚丙烯冲击韧性差的缺点,主要是在聚丙烯中加入玻璃化温度低,分子链柔顺的弹性体。

对于聚丙烯增韧,研究较多的是用橡胶增韧聚丙烯,尤其是用乙丙橡胶来改性聚丙烯,要控制的参数较多。

有些产品的质量不能满足人们的需求,而采用共混的方法,其冲击韧性提高显著,制造工艺相对简单易行。

第二部分 聚合物共混物的界面层两种聚合物的共混物中存在三种区域结构,聚合物各自独立的相和这两相之间的界面层。

界面层亦称为过渡区,在此区域发生两相的粘合和两种聚合物链段之间的相互扩做。

界面层的结构,特别是两种聚合物之间的粘合强度常对共混物的性质,特别是力学性能有决定性的影响。

(一) 界面层的形成聚合物共混物界面层的形成可分为两个步骤。

第一步是分别由两种聚合物组分所构成的两个相之间的接触;第二步是两种聚合物大分子链段之间的相互扩散。

增加两相之间的接触面积无疑有利于两种大分子链段之间的相互扩散、增加两相之间的粘合力。

因此,在共混过程中,保证两相之间的高度分散、适当地减小相畴的尺寸是十分重要的。

两种大分子链段之间的相互扩散的程度主要决定于两种9聚合物之间的混溶性。

正是这种相互扩散的程度决定了共混物两相之间的粘合强度。

当两种聚合物相互接触时,在相界面处两种聚合物大分子链段之间有明显的相互扩散。

若两相中聚合物大分于有相近的活动性,则两种大分于的链段就以相近的速度相互扩散;当两相中聚合物大分子链段的活动性差别很大,则发生单向的扩散。

这种扩散作用的推动力是混合熵,换言之,是链段的热运动。

若混合热为正值,则熵的增加最终为混合热所抵消。

扩散的结果,使得两种聚合物在相界面两边产生了明显的浓度梯度,如图所示。

10 相界面以及相界面两边具有明显的浓度梯度的区域构成了两相之间的界面层,或称为过渡区。

两种聚合物相互扩散的深度,即界面层的厚度主要决定于两种聚合物的混溶性。

完全不混溶的聚合物,链段之间只有轻微程度的相互扩散,因而两相之间有非常明显和确定的相界面。

随着两种聚合物混溶性的增加,扩散程度提高,相界面越来越模糊,界面层厚度越来越大,两相之间的粘合也越来越强。

相关文档
最新文档