2018届高考数学(文)复习23 模拟训练三(文)含解析

合集下载

山东省潍坊市2018届高考第三次模拟考试数学试题(文)含答案

山东省潍坊市2018届高考第三次模拟考试数学试题(文)含答案

A .45
B . 55
C. 66
D .78
1或 m
7 ”是
11.三棱锥 P ABC 中,平面 PAC 平面 ABC , AB AC , PA PC AC 2 , AB
外接球的表面积为
23
4 ,则三棱锥 P ABC 的 64
A . 23
B. 4
C. 64
D. 3
ln x 1 , x 0
fx
12 .已知函数 为
7.已知 m,n 是空间中两条不同的直线,
① m ,n ,m n
③ m , n ,m n
其中正确结论的个数是
A .0
B.1
的最大值为
C. 1
D .0
, 是两个不同的平面,有以下结论:
② m/ / ,n/ / ,m ,n
//
④ m ,m//n n/ /
C. 2
D .3
8 . 直 线 l1 : 3 m x 4 y 5 3m, l2 : 2x 5 m y 8 , 则 “ m
“ l1 / /l 2 ”的
A .充分不必要条件
B.必要不充分条件
C .充要条件
a
9.已知
2
23 ,b
3
2
33 ,c
4
D .既不充分也不必要条件
log 3 2 ,则 a, b, c
43
的大小关系是
A .a<b<c B. b< a <c C. c< a <b
D .a <c< b
10.执行如右图所示的程序框图,输出 S 的值为
3 D. 2
A. 64
B. 16
C.16
D.64
y2 x2

2018届高考第三次模拟考试数学试题(文)含答案

2018届高考第三次模拟考试数学试题(文)含答案

**2017-2018学年度高三第二学期第三次模拟考试试题**数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题P :()2,00≥∈∃x f R x 则P ⌝为()A.()2,≥∈∀x f R xB. ()2,<∈∀x f R xC.()2,0≤∈∃x f R x D. ()2,0<∈∃x f R x2.复数i iz -=1(i 为虚数单位)在复平面内关于虚轴对称的点位于A.第一象限B. 第二象限C.第三象限D.第四象限3.下面是一段演绎推理:大前提:如果一条直线平行于一个平面,则这条直线平行于这个平面内的所有直线; 小前提:已知直线b ∥平面α,直线a ⊂平面α;结论:所以直线b ∥直线a. 在这个推理中( )A. 大前提正确,结论错误B. 大前提错误,结论错误C. 大、小前提正确,只有结论错误D. 小前提与结论都是错误的 4.设的三内角、、成等差数列,、、成等比数列,则这个三角形的形状是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 等腰直角三角形5.运行如图所示的程序框图,若输出的S 是254,则 应为()A. 5?n ≤B. 6?n ≤C. 7?n ≤D. 8?n ≤6.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭的部分图像如图所示,将函数()f x 的图像向左平移12π个单位长度后,所得图像与函数()y g x =的图像重合,则A.()2sin23g x xπ⎛⎫=+⎪⎝⎭ B.()2sin26g x xπ⎛⎫=+⎪⎝⎭C.()2sin2g x x=D.()2sin23g x xπ⎛⎫=-⎪⎝⎭7.某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则该几何体的外接球的表面积为B.C.D.8.已知直线与两坐标轴围成的区域为,不等式组所形成的区域为,现在区域中随机放置一点,则该点落在区域的概率是()A.B.C.D.9.两个正数a、b的等差中项是72,一个等比中项是a b<,则双曲线22221x ya b-=的离心率e等于()A. 34 B.152 C.54 D.5310.如图,,,45AB AC BAD CADαβαβ⊥⊂⊂∠=∠=,则BAC∠=()A. 90°B. 60°C. 45°D. 30°11.魔术师用来表演的六枚硬币中,有5 枚是真币,1 枚是魔术币,它们外形完全相同,但是魔术币与真币的重量不同,现已知和共重10 克,共重11 克,共重16 克,则可推断魔术币为( )A.B. C.D.12.已知双曲线2213xy-=的右焦点恰好是抛物线22y px=(0p>)的焦点F,且M为抛物线的准线与x轴的交点,N为抛物线上的一点,且满足NF=,则点F到直线MN的距离为()A. 12 B. 1C. D. 2二、填空题:本题共4小题,每小题5分,共20分.13.用秦九韶算法求多项式,当时多项式的值为_______________ .14.已知,αβ是两个不同的平面,,m n是两条不同的直线,给出下列命题:①若,m mαβ⊥⊂,则αβ⊥②若,,m n mαα⊂⊂∥,nβ∥β,则α∥β③若,m nαα⊂⊄,且,m n是异面直线,则n与α相交④若,m nαβ⋂=∥m,且,n nαβ⊄⊄, 则n∥α且n∥β.其中正确的命题是_____(只填序号).15.已知向量()()()1,,3,1,1,2a b cλ===,若向量2a b c-与共线,则向量a在向量c方向上的投影为___________.16.若直角坐标平面内两点,P Q满足条件:①,P Q两点分别在函数()y f x=与()y g x=的图象上;②,P Q关于y 轴对称,则称(),P Q 是函数()y f x =与()y g x =的一个“伙伴点组”(点组(),P Q 与(),Q P 看作同一个“伙伴点组”).若函数()(),(0){0lnx x f x x >=≤与()1g x x a =++有两个“伙伴点组”,则实数a 的取值范围是_______.三、解答题17.(12分)已知数列{an}的首项a1=1,前n 项和为Sn ,且数列⎩⎨⎧⎭⎬⎫Sn n 是公差为2的等差数列.(1)求数列{an}的通项公式;(2)若bn =(-1)nan ,求数列{bn}的前n 项和Tn.18.(12分)前几年随着网购的普及,线下零售遭遇挑战,但随着新零售模式的不断出现,零售行业近几年呈现增长趋势,下表为20142017~年中国百货零售业销售额(单位:亿元,数据经过处理,14~分别对应20142017~):(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)建立y 关于x 的回归方程,并预测2018年我国百货零售业销售额;(3)从20142017~年这4年的百货零售业销售额及2018年预测销售额这5个数据中任取2个数据,求这2个数据之差的绝对值大于200亿元的概率.参考数据:4411800,2355i i i i i y x y ====∑∑ 2.236≈≈参考公式:相关系数()()n x x y y r --=回归方程ˆˆˆy a bx =+中斜率和截距的最小二乘估计公式分别为()()()121ˆni i i n i i x x y y b x x ==--=-∑∑,ˆˆa y bx =-.19.(12分)在三棱锥中,底面,,,是的中点,是线段上的一点,且,连接,,.(1)求证:平面;(2)求点到平面的距离.20.(12分)已知椭圆:的一个焦点与抛物线:的焦点重合,且经过点.(1)求椭圆的方程;(2)已知斜率大于0且过点的直线与椭圆及抛物线自上而下分别交于,如图所示,若,求.21.(12分)已知函数()xf x e ax a=+-(a R∈且0a≠).(1)若函数()f x在0x=处取得极值,求实数a的值;并求此时()f x在[]2,1-上的最大值;(2)若函数()f x不存在零点,求实数a的取值范围.选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为1{x cos y sin θθ=+=(θ为参数),以坐标原点O 为极点,轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为24sin 3ρρθ-=. (Ⅰ)求曲线1C 的极坐标方程和2C 的直角坐标方程;(Ⅱ)直线3πθ=与曲线12C C ,分别交于第一象限内的,两点,求AB .23.【选修4 -5:不等式选讲】已知|42||1|-++=x x x f )(. (Ⅰ)求不等式)(x f <7的解集;(Ⅱ)若)23(-≥x a x f )(在R 上恒成立,求a 的取值范围.文科答案1.【解析】根据特称命题的否定为全称命题,易知原命题的否定为:.故选B. 2.A3.【解析】直线平行于平面,则直线可与平面内的直线平行、异面、异面垂直. 故大前提错误,结论错误. 故选B .4.【解析】由题意,根据等差数列、等比数列的中项公式,得,又,所以,,由正弦定理得,又,得,从而可得,即为等边三角形,故正确答案为A.5.【解析】根据程序框图可知:该程序的作用是累加S=2+22+…+2n 的值, 并输出满足循环的条件. ∵S=2+22+…+26+27=254, 故①中应填n≤7. 故选:C . A7.【解析】由三视图知,该几何体为三棱锥,高为3,其一个侧面与底面垂直,且底面为等腰直角三角形,所以球心在垂直底面的侧面的三角形高上,设球半径为R ,则解得,所以球的表面积为,故选A.8.【解析】作出约束条件表示的可行域,如图所示,其面积为,由,解得,即,所得区域的面积为,根据几何概型及其概率公式,得该点落在区域内的概率为,故选C .9.【解析】由题意可得:(2722{a b ab +==,结合0a b <<求解方程组可得:3{4a b ==,则双曲线中:55,3c c e a ====.本题选择D 选项.10. B【解析】由三余弦定理得001πcos cos cos cos45cos4523BAC BAD CAD BAC ∠=∠∠==⇒∠=选B.11.【解析】5枚真币重量相同,则任意两枚硬币之和一定为偶数,由题意可知,C ,D 中一定有一个为假的,假设C 为假币,则真硬币的重量为5克,则C 的重量为6克,满足A ,C ,E 共重16克,故假设成立,若D 为假币,则真硬币的重量为5克,不满足A ,C ,E 共重16克,故假设不成立,则D 是真硬币,故选:C .12.【解析】分析:求出双曲线的右焦点,即为抛物线的焦点,可得4p =,求出抛物线的准线方程,由抛物线的定义,结合三角形的有关知识求得结果.详解:双曲线2213x y -=的右焦点为()2,0,抛物线2:2(0)C y px p =>的焦点为,02p ⎛⎫ ⎪⎝⎭,则22p =,解得4p =,则抛物线方程为28y x =,准线方程为2x =-,由点N 向抛物线的准线作垂线,垂足为R ,则由抛物线的定义,可得NR NF ==,从而可以得到60NMR ∠=︒,从而得到30NMF ∠=︒,所以有点F 到直线MN的距离为4sin302d=︒=,故选D.13.【解析】,则,故答案为.14.【解析】对于①,由面面垂直的判定定理可得αβ⊥,故①正确.对于②,由题意知,满足条件的平面,αβ的位置关系为α∥β或αβ,相交,故②不正确.对于③,由题意知当满足条件时有n与α相交或n∥α,故③不正确.对于④,由线面平行的判定方法可得n∥α且n∥β,故④正确.综上可得①④正确.答案:①④15.【解析】016.【解析】设点(),x y在()f x上,则点(),x y-所在的函数为()(),0{ln x xh xx-<=≥,则()g x与()h x有两个交点,()g x的图象由1y x=+的图象左右平移产生,当()1f x=时,x e=-,如图,所以,当()g x左移超过e个单位时,都能产生两个交点,所以a的取值范围是(),e+∞。

2018年江西省南昌市高考数学三模试卷(文科)(解析版)

2018年江西省南昌市高考数学三模试卷(文科)(解析版)

2018年江西省南昌市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={3,2a},N={a,b},若M∩N={1},则M∪N=()A.{1,2,3}B.{0,2,3}C.{0,1,2}D.{0,1,3} 2.(5分)已知a∈R,i是虚数单位,若z=,z=4,则a为()A.1或﹣1B.1C.﹣1D.不存在的实数3.(5分)“”是“关于x的方程sin x=m有解”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)已知函数f(x)=,那么函数f(x)的值域为()A.(﹣∞,﹣1)∪[0,+∞)B.(﹣∞,﹣1]∪(0,+∞)C.[﹣1,0)D.R5.(5分)在平面直角坐标系中,已知双曲线C与双曲线x2有公共的渐近线,且经过点P(﹣2,),则双曲线C的焦距为()A.B.2C.3D.46.(5分)执行如图所示的程序框图,若输出的S=57,则判断框内应填入的条件是()A.k>4B.k>5C.k>6D.k>77.(5分)已知a=log32,b=log23,c=log47,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.a<c<b8.(5分)在平面直角坐标系中,O为坐标原点,点P(1,3),Q(﹣1,1),则△POQ外接圆的半径为()A.B.C.D.9.(5分)将函数f(x)=sin(x+)的图象上所有点的横坐标压缩为原来的,纵坐标保持不变,得到g(x)图象,若g(x1)+g(x2)=2,且x1,x2∈[﹣2π,2π],则x1﹣x2的最大值为()A.πB.2πC.3πD.4π10.(5分)某几何体的三视图如图所示,其中正视图由矩形和等腰直角三角形组成,侧视图由半圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为()A.B.C.D.4(π+1)11.(5分)为培养学生分组合作能力,现将某班分成A,B,C三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在B组中的那位的成绩与甲不一样,在A组中的那位的成绩比丙低,在B组中的那位的成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是()A.甲、丙、乙B.乙、甲、丙C.乙、丙、甲D.丙、乙、甲12.(5分)已知双曲线的左、右焦点分别为F1、F2,以F2为圆心的圆与双曲线C在第一象限交于点P,直线PF1恰与圆F2相切于点P,与双曲线左支交于点Q,且|PQ|=2|F1Q|,则双曲线的离心率为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)中国数学家刘徽在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.意思是“圆内接正多边形的边数无限增多的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的概率.14.(5分)已知函数f(x)=e x﹣x2的图象在点(1,f(1))处的切线过点(0,a),则a =.15.(5分)已知向量=(1,2),=(2,3),则在方向上的投影为.16.(5分)现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件锁边可获利6元,则该服装厂锁边车间一天最多可获利元.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的各项均为正数,且﹣2na n﹣(2n+1)=0,n∈N*.(1)求数列{a n}的通项公式;(2)若b n=2n•a n,求数列{b n}的前n项和T n.18.(12分)如图,多面体ABCDEF中,BCD为正方形,AB=2,AE=3,DE=,EF=,cos,且EF∥BD.(1)证明:平面ABCD⊥平面EDC;(2)求三棱锥A﹣EFC的体积.19.(12分)十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在[1500,1750),[1750,2000),[2000,2250),[2250,2500),[2500,2750),[2750,3000)(单位:克)中,其频率分布直方图如图所示.(Ⅰ)按分层抽样的方法从质量落在[1750,2000),[2000,2250)的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;(Ⅱ)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:A.所有蜜柚均以40元/千克收购;B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.请你通过计算为该村选择收益最好的方案.20.(12分)已知动圆C过点F(1,0),并与直线x=﹣1相切.(1)求动圆圆心C的轨迹方程E;(2)已知点P(4,﹣4),Q(8,4),过点Q的直线l交曲线E于点A,B,设直线P A,PB的斜率分别为k1,k2,求证:k1k2为定值,并求出此定值.21.(12分)已知函数f(x)=.(1)求函数f(x)的单调区间;(2)当x∈[0,2]时,f(x)≥﹣x2+2x+m恒成立,求m的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为:(θ为参数,θ∈[0,π]),将曲线C1经过伸缩变换:得到曲线C2.(1)以原点为极点,x轴的正半轴为极轴建立坐标系,求C2的极坐标方程;(2)若直线(t为参数)与C1,C2相交于A,B两点,且,求α的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|.(1)求不等式f(x)<|2x+1|﹣1的解集M;(2)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).2018年江西省南昌市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合M={3,2a},N={a,b},若M∩N={1},则2a=1,∴a=0,b=1;∴N={0,1},∴M∪N={0,1,3}.故选:D.2.【解答】解:由z=,得z=,则a=1或﹣1.故选:A.3.【解答】解:等价于即m(m﹣1)<0解得0<m<1,关于x的方程sin x =m有解,由正弦函数在R上的值域为[﹣1,1]得到m∈[﹣1,1],前者m的范围是后者的子集,故前者是后者的充分不必要条件.故选:A.4.【解答】解:利用分段函数的定义域,①当x≤1时,f(x)=x﹣2单调递增,所以f(x)≤﹣1.②当x>1时,f(x)=lnx单调递增,所以f(x)>0.所以函数的值域为:(﹣∞,﹣1]∪(0,+∞)故选:B.5.【解答】解:根据题意,双曲线C与双曲线x2有公共的渐近线,设双曲线C的方程为x2,(t≠0),又由双曲线C经过点P(﹣2,),则有4﹣=t,则t=3,则双曲线的C的方程为x2,即﹣=1,则c==2,其焦距2c=4,故选:D.6.【解答】解:模拟执行如图所示的程序框图,如下;k=1,S=1;k=2,S=4;k=3,S=11;k=4,S=26;k=5,S=57;此时不满足条件k>4,输出S=57;∴判断框内应填入的条件是k>4.故选:A.7.【解答】解:∵a=log32<log33=1,b=log23=log49>c=log47,∴a,b,c的大小关系为:a<c<b.故选:D.8.【解答】解:∵k OP=3,k OQ=﹣1,线段OP,OQ的中点分别为(),(﹣,)∴线段OP,OQ的中垂线所在直线方程分别为,y=x+1,联立方程可得圆心坐标(,),∴,故选:A.9.【解答】解:将函数f(x)=sin(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,则y=sin(2x+),即g(x)=sin(2x+),∵g(x1)+g(x2)=2,且x1,x2∈[﹣2π,2π],∴x1﹣x2的最大值为3π.故选:C.10.【解答】解:由三视图还原原几何体如图,该几何体为组合体,上半部分为半圆柱,下半部分为正四棱锥,圆柱的底面半径为1,高为2,棱锥的底面边长为2,高为1,则斜高为.∴该几何体的表面积为.故选:A.11.【解答】解:由“在B组中的那位的成绩与甲不一样,在B组中的那位的成绩比乙低”可得B组是丙,且丙的成绩比乙低,又在A组中的那位的成绩比丙低,∴A中是甲,∴甲、乙、丙三人按数学建模考试成绩由高到低排序是:乙、丙、甲,故选:C.12.【解答】解:由题意可得PF1⊥PF2,可设|QF1|=t,可得|PQ|=2t,由双曲线的定义可得|PF1|﹣|PF2|=2a,即有|PF2|=3t﹣2a,又连接QF2,可得|QF2|﹣|QF1|=2a,即有|QF2|=t+2a,|PF1|2+|PF2|2=|F1F2|2,即为(3t)2+(3t﹣2a)2=4c2,①,又|PQ|2+|PF2|2=|QF2|2,即有4t2+(3t﹣2a)2=(t+2a)2,②由②可得,3t=4a,代入①,可得16a2+4a2=4c2,即有c=a,即e==故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:设圆心为O,圆的半径为1,则正六边形的面积S=6××12×=,则对应的概率P===,故答案为:14.【解答】解:函数f(x)=e x﹣x2的导数为f′(x)=e x﹣2x,函数f(x)=e x﹣x2的图象在点(1,f(1))处的切线的斜率为e﹣2,切点为(1,e﹣1),由切线过点(0,a),可得:e﹣2=,解得a=1,故答案为:1.15.【解答】解:∵向量=(1,2),=(2,3),∴=(﹣1,﹣1),∴•(﹣)=﹣1﹣2=﹣3,|﹣|=,∴在方向上的投影为==﹣,故答案为:﹣.16.【解答】解:设每天安排电脑机和普通机各x,y台,则一天可获利z=12×8x+10×6y =96x+60y,线性约束条件为,画出可行域(如图),可知当目标函数经过A(5,5)时,z max=780(元).故答案为:780.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)由﹣2na n﹣(2n+1)=0,得[a n﹣(2n+1)](a n+1)=0,所以a n=2n+1或a n=﹣1,又因为{a n}的各项均为正数,负值舍去,所以a n=2n+1;(2)由b n=2n•a n=(2n+1)•2n,所以前n项和T n=3•2+5•22+7•23+…+(2n+1)•2n①2T n=3•22+5•23+7•24+…+(2n+1)•2n+1②由①﹣②得:﹣T n=6+2(22+23+…+2n)﹣(2n+1)•2n+1=6+2•﹣(2n+1)•2n+1=﹣2+(﹣2n+1)•2n+1,化简可得T n=2+(2n﹣1)•2n+1.18.【解答】(1)证明:∵AB=2,AE=3,DE=,由勾股定理得:AD⊥DE 又正方形ABCD中,AD⊥DC,且DE∩DC=D,∴AD⊥平面EDC,又∵AD⊂平面ABCD,∴平面ABCD⊥平面EDC;(2)解:由已知cos,连接AC交BD于G.作OG⊥CD于O,则OD=DE•cos∠EDC=1,OE=2.又由(1)知平面ABCD⊥平面SDC,面ABCD∩平面EDC=CD,OE⊂平面EDC,得OE⊥平面ABCD.由EF∥BD,EF=,知四边形DEFG为平行四边形,即DE∥FG,而V A﹣EFC=V E﹣AFC,进而V A﹣EFC=V E﹣AFC=V D﹣AFC=V F﹣ADC,又由EF∥BD,.∴三棱锥A﹣EFC的体积为.19.【解答】解:(Ⅰ)由题得蜜柚质量在[1750,2000)和[2000,2250)的比例为2:3,∴应分别在质量为[1750,2000),[2000,2250)的蜜柚中各抽取2个和3个.记抽取质量在[1750,2000)的蜜柚为A1,A2,质量在[2000,2250)的蜜柚为B1,B2,B3,则从这5个蜜柚中随机抽取2个的情况共有以下10种:A1A2,A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,B1B2,B1B3,B2B3,其中质量均小于2000克的仅有A1A2这1种情况,故这2个蜜柚质量均小于2000克的概率为p=.(Ⅱ)方案A好,理由如下:由频率分布直方图可知,蜜柚质量在[1500,1750)的频率为250×0.0004=0.1,同理,蜜柚质量在[1750,2000),[2000,2250),[2500,2750),[2750,3000)的频率依次为0.1,0.15,0.4,0.2,0.05.若按A方案收购:根据题意各段蜜柚个数依次为500,500,750,2000,1000,250,于是总收益为×40÷1000=×2+(7+8)×2+(8+9)×3+(9+10)×8+(10+11)×4+(11+12)×1]×40÷1000=25×50[26+30+51+152+84+23]=457500(元)若按B方案收购:∵蜜柚质量低于2250克的个数为(0.1+0.1+0.15)×5000=1750,蜜柚质量低于2250克的个数为5000﹣1750=3250,∴收益为1750×60+325080=250×20×[7×3+13×4]=365000元.∴方案A的收益比方案B的收益高,应该选择方案A.20.【解答】解:(1)设C(x,y),∵动圆C过点F(1,0),并与直线x=﹣1相切,∴=|x+1|,化简,得动圆圆心C轨迹方程为y2=4x.证明:(2)当AB斜率为0时,直线P A,PB斜率不存在(不合题意,舍去)当AB斜率不为0时,设AB方程:x﹣8=m(y﹣4),即x=my﹣4m+8,设A(x1,y1),B(x2,y2),由,得y2﹣4my+16m﹣32=0,△=16m2﹣64m+128=16[(m﹣2)2+4]>0恒成立,∴y1+y2=4m,y1y2=169m﹣32,设直线P A,PB的斜率分别为k1,k2,则k1k2======﹣1,∴k1k2为定值﹣1.21.【解答】解:(1)函数f(x)的定义域为{x|x∈R},∴f′(x)=,∵e﹣x>0,∴当f′(x)<0,解得x<1或x>2;f′(x)>0,解得1<x<2,∴f(x)的单调递减区间为(﹣∞,1),(2,+∞),单调递增区间为(1,2).(2)∵当x∈[0,2]时,f(x)≥﹣x2+2x+m恒成立,∴m≤f(x)+x2﹣2x=(x2﹣x+1)•e﹣x+x2﹣2x,令g(x)=(x2﹣x+1)•e﹣x+x2﹣2x,则g′(x)=﹣(x﹣2)(x﹣1)•e﹣x+2(x﹣1)=,当x∈[0,1)时,g′(x)<0;当x∈(1,2)时,g′(x)>0,∴g(x)在(0,1)上单调递减,在(1,2)上单调递增,∴g(x)min=g(1)=﹣1,∴m≤﹣1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.【解答】解:(1)C1的普通方程为x2+y2=1(y≥0),把,代入上述方程得,,∴C2的方程为,令x=ρcosθ,y=ρsinθ,所以C2的极坐标方程为;(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),由,得ρA=1,由,得,而,∴,而α∈[0,π],∴或.[选修4-5:不等式选讲]23.【解答】(1)解:①当x≤﹣1时,原不等式化为﹣x﹣1<﹣2x﹣2解得:x<﹣1;②当时,原不等式化为x+1<﹣2x﹣2解得:x<﹣1,此时不等式无解;③当时,原不等式化为x+1<2x,解得:x>1.综上,M={x|x<﹣1或x>1};(2)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1|=|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.。

2018年南昌市高三第三次模拟测试文科数学试题及答案 精品

2018年南昌市高三第三次模拟测试文科数学试题及答案 精品

江西省南昌市2018—2018学年度高三第三次模拟测试数学(文)试题考生注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第1I卷用0.5毫米的黑色墨水签字笔在答题卡上作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:锥体体积公式:y =1Sh,其中S为底面积,h为高3第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集21{|230},{|0|}3x U x x x A x x -=-+-≤=>-,则C U A= A .{x|l<x<2} B .{x|l ≤x ≤2} C .{x|2≤x<3}D . {x|2≤x ≤3或x=1}2.设非零向量a ,b ,c 满足||||||,,a b c a b c ==+=则<a ,b>= A . 30°B .60° C.120°D .150°3.如图,水平放置的平面图形ABCD 的直观图,则其表示的图形ABCD是A .任意梯形B .直角梯形C .任意四边形D .平行四边形4.设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) =2x 2-x ,则f (1)= A .-3B .-1C . 1D .35.已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为A .310B .29C .78D .796.已知函数sin()(0,||)2y x πωφωφ=+><的部分图象如图所示,则 A .1,6πωφ==B .1,6πωφ==- C .2,6πωφ==-D .2,6πωφ==7.“ab <0”是“方程ax 2+ by 2=c 表示双曲线”的 A .必要但不充分条件 B .充分但不必要条件 C .充分必要条件D .既不充分也不必要条件8.已知数列{}n a 的通项公式为21n a n =+。

山西省太原市2018届高考第三次模拟考试数学试题(文)有答案

山西省太原市2018届高考第三次模拟考试数学试题(文)有答案

太原市2018年高三年级模拟试题(三)文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22|10,|3A x x B x x ⎧⎫=-<=>⎨⎬⎩⎭,则A B =( ) A .()1,1- B .()1,+∞ C .21,3⎛⎫- ⎪⎝⎭ D .2,13⎛⎫ ⎪⎝⎭2.已知复数z 满足4312ii z i+=+,则复数z 在复平面内对应的点在( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限3. 设命题:p 函数sin 2y x =的最小正周期为π;命题:q 函数cos y x =的图象关于直线2x π=对称,则下列结论正确的是( )A .p 为假B .q ⌝为假C .p q ∨为假D .p q ∧为假 4. 若01a b <<<,则1,log ,log b b aa ab 的大小关系为( )A .1log log b b aa ab >> B .1log log b b aa b a >>C. 1log log b b aa b a >> D .1log log b b aa ab >>5. 中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数n 除以正整数m 后的余数为r ,则记为()mod n r m =,例如()112mod3=.现将该问题设计一个程序框图,执行该程序框图,则输出的n 等于( )A .21B . 22 C. 23 D .246. 已知等比数列{}n a 满足12233,6a a a a +=+=,则8a =( ) A .243 B .128 C. 81 D .647.设不等式组31036x y x y +≥⎧⎨+≤⎩表示的平面区域为D ,若在区域D 上存在函数()log 1a y x a =>图象上的点,则实数a 的取值范围是( )A .()3,+∞B .()1,3 C. [)3,+∞ D .(]1,3 8.已知函数()2cos 3x f x πϕ⎛⎫=+ ⎪⎝⎭的一个对称中心是()2,0,且()()13f f >,要得到函数()f x 的图象,可将函数2cos 3xy π=的图像( )A . 向右平移12个单位长度 B . 向右平移6π个单位长度C. 向左平移12个单位长度 D .向左平移6π个单位长度 9. 已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为( )A 10.如图是某几何体的三视图,则这个几何体的体积是( )A .22π+B .23π+C. 43π+D .42π+11. 已知抛物线24y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于,M N 两点,若3PF MF =,则MN =( )A .163B .8 C. 16 D 12.已知函数()()2ln x x t f x x+-=,若对任意的[]()()1,2,0x f x x f x '∈+>恒成立,则实数t 的取值范围是( )A . (-∞ B .3,2⎛⎫-∞ ⎪⎝⎭ C. 3,2⎛⎤-∞ ⎥⎝⎦ D .32⎫⎪⎭二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知函数()2,02,0x x a x f x x -⎧≥=⎨<⎩若()11f f -=-⎡⎤⎣⎦,则实数a =. 14.在ABC ∆中,若()274cos cos 222A B C -+=,则角A =. 15.已知,a b 是单位向量,0a b =,若向量c 满足1c a b --=,则c 的最大值是.16.已知圆22:210C x y x +--=,直线:34120l x y -+=,在圆C 内任取一点P ,则P 到直线的距离大于2的概率为.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =,求数列{}n b 的前n 项和n S . 18.按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:车在下一年续保时的情况,统计得到了下面的表格: 的概率;(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车. ①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.19.已知空间几何体ABCDE 中,BCD ∆与CDE ∆均为边长为2的等边三角形,ABC ∆为腰长为3的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面,,BCD M N 分别为,DB DC 的中点. (1)求证:平面//EMN 平面ABC ; (2)求三棱锥A ECB -的体积.20. 已知抛物线21:y 8C x =的焦点也是椭圆()22222:10x y C a b a b+=>>的一个焦点,点()0,2P 在椭圆短轴CD 上,且1PC PD =-.(1)求椭圆2C 的方程;(2)设Q 为椭圆2C 上的一个不在x 轴上的动点,O 为坐标原点,过椭圆的右焦点2F 作OQ 的平行线,交曲线2C 于,M N 两点,求QMN ∆面积的最大值. 21.已知函数()2ln x af x e x -=-.(1)当12a =时,求()f x 的单调区间; (2)当1a ≤时,证明:()0f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为3cos 33sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2sin 6πρθ⎛⎫-= ⎪⎝⎭射线:6OM πθ5=与圆C 的交点为P ,与直线l 的交点为Q ,求线段PQ的长.23.选修4-5:不等式选讲设函数()21f x x x=++-.(1)求()f x的最小值及取得最小值时x的取值范围;(2)若不等式()10f x ax+->的解集为R,求实数a的取值范围.试卷答案一、选择题1-5: DCDDC 6-10: BCAAA 11、12:CB二、填空题13.14- 14.3π1 16.324ππ+三、解答题17.解:(1)∵121nnnaaa+=+,∴1112n na a+-=,∴1na⎧⎫⎨⎬⎩⎭是等差数列,∴()111122nn na a=+-=,即12nan=;(2)∵22n nnb=,∴1221231222n n nnS b b b-=+++=++++,则23112322222n nnS =++++, 两式相减得23111111112122222222n n n nn n nS -⎛⎫=+++++-=-- ⎪⎝⎭, ∴1242n n nS -+=-. 18.解:(1)所求概率为1551804+=; (2)①设两辆事故车为,A B ,四辆非事故车为,,,a b c d ,从这六辆车中随机挑取两辆车共有(),A B ,()()()()()()()()()(),,,,,,,,,,,,,,,,,,,A a A b A c A d B a B b B c B d a b a c ,()()()(),,,,,,,a d b c b d c d 共15种情况,其中两辆车中恰有一车事故车共有(),A a ,()()()()()()(),,,,,,,,,,,,,A b A c A d B a B b B c B d 8种情况,所以所求概率为815; ②由统计数据可知,若该销售商一次购进120辆(车龄已满三年)该品牌二手车中,有事故车30辆,非事故车90辆,所以一辆获得利润的平均值为()()13040009080005000120⨯-+⨯⨯=⎡⎤⎣⎦. 19.证明:(1)取BC 中点H ,连结AH ,∵ABC ∆为等腰三角形, ∴AH BC ⊥,又平面ABC ⊥平面,BCD AH ⊥平面ABC , ∴AH ⊥平面BCD ,同理可证EN ⊥平面BCD , ∴//EN AH ,∵EN ⊄平面,ABC AH ⊂平面ABC , ∴//EN 平面ABC ,又,M N 分别为,BD DC 中点,∴//MN BC , ∵MN ⊄平面,ABC BC ⊂平面ABC , ∴//MN 平面ABC , 又MNEN N =,∴平面//EMN 平面ABC ;(2)连结DH ,取CH 中点G ,连结NG ,则//NG DH , 由(1)知//EN 平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等, 又BCD ∆是边长为2的等边三角形,∴DH BC ⊥, 又平面ABC BCD ⊥平面,平面ABC平面,BCD BC DH =⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =N 为CD 中点,∴NG =,又3,2AC AB BC ===,∴122ABC S BC AH ∆== ∴163E ABC N ABC ABC V V S NG --∆===.20.解:(1)由21:8C y x=,知焦点坐标为()2,0,所以224a b-=,由已知,点,C D的坐标分别为()()0,,0,b b-,又1PC PD=-,于是241b-=-,解得225,9b a==,所以椭圆2C的方程为22195x y+=;(2)设()()()112233,,,,,M x y N x y Q x y,直线MN的方程为2x my=+,由222195x myx y=+⎧⎪⎨+=⎪⎩,可得()225920250m y my++-=,则1212222025,5959my y y ym m-+==-++,所以()2230159m MNm+ ===+,t=,则()()222230303011,4545195t tm t t Stt tt=-≥===+-++,所以()45f t tt=+在[)1,+∞上单调递增,所以当1t=时,()f t取得最小值,其值为9.所以QMN∆的面积的最大值为103.21.解:(1)12a=时,()()()111ln,0x xf x e x f x e xx--'=-=->,因为()10f'=,故01x<<时,()0f x'<;1x>时,()0f x'>,所以()f x在()0,1上单调递减,在()1,+∞上单调递增;(2)当1a≤时,()222,lnxx a x f x e x--≥-≥-,令()2lnxx e xϕ-=-,则()21xx exϕ-'=-,显然()xϕ'在()0,+∞上单调递增,且()()10,20ϕϕ''<>,所以()xϕ'在()0,+∞上存在唯一零点()00,1,2x x∈,又0x x<<时,()00,x x xϕ'<>时,()0xϕ'>,所以()0,x∈+∞时,()()0200lnxx x e xϕϕ-≥=-,由()00xϕ'=,得00221,x xe x ex--==,∴()()2000000111ln22220xx e x xx x xϕ-=-=--=+->-=,综上,当1a≤时,()0f x> .22.解:(1)圆C的参数方程为3cos33sinxyϕϕ=⎧⎨=+⎩,(ϕ为参数),∴圆C的普通方程为()2239x y+-=;(2)化圆C的普通方程为极坐标方程6sinρθ=,设()11,Pρθ,则由6sin6ρθπθ=⎧⎪5⎨=⎪⎩解得1153,6πρθ==,设()22,Q ρθ,则由2sin 656πρθπθ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,解得2254,6πρθ==, ∴211PQ ρρ=-=.23.解:(1)∵函数()()21213f x x x x x =++-≥+--=,故函数()21f x x x =++-的最小值为3,此时21x -≤≤;(2)当不等式()10f x ax +->的解集为R ,函数()1f x ax >-+恒成立, 即()f x 的图象恒位于直线1y ax =-+的上方,函数()21,2213,2121,1x x f x x x x x x --<-⎧⎪=++-=-≤≤⎨⎪+>⎩,而函数1y ax =-+表示过点()0,1,斜率为a -的一条直线,如图所示:当直线1y ax =-+过点()1,3A 时,31a =-+,∴2a =-,当直线1y ax =-+过点()2,3B -时,321a =+,∴1a =,数形结合可得a 的取值范围为()2,1-.。

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若全集,则()A. B. C. D.【答案】A【解析】分析:利用一元二次不等式的解法化简集合,然后利用补集的定义求解即可.详解:因为集合,集合,所以,故选A.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.2. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始从左到右依次选取两个数字,则选出的第个个体的编号为()附:第行至第列的随机数表:A. B. C. D.【答案】C【解析】分析:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来的个个体的编号,即可得结果.详解:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来编号在的前个个体的编号为,所以选出来的第个个体的编号为,故选C.点睛:本题考查选随机数表的应用,是基础题,解题时要认真审题,注意随机数表示法的合理运用. 3. 设是虚数单位,若复数是纯虚数,则( )A.B. C.D.【答案】D 【解析】解:,由纯虚数的定义可得: .本题选择D 选项.4. 已知等差数列的前项和为,若则( )A. B. C. D.【答案】D【解析】分析:由,可得,则化简,即可得结果.详解:因为,所以可得,所以,故选D. 点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.5. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的( )A. B. C. D.【答案】D【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:由程序框图可知:输入,第一次循环,;第二次循环,;第三次循环,;,退出循环输出,输出因此输出的为,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 如图,在正方体中,分别是的中点,则下列说法错误的是()A. B. 平面 C. D. 平面【答案】C【解析】分析:先利用三角形中位线定理证明,因为,平面,可得正确从而可得结果.详解:如图:连接,由三角形中位线定理可得与不可能平行,错误;因为在平面内,由线面平行的判定定理可得,平面,正确;平面与垂直,正确;因为平面,所以,平面,正确,故选C.点睛:本题主要通过对多个命题真假的判断,主要综合考查正方体中的线面平行于线面垂直关系,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7. 函数在区间上的图象大致为()A. B.C. D.【答案】B【解析】分析:用排除法,当时,函数的零点为,可排除选项;当时,,可排除选项,从而可得结果.详解:当时,由,可得函数的零点为,可排除选项;当时,,对应点在轴下方,可排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8. 某旅行社租用两种型号的客车安排名客人旅行,两种车辆的载客量分别为人和人,租金分别为元/辆和元/辆,旅行社要求租车总数不超过辆,且型车不多于型车辆,则租金最少为()A. 元B. 元C. 元D. 元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z min=5×1 600+2 400×12=36800,故租金最少为36800元.选C.视频9. 点是双曲线右支上一点,分别为左、右焦点,的内切圆与轴相切于点,若点为线段中点,则双曲线的离心率为()A. B. C. D.【答案】B【解析】分析:设切点分别为,并设,根据双曲线的定义可得,再根据点为线段中点,可得,即可得到从而可得结果.详解:的内切圆与轴相切于点,设切点分别为,并设,根据双曲线的定义,,解得,点为线段中点,,,,故选B.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.10. 已知函数的图象过点,区间上为单调函数,且的图象向左平移个单位后与原来的图象重合,则()A. B. C. D.【答案】A【解析】分析:由函数的图象过点,可得,可求得的值,由的图象向左平移个单位后与原来的图象重合,可得结合区间上为单调函数可得的值,从而可得结果.详解:由函数的图象过点,,解得,又,,又的图象向左平移个单位之后为,由两函数图象完全重合知,又,,所以,,故选A.点睛:本题考查了三角函数的图象与性质以及利用函数性质求解析式,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11. 已知函数与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:函数与的图象上存在关于轴对称的点,等价于存在,使,即在上有解,从而化为函数上有零点,进而可得结果.详解:若函数与图象上存在关于轴对称的点,则等价为,在时,方程有解,即在上有解,令,则在其定义域上是增函数,且时,,若时,时,,故在上有解,当时,则在上有解可化为,即,故,综上所述,,故选A.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,函数与的图象上存在关于轴对称的点,转化为存在,使是解题的关键.12. 已知数列,定义数列为数列的“倍差数列”,若的“倍差数列”的通项公式为,且,若函数的前项和为,则()A. B. C. D.【答案】B【解析】分析:由可得,从而得数列表示首项为,公差的等差数列,求得,再根据错位相减法即可得结果.详解:根据题意得,,数列表示首项为,公差的等差数列,,,,,,,故选B.点睛:本题主要考查等差数列的通项、等比数列求和公式以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,其中,且,则向量的夹角为__________.【答案】【解析】分析:由,且,可得,即,从而可求出向量与的夹角.详解:,且,,即,解得,向量与的夹角是,故答案为.点睛:本题主要考查向量的夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...14. 已知曲线在处的切线方程为,则实数__________.【答案】【解析】分析:求得函数的导数,可得切线的斜率,由切线方程为可得关于的方程,解方程可得的值.详解:因为,所以,可得曲线在处切线斜率为,由曲线方程,可得,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.15. 下列命题中,正确的命题序号是__________.(请填上所有正确的序号)①已知,两直线,则“”是“”的充分条件;②“”的否定是“”;③“”是“”的必要条件;④已知,则“”的充要条件是“”【答案】①③④【解析】分析:对于①,利用直线平行的性质判断即可;对于②,利用全称命题的否定判断即可;对于③,正弦函数的性质判断即可;对于④,利用不等式的性质判断即可.详解:对于①,时,把代入直线方程,得,故正确;对于②,命题“”的否定是“”,故错误;对于③,“”不能得到“”,“”,一定有“”,故正确;对于④,已知,则“”“”反之也成立,故正确,故答案为①③④.点睛:本题主要考查直线平行的性质、全称命题的否定以及充要条件的判断,属于难题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.16. 已知三角形所在平面与矩形所在平面互相垂直,若点都在同一球面上,则此球的表面积等于__________.【答案】【解析】分析:根据三角形所在平面与矩形所在平面互相垂直,可得外接球球心就是三角形的外接圆圆心,球半径等于圆半径,利用正弦定理求出半径,由球表面积公式可得结果.详解:由,由余弦定理可得,在矩形中,设对角线交于,设三角形的外心为,连接,则因为三角形所在平面与矩形所在平面互相垂直,则平面,所以,由于点都在同一球面上,,由正弦定理可得,则此球的表面积为,故答案为.点睛:本题主要考查线面垂直的性质、正弦定理与余弦定理的应用,外接球表面积的求法,属于难题.求外接球面积的关键是求出半径,对特殊的三棱锥可转化为求长方体的外接球的半径,本题根据矩形的性质以及面面垂直的性质将球心转化为三角形外接圆圆心,利用正余弦定理求出半径进行解答.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,已知(1)求;(2)若,边上的中线,求的面积.【答案】(1)2;(2)4或12【解析】分析:(1)由,利用诱导公式以及两角和的余弦公式可得,进而,由此能求出;(2)求出,由余弦定理求出,从而利用三角形面积公式可求出的面积.详解:(1)由已知得所以因为在中,,所以则(2)由(1)得,,在中,,代入条件得,解得或当时,;当时,.点睛:本题主要考查三角函数的恒等变换以及余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18. 在如图所示的多面体中,平面,平面,且. (1)请在线段上找到点的位置,使得恰有直线平面,并证明;(2)在(1)的条件下,求多面体的体积.【答案】(1)见解析;(2)【解析】分析:(1)由均垂直于底面,可以断定两线段平行,且,取的中点,可得四边形是平行四边形,∴,易证明平面,∴平面;(2)由,即可的结果.详解:(1)为线段的中点.证明如下:由已知平面,平面∴,设是线段的中点,连接,则,且∵,且∴四边形是平行四边形,∴∵,,,∴平面∴平面(2)∵∴多面体的体积为点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 近年来,随着我国汽车消费水平的提高,二手车行业得到迅猛发展,某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中);①根据回归方程类型及表中数据,建立关于的回归方程;②该汽车交易市场对使用年以内(含年)的二手车收取成交价格的佣金,对使用时间年以上(不含年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为②参考数据:【答案】(1)0.40;(2)①,②0.29【解析】分析:(1)由频率分布直方图得,二手车使用时间在的频率为,在的频率为,由互斥事件的概率公式可得结果;(2)①由得,即关于的线性回归方程为求得,利用样本中心点的性质求得,所以关于的线性回归方程为,即关于的回归方程为;②根据①中的回归方程和图1,对成交的二手车可预测各使用时间段上的频率,从而可得该汽车交易市场对于成交的每辆车可获得的平均佣金.详解:(1)由频率分布直方图得,该汽车交易市场 2017 年成交的二手车使用时间在的频率为,在的频率为所以(2)①由得,即关于的线性回归方程为因为所以关于的线性回归方程为,即关于的回归方程为②根据①中的回归方程和图 1,对成交的二手车可预测:使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;所以该汽车交易市场对于成交的每辆车可获得的平均佣金为:万元点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知是直线上的动点,点的坐标是,过的直线与垂直,并且与线段的垂直平分线相交于点 .(1)求点的轨迹的方程;(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(与不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1);(2)存在定点,使得三点共线【解析】试题分析:(Ⅰ)由题意可知:,即曲线为抛物线,焦点坐标为,点的轨迹的方程;(Ⅱ)设,则,直线的方程,代入抛物线方程,求得的坐标,的方程为,则令,则,直线与轴交于定点,即可求得存在一个定点,使得三点共线.试题解析:(Ⅰ)依题意,,即曲线为抛物线,其焦点为,准线方程为:,所以曲线的方程为.(Ⅱ)设,则,直线的斜率为,直线的方程为.由方程组得.设,则,,,所以,又,所以的方程为.令,得.即直线与轴交于定点.因此存在定点,使得,,三点共线.21. 已知,函数(是自然对数的底数)(1)求函数的单调区间;(2)若函数在区间内无零点,求的最大值.【答案】(1)见解析;(2)【解析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)求出函数求其导函数,可知当时函数在区间上单调递减,可得,函数在区间上无零点;当时,分和分类讨论,即可筛选出函数在区间内无零点的的范围.详解:(1)∵∴当时,在上恒成立,增区间为,无减区间;当时,令得的增区间为,减区间为.(2)函数,∴①当时,在上恒成立,函数在区间上单调递减,则,∴时,函数在区间上无零点;②当时,令得,令,得,令,得,因此,函数的单调递增区间是,单调递减区间是.(i)当,即时,函数的单调递减区间是,∴要使函数在区间内无零点,则,得;(ii)当,即时,函数的单调递减区间是,单调递增区间是,∴设∴∴在上单调递减,∴,而当时,,∴函数在区间内有零点,不合题意.综上,要使函数在区间内无零点,则的最大值为点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22. 在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点(1)求曲线的普通方程和的直角坐标方程;(2)若点在曲线上,求的值.【答案】(1),;(2)【解析】试题分析:(1)利用消去参数,可求得的方程为,对,依题意设方程为,的直角坐标为,代入求得,故圆的方程为:;(2)曲线的方程为,将代入可求得,进一步代入.试题解析:(1)将及时对应的参数,, 代入得,所以的方程为,设圆的半径,则圆的方程为(或),将点代入得:圆的方程为:( 或).(2)设曲线的方程为,将代入得,,所以.考点:极坐标与参数方程.23. 已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围【答案】(1)或;(2)【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)即的图象恒在,图象的上方,作出函数图像,根据直线恒过定点,结合函数图象即可的结果.详解:(1)∴,即∴①或②或③解不等式①:;②:无解;③:,所以的解集为或(2)即的图象恒在,图象的上方,可以作出的图象,而,图象为恒过定点,且斜率变化的一条直线,作出函数,图象如图,其中,可求:∴,由图可知,要使得的图象恒在图象的上方,实数的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

2018届高考数学(文)大一轮复习课时分层训练第3章三角函数、解三角形第7节课时分层训练23Word版含答案

课时分层训练(二十三)正弦定理、余弦定理应用举例A组基础达标(建议用时:30分钟)一、选择题1.如图3­7­9所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A 在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )【导学号:31222135】图3­7­9A.a km B.3a kmC.2a km D.2a kmB2.如图3­7­10,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )图3­7­10A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°D3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( ) 【导学号:31222136】A.102海里B.103海里C.203海里D.202海里A4.如图3­7­11,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为 ( )图3­7­11A.8 km/h B.6 2 km/hC.234 km/h D.10 km/hB5.如图3­7­12,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为 ( )图3­7­12A.30° B.45°C.60°D.75°B二、填空题6.在地上画一个∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米.【导学号:31222137】167.如图3­7­13,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC =45°,则塔AB的高是________米. 【导学号:31222138】图3­7­1310 68.如图3­7­14所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.图3­7­1463三、解答题9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A,B,且AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到D处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案可保留根号)图3­7­15在△ABD 中,∵∠BAD =90°,∠ABD =45°, ∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.3分 在△ABC 中,BC sin 30°=ABsin 45°,∴BC =AB sin 30°sin 45°=80×1222=40 2.6分在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60° =(802)2+(402)2-2×802×402×12=9 600.∴DC =406,航模的速度v =40620=26米/秒. 12分10.如图3­7­16,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.图3­7­16(1)求渔船甲的速度; (2)求sin α的值.(1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.3分 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28. 所以渔船甲的速度为BC2=14海里/小时.7分(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得ABsin α=BCsin 120°,9分 即sin α=AB sin 120°BC =12×3228=3314.12分 B 组 能力提升(建议用时:15分钟)1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m 到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是 ( ) 【导学号:31222139】A.50 m B.100 mC.120 m D.150 mA2.(2014·全国卷Ⅰ)如图3­7­17,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.图3­7­171503.已知在东西方向上有M,N两座小山,山顶各有一个发射塔A,B,塔顶A,B的海拔高度分别为AM=100米和BN=200米,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了1003米后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.图3­7­18在Rt△AMP中,∠APM=30°,AM=100,∴PM=1003,连接QM(图略),在△PQM中,∠QPM=60°,3分又PQ=1003,∴△PQM为等边三角形,∴QM=100 3.6分在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.在Rt△BNQ中,tan θ=2,BN=200,∴BQ=1005,cos θ=55.9分在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是1005米.12分。

2018年高考数学模拟试卷(3)参考答案

2018年高考模拟试卷(3)参考答案一、填空题:本大题共14小题,每小题5分,共70分.1.答案:{}|0x x > 解析:由并集定义可得A B = {}|0x x >. 2.答案:25 解析:因为22a b +即为复数a +b i 模的平方,且2534a bi i+=+,所以25534a bi i+===+,即22a b +的值为25 3.答案:18 解析:由题意可得:甲、乙、丙、丁四个专业人数之比为3:3:8:6,所以 100名学生中丁专业抽取人数为6601820⨯=人. 4.答案:310解析:将黑球标记为a ,黄球标记为b ,红球标记为123,,c c c 基本事件 有123122313122313123,,;,,;,,;,,;,,;,,;,,;,,;,,;,,a b c a b c a b c a c c a c c a c c b c c b c c b c c c c c 共计10种, 其中颜色互不相同有3种,故所求事件概率为310. 5.答案:7 解析:第1次,1S =,3k =;第2次,3S =,5k =;第三次,1510S =>,7k =.6. 答案:125解析:顶点坐标为()4,0±,渐近线方程为34x y =±,由对称性不妨取顶点()4,0,渐近线方程为34y x =,故顶点到其渐近线的距离为125d =.7.84,故6,即m =方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为121332h h ==.8. 答案:80解析:因为137,,a a a 成等比数列,所以2317a a a =⋅.又26a =,设公差为d ,故()()()26665d d d +=-⋅+,即22d d =,又公差不为零,故2d =.即42210a a d =+=. 所以72421780S S a a a +=++=. 9. 答案:154解析:将所给约束条件画出如下图所示的可行域.yz x=的几何意义为可行域中的任一点与原点连线的斜率.由图形可得:在点A 处取到最大值.又()2,6A ,故m a x 3z =.在点C 处取到最小值.又()4,3C ,故min 34z =.所以z 的最大值与最小值之和为315344+=10.答案:(02), 解析:10()4102x f x x x ⎧⎪=⎨--<⎪-⎩≥,,,, 所以)(x f 在(0)-∞,上单调递增,在[0)+∞,上为常数函数,则222220x x xx x ⎧-<-⎪⎨-<⎪⎩,解得20<<x .11.答案:2-解析:将函数()π4y x =的图象向左平移3个单位,得函数()π3π44y x +,所以((3π,3,,4M N ON ϕ=-=由余弦定理可得,5cos π6θθ===, ()()35tan tan ππ46ϕθ=-=-35tan πtan π462351tan πtan π46-==-++⋅12.答案:7+解析:方法一:因为111x y+=,所以11111,1x y y x -=-=.又343434111111x y y x x y x y+=+=+----,所以()113434777y x y x x y x y ⎛⎫++=++≥++ ⎪⎝⎭当且仅当2x 时取等号.方法二:因为111x y+=,所以xy x y =+,即()()111x y -⋅-=.故()()3134143434777111111x y x y x y x y x y -+-++=+=++≥+=+------当且仅当2x =时取等号.方法三:因为()34343347411111111x y x x x x x y x x x y+=+=+=++-------,所以34711x yx y +≥+--2x 时取等号. 13.答案:1解析:设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,()()OM ON OH HM OH HN ⋅=+⋅+ ,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c cαβ⋅==+-=-∴242222()()r r OM ON r r c c ⋅=--= .即2OM ONr⋅的值为114.【答案】【解析】方程2|21|0x x t ---=有四个不同的实数根,在同一坐标系内作出函数2()|21|f x x x =--与函数()g x t =的图象如下图所示,所以14,x x 是方程221x x t --=的两根,23,x x 是方程221x x t --=-的两根,由求根公式得4132x x x x -=-=,且02t <<,所以41322()()x x x x -+-=,令()f t =,由()0f t '==得65t =,函数()f t 在区间6(0,]5递增,在区间6[,2)5递减,又6(0)()(2)85f f f ===,所以所求函数的取值范围是.二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)证:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为底面ABCD 是矩形,所以CD BC ⊥.因为CD PD D = ,,CD PD ⊂平面PCD ,所以BC ⊥平面PCD . 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCD . (2)底面ABCD 是矩形,所以AD ∥BC , 因为BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD ∥平面PBC .因为AD ⊂平面ADFE ,平面ADFE 平面PBC EF =,所以AD ∥EF . 16.(本小题满分14分)解:(1)因为π1sin()cos 62C C +-=11cos 22C C -=,所以π1sin()62C -=.又因为0πC <<,所以π3C =.(2)法一:因为D 是AB 中点,所以1()CD CA CB =+,所以2221(2)4CD CA CA CB CB =+⋅+ ,即2221()4CD a b ab =++,所以224()CD a b ab =+-23()124a b +=≥,当且仅当2a b ==时等号成立.所以CD法二:在ABC △中,由余弦定理得2222cos CD AC AD AC AD A =+-⋅⋅,可设22214cos b c CD A bc+-=. 在ABC △中,由余弦定理得2222cos CB AC AB AC AB A =+-⋅⋅,可设222cos 2b c a A bc+-=.所以222222142b c CD b c a bc bc +-+-=,所以2221()4CD a b ab =++.下同法一.法三:以C 为原点,CA 为x 轴,建立如图所示的平面直角坐标系,所以(0)(2a A b B ,,,所以(42a b D +,所以2221()4CD a b ab =++, 下同法一.17.(本小题满分14分)解:(1)因为MN ∥l ,设直线MN 的方程为430x y c ++=, 由条件得,43430c ⨯+⨯+=,解得5c =-,即直线MN 的方程为4350x y +-=.因为34OA k =,43MN k =-,所以1OA MN k k ⋅=-,即OA MN ⊥,所以MN == 又因为直线MN 与直线l间的距离3d ==,即点P 到直线MN 的距离为3,所以△PMN的面积为132⨯=(2)直线PM 与圆O 相切,证明如下: 设00()M x y ,,则直线MN 的斜率000035354545y y k x x --==--,因为OP ⊥MN ,所以直线OP 的斜率为005453x y ---,所以直线OP 的方程为005453x y x y -=--.联立方程组00545343200x y x y x y -⎧=-⎪-⎨⎪+-=⎩,,解得点P 的坐标为()0000004(53)4(54)4343y x y x y x -----,, 所以()000000004(53)4(54)4343y x PM x y y x y x --=--- --,, 由于()00OM x y = ,,22004x y +=,所以2200000000004(53)4(54)4343x y y x PM OM x y y x y x --⋅=--- -- 0000004(53)4(54)443x y y x y x ---=--000012164043x y y x -+=-=-,所以PM OM ⊥,即PM OM ⊥,所以直线PM 与圆O 相切,得证.18.(本小题满分16分)解:(1)由题意,水平方向每根支条长为302152x m x -==-cm ,竖直方向每根支条长为261322y y n -==-cm2cm .从而,所需木料的长度之和L 2(15)4(13)822yx =-+-+=822()x y ++cm .(2)由题意, 1132xy =,即260y x =,又由152,132,2x y--⎧⎪⎨⎪⎩≥≥可得1301311x ≤≤.所以260822()L x x=++.令260t x x =+,其导函数226010x-<在1301311x ≤≤上恒成立,故260t x x =+在130[,13]11上单调递减,所以可得372[33,]11t ∈.则26082()]L x x =++82]t =+=82+.因为函数y =y =在372[33,]11t ∈上均为增函数,所以82L =+在372[33,]11t ∈上为增函数,故当33t =,即13,20x y ==时L有最小值16+答:做这样一个窗芯至少需要16+长的条形木料.19.(1)2()36(2)f x x x a '=-+-,其判别式2(6)12(2)12(+1)a a ∆=---=.①当1a -≤时,0∆≤,()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞+∞.………………………………………1分②当1a >-时,由()0f x '>,得x <或x >所以()f x的单调增区间为(-∞,)+∞. 3分综上,当1a -≤时,()f x 的单调增区间为(,)-∞+∞;当1a >-时,()f x 的单调增区间为(-∞,)+∞.4分(2)(ⅰ)方程()0f x =,即为323(2)0x x a x -+-=,亦即2[3(2)]0x x x a -+-=,由题意1t ,2t 是方程23(2)0x x a -+-=的两个实根, ………………5分 故123t t +=,122t t a =-,且判别式21(3)4(2)0a ∆=--->,得14a >-. 由213t t =,得134t =,294t =, ………………………………………8分 故1227216t t a =-=,所以516a =.………………………………………9分(ⅱ)因为对任意的12[]x t t ∈,,()16f x a -≤恒成立. 因为123t t +=,12t t <,所以1232t t <<, 所以120t t <<或120t t <<.①当120t t <<时,对12[]x t t ∈,,()0f x ≤, 所以016a ≤-,所以16a ≤.又1220t t a =->,所以2a <.………………………………………12分②当120t t <<时,2()36(2)f x x x a '=-+-,由(1)知,存在()f x 的极大值点11(0)x t ∈,,且1x =(方法1)由题得321111()3(2)16f x x x a x a =-+--≤,将1x =(72a +,解得11a ≤.…14分又1220t t a =-<,所以2a >.因此211a <≤.…………………………15分综上,a 的取值范围是1(2)(211]4- ,,.………………………………………16分 (方法2)211362a x x =-+,由题得321111()3(2)16f x x x a x a =-+--≤, 将211362a x x =-+,代入化简得31(1)8x --≥,得11x -≥,故110x -<≤,因为211362a x x =-+在1[10)x ∈-,上递减,故(211]a ∈,. 综上,a 的取值范围是1(2)(211]4- ,,. ……………………………………16分 20.(本小题满分16分)解:(1)将1n =代入111(1)n n nn a a n ++=++λ,得2122a a =+, 由11a =,283a =,得3=λ.(2)由111(1)3n n n n a a n ++=++,得1113n n n a a n n +-=+,即113n nnb b +-=. 当2n ≥时,111221()()()n n n n n b b b b b b b b ----=-+-+⋅⋅⋅+-111[1()]3311n --=-111223n -=-⨯,因为1111a b ==,所以131223n n b -=-⨯. 因为11b =也适合上式,所以131223n n b -=-⨯.(3)由(2)知,3()23n nn a n =-.假设存在正整数r s t ,,且r s t <<,使得r s t ,,与r s t a a a ,,同时成等差数列, 则2r t s +=且2r t s a a a +=,即()()()333333r t s r t s r t s -+-=-,整理得2333r t sr t s +=, (*) 设3n nn c =,*n ∈N ,则1111120333n n nn n n n n c c ++++--=-=< 所以{}n c 单调递减数列. ① 若1r =,当3s ≥时,则2293ss ≤, 所以()*左边13>,右边29≤,显然等式不成立,当2s =时,得313933t t ==,解得3t =, 所以1r =,2s =,3t =符合题意. ② 若2r ≥,因为s r >,所以1s r +≥, 所以1s r c c +≤,所以()112122033333r sr r r r r s r r +++---=≥≥,所以03tt ≤,所以t 不存在, 即2r ≥时,不存在符合题意的r s t ,,.综上,存在1r =,2s =,3t =,使得r s t ,,与r s t a a a ,,同时成等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内 作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)证:连接OA ,因为OD AB ⊥,OA OB =,所以12BOD AOD AOB ∠=∠=∠, 又12ACB AOB ∠=∠,所以ACB DOB ∠=∠, 又因为180BOP DOP ∠=-∠ ,180QCP ACB ∠=-∠,所以BOP QCP ∠=∠,所以B ,O ,C ,Q 四点共圆,所以OBP CQP ∠=∠. B .[选修4—2:矩阵与变换](本小题满分10分) 解:由题意,3=A αα,即2113411a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以2343a b +=⎧⎨+=⎩,,解得11a b ==-,,所以1214⎡⎤=⎢⎥-⎣⎦A . 设l 上一点()P x y ,在A 的作用下得到直线l '上一点()P x y ''',, 则1214x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,即24x x y y x y '=+⎧⎨'=-+⎩,, 所以1(2)1()6x x y y x y ⎧''=-⎪⎨⎪''=+⎩,,代入直线:230l x y --=,得75180x y ''--=, 即直线l '的方程为75180x y --=. C .[选修4—4:坐标系与参数方程](本小题满分10分) 解:由()πcos 2ρθ-=cos sin 2θθ=, 所以直线l直角坐标方程为0x y +-=. 由4sin 2cos ρθθ=-,得24sin 2cos ρρθρθ=-, 所以圆C 的直角坐标方程为22240x y x y ++-=,即()()22125x y ++-=. …… 8分所以圆心到直线的距离2d ==<所以直线l 与圆C 相交. D .[选修4—5:不等式选讲](本小题满分10分)解:设()|3||21|f t t t =-++,即13221()432323t t f t t t t t ⎧-+<-⎪⎪⎪=+-⎨⎪->⎪⎪⎩,,,≤≤,,,所以()f t 的最小值为72,所以7|21||2|2x x -++≤.当2x <-时,不等式即为7(21)(2)2x x ---+≤,解得32x -≥,矛盾;当122x -≤≤时,不等式即为7(21)(2)2x x --++≤,解得12x -≥,所以1122x -≤≤;当12x >时,不等式即为7(21)(2)2x x -++≤,解得56x ≤,所以1526x <≤. 综上,实数x 的取值范围是1526x -≤≤.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时 应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)由已知得,甲中奖的概率为23,乙中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为C ,则事件C 的对立事件为“X =5”. 因为P (X =5)=23P 0,所以P (C )=1-P (X =5)=1-23P 0=79,所以P 0=13.(2)设甲、乙都选择方案A 抽奖的中奖次数为X 1,都选择方案B 抽奖的中奖次数 为X 2,则这两人选择方案A 抽奖累计得分的均值为E (2X 1), 选择方案B 抽奖累计得分的均值为E (3X 2).由已知可得,X 1~B (2,23),X 2~B (2,P 0),所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0.若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49,若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1,若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案A 进行抽奖时,累计得分的均值较大;当49<P 0<1时,他们都选择方案B 进行抽奖时,累计得分的均值较大; 当P 0=49时,他们都选择方案A 或都选择方案B 进行抽奖时,累计得分的均值相等.23.(本小题满分10分)解:(1)在△ABC 中,1AB =,2BC AD ==,π3ABC ∠=,则AC =222AB AC BC +=,即90BAC ∠= .因为四边形ACEF 为矩形,所以FA AC ⊥,因为平面ACEF ⊥平面ABCD ,平面ACEF ABCD AC =ACEF ,所以FA ⊥平面ABCD .建立如图所示的空间直角坐标系,则(0,0,0)A ,(1,0,0)B,C ,(D -E ,(0,0,1)F ,当12λ=时,12EM EF =,所以M .所以(BM =- ,(1,0,1)DE = ,所以(1,0,1)(0BM DE ⋅=⋅-=,所以BM DE ⊥ ,即异面直线DE 与BM 所成角的大小为90 . (2)平面ECD 的一个法向量1(0,1,0)=n , 设000(,,)M x y z ,由000(0,,1)(0,,0)(EM x y z λ===-,得0000)1x y z λ=⎧⎪=-⎨⎪=⎩,,,即),1)M λ-,所以(1),1)BM λ--=,(BC =-. 设平面MBC 的法向量2(,,)x y z =n ,因为22,,BC BM ⎧⊥⎪⎨⊥⎪⎩ n n即0,)0,x x y z λ⎧-=⎪⎨--+=⎪⎩ 取1y =,则x =z ,所以平面MBC的一个法向量2)=n , 因为π02θ<≤,所以1212cos θ⋅==⋅n n n n .因为01λ≤≤,所以1cos 2θ⎤∈⎥⎣⎦,.。

江西省南昌市2018届高三第三次文科数学模拟试题(有解析)(精品资料).doc

【最新整理,下载后即可编辑】江西省南昌市第三次模拟测试卷文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,若,则()A. B. C. D.【答案】D【解析】所以于是所以。

故选D2. 已知,是虚数单位,若,,则为()A. 或B.C.D. 不存在的实数【答案】A详解:由题得,故,故选A.点睛:考查共轭复数的定义和复数的四则运算,属于基础题.3. “”是“关于的方程有解”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:先求出得,而s有解可得即可.详解:由题得得,s有解可得,故可得“”是“关于的方程有解”的充分不必要条件,故选A.点睛:考查逻辑关系,能正确求解前后的结论,然后根据定义判断是解题关键,属于基础题.4. 已知函数,那么函数的值域为()A. B. C. D.【答案】B【解析】分析:先求出分段函数的每段所在范围的值域,然后两段值域求并集即可.详解:的值域为,y=的值域为:故函数的值域为,选B点睛:考查分段函数的值域求法,明白先求出分段函数的每段所在范围的值域,然后两段值域求并集是关键,属于基础题.5. 在平面直角坐标系中,已知双曲线与双曲线有公共的渐近线,且经过点,则双曲线的焦距为()A. B. C. D.【答案】D【解析】分析:双曲线C与双曲线x2−=1有公共的渐近线,因此设本题中的双曲线C的方程x2−=λ,再代入点P的坐标即可得到双曲线C的方程.然后求解焦距即可.详解:双曲线C与双曲线x2−=1有公共的渐近线,设本题中的双曲线C的方程x2−=λ,因为经过点,所以4-1=λ,解之得λ=3,故双曲线方程为故焦距为:,选D.点睛:本题给出与已知双曲线共渐近线的双曲线经过某个已知点,求该双曲线的方程,着重考查了双曲线的标准方程与简单几何性质,属于基本知识的考查.6. 执行如图所示的程序框图,若输出的,则判断框内应填入的条件是()A. B. C. D.【答案】A【解析】S=0,k=1,k=2,S=2,否;k=3,S=7,否;k=4,S=18,否;k=5,S=41,否;k=6,S=88,是.所以条件为k>5,故选B.7. 已知,则的大小关系为()A. B. C. D.【答案】D【解析】分析:可以先比较同底的对数大小,再结合中间值1,进行比较即可. 详解:,故,选D.点睛:考查对数函数的基本性质和运算公式,比较大小通常先比较同底的然后借助中间值判断不同底的即可.属于基础题.8. 在平面直角坐标系中,为坐标原点,点,则外接圆的半径为()A. B. C. D.【答案】A【解析】分析:求出线段OP,OQ的中垂线所在直线方程,联立方程求得圆心坐标,即可求得则△POQ外接圆的半径.详解::∵k OP=3,k OQ=-1,线段OP,OQ的中点分别为,∴线段OP,OQ的中垂线所在直线方程分别为联立方程可得圆心坐标,所以半径为,故选A.点睛:本题考查了三角形外心的求解,属于中档题.9. 将函数的图象上所有点的横坐标压缩为原来的,纵坐标保持不变,得到图象,若,且,则的最大值为()A. B. C. D.【答案】C【解析】分析:先得出变化后的表达式然后若,且,则取到两次最大值即可得出结论.详解:由题得,若,且,则取到两次最大值,令,要使,最大,故令k=1,k=-2即可,故的最大值为,选C点睛:考查三角函数的伸缩变化和最值,明白取到两次最大值,是解题关键.10. 某几何的三视图如图所示,其中主视图由矩形和等腰直角三角形组成,左视图由半个圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为()A. B. C. D.【答案】A【解析】由三视图知几何体的上半部分是半圆柱,圆柱底面半径为1,高为2,其表面积为:,下半部分为正四棱锥,底面棱长为2,斜高为,其表面积:,所以该几何体的表面积为本题选择A选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.11. 为培养学生分组合作能力,现将某班分成三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在组中的那位的成绩与甲不一样,在组中的那位的成绩比丙低,在组中的那位成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是()A. 甲、丙、乙 B. 乙、甲、丙 C. 乙、丙、甲 D. 丙、乙、甲【答案】C【解析】因为在组中的那位的成绩与甲不一样,在组中的那位的成绩比乙低.所以甲、乙都不在B组,所以丙在B组. 假设甲在A组,乙在C组,由题得甲、乙、丙三人按数学建模考试成绩由高到低排序是乙、丙、甲.假设甲在C组,乙在A组,由题得矛盾,所以排序正确的是乙、丙、甲.故选C.12. 已知双曲线的左、右焦点分别为,以为圆心的圆与双曲线在第一象限交于点,直线恰与圆相切于点,与双曲线左支交于点,且,则双曲线的离心率为()A. B. C. D.【答案】B【解析】设,在三角形中,在直角三角形中,故选B.点睛:本题的关键是寻找关于离心率的方程,一个方程是中的勾股定理,另外一个是直角三角形中勾股定理,把两个方程结合起来就能得到离心率的方程.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 中国数学家刘徽在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.意思是“圆内接正多边形的边数无限增多的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的概率____.【答案】【解析】分析:根据几何概型的概率公式分别求出正六边形的面积和圆的面积即可详解:设圆心为O,圆的半径为1,则正六边形的面积S=则对应的概率P=,故答案为.点睛:本题主要考查几何概型的概率的计算,根据定义求出相应的面积是解决本题的关键.14. 已知函数的图象在点处的切线过点,则__________.【答案】1【解析】分析:求得函数f(x)的导数,可得切线的斜率,由两点的斜率公式,解方程可得a的值.详解:函数f(x)=e x-x2的导数为f′(x)=e x-2x,函数f(x)=e x-x2的图象在点(1,f(1))处的切线的斜率为e-2,切点为(1,e-1),由切线过点(0,a),可得:e-2=得a=1,故答案为:1.点睛:本题考查导数的几何意义,考查两点的斜率公式,以及方程思想和运算能力,属于基础题.15. 已知向量,,则在方向上的投影为__________.【答案】【解析】分析:根据向量的投影和向量的坐标运算即可求出.详解:因为向量,,∴−=(-1,-1),在方向上的投影为故答案为点睛:本题考查了向量的投影和向量的坐标运算,属于基础题请在此填写本题解析!16. 现某小型服装厂锁边车间有锁边工名,杂工名,有台电脑机,每台电脑机每天可给件衣服锁边;有台普通机,每台普通机每天可给件衣服锁边.如果一天至少有件衣服需要锁边,用电脑机每台需配锁边工名,杂工名,用普通机每台需要配锁边工名,杂工名,用电脑机给一件衣服锁边可获利元,用普通机给一件锁边可获利元,则该服装厂锁边车间一天最多可获利__________元.【答案】780【解析】分析:设每天安排电脑机和普通机各x,y台,则一天可获利z=12×8x+10×6y=96x+60y,线性约束条件,画出可行域,利用目标函数的几何意义求解即可.学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...点睛:本题考查线性规划的简单应用,考查约束条件的可行域以及目标函数的最值是解题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的各项均为正数,且.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1);(2)【解析】分析:(1)由得,解得或,又数列{a n}的各项均为正数,可得a n.(2)利用错位相减法求解即可.详解:(1)由得,所以或,又因为数列的各项均为正数,负值舍去所以.(2)由,所以①②由①-②得:所以.点睛:考查数列通项的求法和利用错位相减法求和,能正确分解因式递推式求得通项是解题关键.18. 如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.【答案】(1)见解析;(2)【解析】分析:(1)证明面面垂直可通过证明线面垂直得到,证A平面即可,(2)由已知,连接交于,作于,由等体积法:,进而可得出结论.(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,面,得面由,知四边形为平行四边形,即,而,进而又由,所以,三棱锥的体积.点睛:考查面面垂直、几何体体积,能正确分析线条关系,利用等体积法转化求体积是解题关键.19. 十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用互联网电商渠道进行销售.为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:(1)按分层抽样的方法从质量落在的蜜柚中随机抽取个,再从这个蜜柚中随机抽个,求这个蜜柚质量均小于克的概率;(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚待出售,某电商提出两种收购方案:所有蜜柚均以元/千克收购;低于克的蜜柚以元/个收购,高于或等于的以元/个收购.请你通过计算为该村选择收益最好的方案.【答案】(1);(2)见解析【解析】分析:(Ⅰ)由题得蜜柚质量在[1750,2000)和[2000,2250)的比例为2:3,应分别在质量为[1750,2000),[2000,2250)的蜜柚中各抽取2个和3个.记抽取质量在[1750,2000)的蜜柚为A1,A2,质量在[2000,2250)的蜜柚为B1,B2,B3,则从这5个蜜柚中随机抽取2个,利用列举法能求出这2个蜜柚质量均小于2000克的概率.(Ⅱ)由频率分布直方图可知,蜜柚质量在[1500,1750)的频率为0.1,蜜柚质量在[1750,2000),[2000,2250),[2500,2750),[2750,3000)的频率依次为0.1,0.15,0.4,0.2,0.05.若按A方案收购:根据题意各段蜜柚个数依次为500,500,750,2000,1000,250,求出总收益为457500(元);若按B方案收购:收益为1750×60+325080=250×20×[7×3+13×4]=365000元.方案A的收益比方案B的收益高,应该选择方案A.详解:(1)由题得蜜柚质量在和的比例为,∴应分别在质量为的蜜柚中各抽取个和个.记抽取质量在的蜜柚为,质量在的蜜柚为,则从这个蜜柚中随机抽取个的情况共有以下种:其中质量小于克的仅有这种情况,故所求概率为.(2)方案好,理由如下:由频率分布直方图可知,蜜柚质量在的频率为同理,蜜柚质量在的频率依次为若按方案收购:根据题意各段蜜柚个数依次为于是总收益为(元)若按方案收购:∵蜜柚质量低于克的个数为蜜柚质量低于克的个数为∴收益为元∴方案的收益比方案的收益高,应该选择方案.点睛:本题考查概率的求法,考查两种方案的收益的求法及应用,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20. 已知动圆过点,并与直线相切.(1)求动圆圆心的轨迹方程;(2)已知点,过点的直线交曲线于点,设直线的斜率分别为,求证:为定值,并求出此定值.【答案】(1);(2)【解析】分析:(1)(Ⅰ)由题意圆心为M的动圆M过点(1,0),且与直线x=-1相切,利用抛物线的定义,可得圆心M的轨迹是以(1,0)为焦点的抛物线;(2)先分AB斜率为0和不为0进行讨论,然后结合两点的斜率公式和韦达定理可得为定值.(1)设由得动圆圆心轨迹方程为(2)当斜率为时,直线斜率不存在(不合题意,舍去)当斜率不为时,设方程:,即设由,得,且恒成立∴∴(定值)点睛:考查抛物线的定义,直线与抛物线的综合问题,求定值问题,首先根据题意写出表达式是解题关键.21. 已知函数.(1)求函数的单调区间;(2)当时,恒成立,求的取值范围.【答案】(1)单调递减区间为,单调递增区间为;(2)【解析】分析:(1)求单调区间只需求解导函数的不等式即可;(2)对于当时,恒成立,可先分离参数,然后求出新函数的最小值即可.详解:(1)函数的定义域为,∵,∴,解得或;,解得,∴的单调递减区间为,单调递增区间为.(2)∵在恒成立∴,令,则,当时,;当时,,∴在上单调递减,在上单调递增,∴,∴.点睛:考查函数的单调区间的求法以及恒成立问题转化为最值问题求解的思维,分离参数的是解题关键,属于中档题.22. 在平面直角坐标系中,曲线的参数方程为:(为参数,)将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与,相交于两点,且,求的值.【答案】(1);(2)或【解析】试题分析:求得曲线的普通方程,然后通过变换得到曲线方程,在转化为极坐标方程在极坐标方程的基础上结合求出结果解析:(1)的普通方程为,把,代入上述方程得,,∴的方程为.令,,所以的极坐标方程为.(2)在(1)中建立的极坐标系中,直线的极坐标方程为,由得,由得.而,∴.而,∴或.23. 已知函数.(1)求不等式的解集;(2)设,证明:【答案】(1)或;(2)见解析【解析】试题分析:(1)根据绝对值定义将不等式转化为三个不等式组,分别求解集,最后求并集(2)利用分析法证明不等式:,平方作差并因式分解可得结论试题解析:(1)①当时,原不等式可化为,解得;②当时,原不等式可化为,解得,此时原不等式无解;③当时,原不等式可化为,解得.综上, .(2)因为,所以,要证,只需证,即证, 即证,即证,即证.因为,所以,所以成立,所以原不等式成立.。

2018届高三招生全国统一考试模拟数学(文)试题(三)及答案

2018年普通高等学校招生全国统一考试模拟试题文数(三)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}=06,232,x M x x N x M N ≤≤=≤⋃=则 A .(],6-∞ B .(],5-∞ C .[0,6] D .[0,5]2.已知i 为虚数单位,则20181i i =-A.1 B .2C D .123.函数()23sin cos f x x x x =+的最小正周期是A .4πB .2πC .πD .2π 4.求“方程23log log 0x x +=的解”有如下解题思路:设函数()23log log f x x x =+,则函数()()0f x +∞在,上单调递增,且()10f =,所以原方程有唯一解1x =.类比上述解题思路,方程()51134x x -+-=的解集为A .{}1B .{}2C .{}1,2D .{}35.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于20里A .3B .4C .5D . 66.已知圆锥O 的底面半径为2,高为4,若区域M 表示圆锥O 及其内部,区域N 表示圆锥O 内到底面的距离小于等于1的点组成的集合,若向区域M 中随机投一点,则所投的点落入区域N 中的概率为A .12B .716C .2764D .37647.函数sin sin 122x x y =+的部分图象大致是A .B .C .D .8.一个几何体的三视图如图所示,则该几何体的最长棱的长度为A .B .5C D .6 9.在ABC ∆中,内角A ,B ,C 所对的边分别为sin 1,,sin 2B a b c C =,若,()2213cos 2a b B BA BC -=⋅,则角C= A .6π B. 3π C. 2π D. 32ππ或 10.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点A ,点P 在抛物线上,点P 到准线l 的距离为d ,点O 关于准线l 的对称点为点B ,BP 交y 轴于点M ,若2,3BP a BM OM d ==,则实数a 的值是 A .34 B .12 C .23 D .3211.已知不等式组20,24,0,x y x y y x y m-≥⎧⎪+≤⎪⎨≥⎪⎪+≤⎩表示的平面区域为M ,若m 是整数,且平面区域M 内的整点(x ,y )恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是A .1B .2C .3D .412.已知函数()f x 的导函数为()f x ',且满足()()3212,23f x x ax bx f x '=++++ ()()4,6ln 2f x f x x x '=-≥+若恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞C .[)66ln6,++∞D . [)4ln2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.[2017·成都七中]复数25i z =+,i 是虚数单位,则z 的共轭复数的虚部是( )
A .5i
B .5i -
C .5
D .5-
【答案】D 【解析】25i z =-,所以z 的共轭复数的虚部是5-,选D .
2.[2017·成都七中] )
A B C D 【答案】B 【解析】2a = ,24593c c =+=⇒=,32
c e a ∴==,选B . 3.[2017·成都七中]已知x ,y 的取值如下表所示
从散点图分析y 与x 的线性关系,且0.95ˆy
x a =+,则a =( ) A .2.2
B .3.36
C .2.6
D .
1.95 【答案】C 【解析】2x = , 4.5y =, 4.50.952
2.6a ∴=-⨯=,选C .
4.[2017·成都七中]在等差数列{}n a 中,已知2a 与4a 是方程2680x x -+=的两个根,若42a a >,则2018a =( )
A .2018
B .2017
C .2016
D .2015 【答案】A
【解析】由题意得22a =,44a =,1d ∴=,20182201612018a a =+⨯=,选A .
5.[2017·成都七中]命题:p “e x ∀>,ln 0a x -<”为真命题的一个充分不必要条件是( )
A .1a ≤
B .1a <
C .1
a ≥
D .1a > 【答案】B
【解析】由题意得min (ln )a x <,∵e x >,∴l n 1x >,∴1a ≤,因为()(],1,1-∞⊂-∞,()(],1,1-∞≠-∞,因此一个充分不必要条件是1a <,选B .
6.[2017·成都七中]《孙子算经》中有道算术题:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”,意思是有100头鹿,若每户分一头则还有剩余,再每三户分一头则正好分完,问共有多少户人家?涉及框图如下,则输出i 的值是( )
A .77
B .7
C .75
D .74
【答案】C 的解,解得75i =,选C . 7.[2017·成都七中]如图是一个正三棱柱挖去一个圆柱得到的一个几何体的三视图,则该几何体的体积与挖去的圆柱的体积比为( )
A
1
-B
1
3
-C
D
1
+
【答案】A
【解析】正三棱柱与圆柱体积比为
)2
2
4
π
h
r h
=
,选A.
8.[2017·成都七中]有一个正方体的玩具,六个面分别标注了数字1,2,3,4,5,6,甲乙两位学生进行如下游戏:甲先抛掷一次,记下正方体朝上的数字为a,再由乙抛掷一次,朝上数字为b ,若“默切配合”,则甲、乙两人“默切配合”的概率()
A
B
C
D
【答案】D
【解析】由题意得总事件数为6636
⨯=,而满足23333216
+++++=,因此所求概率为D.9.[2017·成都七中]
实数m的取值范围是()。

相关文档
最新文档