城市轨道交通列车无线通信系统
轨道交通系统的无线通信技术研究

轨道交通系统的无线通信技术研究在当今快节奏的社会中,轨道交通系统已成为人们日常出行的重要方式之一。
从地铁、轻轨到有轨电车,这些高效、便捷的交通方式在改善城市交通拥堵、提高出行效率方面发挥着关键作用。
而在轨道交通系统的背后,无线通信技术则是保障其安全、高效运行的重要支撑。
无线通信技术在轨道交通系统中的应用十分广泛。
首先,列车与控制中心之间需要实时、稳定的通信,以确保列车的运行状态、位置等信息能够准确无误地传递给控制中心,同时控制中心的指令也能及时下达给列车。
其次,乘客在列车内也希望能够享受到稳定的网络服务,如上网、通话等。
再者,轨道交通系统中的各种设备,如信号设备、监控设备等,也需要通过无线通信技术进行数据传输和协同工作。
在众多无线通信技术中,GSMR(铁路全球移动通信系统)是一种专门为铁路通信设计的技术。
它具有良好的可靠性和稳定性,能够满足列车控制和调度等关键业务的需求。
GSMR 采用专用频段,减少了外界干扰,确保通信的安全性和保密性。
通过 GSMR,列车司机可以与调度员进行清晰、流畅的语音通信,及时获取行车指令和路况信息。
同时,列车的运行数据,如速度、位置等也可以通过 GSMR 实时传输到控制中心,为调度决策提供依据。
LTE(长期演进技术)在轨道交通系统中的应用也逐渐增多。
LTE具有更高的数据传输速率和更低的延迟,能够为乘客提供更好的网络体验。
例如,在地铁车厢内,乘客可以通过LTE 网络流畅地观看视频、浏览网页。
此外,LTE 还可以用于列车的视频监控系统,实现高清视频的实时传输,提高安全监控的效果。
除了 GSMR 和 LTE,WiFi 技术在轨道交通系统中也扮演着重要角色。
在车站、候车区域等场所,WiFi 为乘客提供了免费的网络接入服务,方便乘客查询列车时刻表、路线信息等。
同时,一些轨道交通系统还利用 WiFi 实现列车与站台之间的数据传输,如列车的故障信息、维护数据等。
然而,轨道交通系统中的无线通信技术也面临着一些挑战。
城市轨道交通通信与信号系统

3
总结
总结
1
城市轨道交通通信与信号系统是城 市轨道交通的重要组成部分,它保 障了列车的安全、高效和有序运行
通信系统采用了多种通信技术,实现 了列车与车站之间、车站与控制中心 之间、列车与列车之间的实时通信; 信号系统采用了多种信号技术,实现 了对列车的速度控制、距离控制、方
向控制等功能
2
3
未来,随着技术的不断进步和应用 需求的不断变化,城市轨道交通通 信与信号系统将会不断进行升级和
通信系统
卫星通信
卫星通信是城市轨道交通通信系 统中较为高端的方式之一。它通 过卫星进行信息的传输,具有覆 盖范围广、通信距离远、可靠性 高等优点。在城市轨道交通中, 卫星通信主要应用于控制中心和 列车之间的通信,以及控制中心 和车站之间的通信
2
信号系统Βιβλιοθήκη 信号系统01城市轨道交通信号 系统是保障列车安 全、高效运行的关
心之间、列车与列车之间的实时通
信
通信系统
无线通信
无线通信是城市轨道交通通信系统中最常用的方式之一 。它通过无线电波进行信息的传输,包括语音、数据、 图像等信息。在城市轨道交通中,无线通信主要应用于 列车和车站之间的通信,以及车站和控制中心之间的通 信
通信系统
有线通信
有线通信是城市轨道交通通信系统的另一种 常用方式。它通过有线网络进行信息的传输 ,具有较高的稳定性和可靠性。有线通信主 要应用于列车和控制中心之间的通信,以及 车站和车站之间的通信
完善
-
Simple & Creative
感谢观看 不 忘 初 心 砥 砺 前 行 THANKS
商业计划书模板
工作总结|工作汇报|工作计 划
城市轨道交通通信与信号系 统
城市轨道交通无线通信系统

无线通信是一种利用无线电波在空中传播信息的通信方式。无线电波通过 发射天线向外辐射出去,天线就是波源。无线电波中的电磁场随着时间的 变化而变化,从而把辐射的能量传播至远方。 (1) 传播方式。无线电波常见的传播方式有以下几种: ① 波导方式。当电磁波的频率在30 kHz以下(波长在10 km以上)时,大 地犹如一个导体,电磁波不能进入电离层,因此,电磁波被限制在电离层 的下层与地球表面之间的空间内传输,称为波导方式。 ② 地波方式。沿地球表面传播的无线电波称为地波(或地表波)。这种传 播方式比较稳定,受天气影响小。 ③ 天波方式。射向天空经电离层折射后又折返回地面(还可经地面再反射 回天空)的无线电波称为天波。天波可以传播到几千千米之外的地面,也 可以在地球表面和电离层之间多次反射,实现多跳传播。
城市轨道交通无线通信系统由专用无线、消防无线和公安无线3部分组成。专 用无线是高速行驶的城市轨道交通列车与行车调度系统之间唯一的通信方式, 承担着保障城市轨道交通列车正常运行、城市轨道交通系统安全运营及乘客生 命的重要责任。消防无线是消防队在火场救火抢险的主要通信手段,城市轨道 交通内部消防无线信号的覆盖充分满足了消防队在城市轨道交通中救火抢险的 需要。公安无线为公安部门在城市轨道交通中的值勤、巡逻及突发事件的处理 提供了通信保障。 最简单的无线通信系统由一个发射机和一个接收机配以麦克风、扬声器和天线 组成。语音通过麦克风转换成电信号,发射机和天线将话音信号转换成相应的 高频电磁波,并发射出去;接收端通过天线、接收机和扬声器完成发送端的反 向变换,如图4-3所示。
④ 空间波方式。空间波主要指直射波和反射波。在空间中按直线传播的无线电波, 称为直射波。当无线电波在传播过程中遇到两种不同介质的光滑界面时,其还会 像光一样发生镜面反射,称为反射波。 ⑤ 绕射方式。由于地球表面是个弯曲的球面,因此无线电波的传播距离受到地球 曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。 ⑥ 对流层散射方式。地球大气层中的对流层,其物理特性的不规则性或不连续性 会对无线电波起到散射作用。利用对流层散射作用进行无线电波的传播,称为对 流层散射方式。 (2) 电磁波的波长。对于在空间中传播的电磁波,距离最近的电场(磁场)强 度方向相同,其量值最大为两点之间的距离,即电磁波的波长λ,如图4-2所示。
浅谈城市轨道交通中无线通信系统的应用(定稿版))

浅谈城市轨道交通中无线通信系统的应用清远磁浮交通有限公司通信工程师王瑾摘要:无线通信系统主要用于解决OCC(控制中心)行车调度员、段场信号调度员、车站值班员与列车司机等移动用户之间的通话以及信息传递。
为了提高城市轨道交通运行效率、保障行车安全及应对紧急事件的必要传输工具,在城市轨道交通中无线通信系统可以通过不同的技术来实现信息数据的传递。
本文主要将简要陈述城市轨道交通中的TETRA数字集群系统(简称“TETRA系统”)和LTE技术的应用。
关键词:城市轨道交通;无线通信系统; TETRA系统; LTE技术什么是无线通信系统?无线通信(Wireless c ommunication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。
目前,城市轨道交通中无线通信系统主要采用TETRA数字集群系统和LTE技术。
一、TETRA数字集群系统在城市轨道交通中的应用在城市轨道交通中TETRA系统是基于数字时分多址(TDMA)技术的专业移动通信系统,是欧洲电信标准协会( European Telecommunications Standards Institute, ETSI)设计、制定的开放性通信系统,便于欧洲各国集群用户的使用,初步形成无线数字集群通信系统的标准化。
目前,随着TETRA数字集群系统技术在城市轨道交通广泛应用,技术十分成熟。
TETRA 系统可以满足各种不同的系统配置和对信号覆盖的需求,即可以实现单站和多站的配置,可以在25KHz的带宽内提供4个通信信道;根据工业和信息化部文件要求,TETRA系统工作频段采用350MH和800MHz。
在城市轨道交通中TETRA系统频率的配置原则:(1)降低和减少各种类型的频率干扰和提高频率资源的利用率。
(2)应考虑如何降低同频干扰、邻道干扰、互调干扰等,特别是三阶互调干扰。
(3)应有效利用包括射频的窄带调制、话音的压缩编码、信道的时分多址复用、多信道共用(集群)、频率的复用等。
浅述城市轨道交通无线通信系统技术

浅述城市轨道交通无线通信系统技术我国“数字集群移动通信系统体制”行业推荐性标准:TETRA和iDEN两种体制各有优、缺点。
TETRA更适合于专用调度通信网,iDEN则更适合于运营共网,所以在地铁等轨道交通行业多采用TETRA 数字集群通信系统作为城市轨道交通指挥调度系统。
一、TETRA数字集群移动通信系统的特点TETRA是泛欧集群无线接入系统的缩写,是一种用于专网(PMRS)和公网(PLMR)的全新开放式数字集群标准。
提供集群、非集群通信,支持话音、电路数据、短数据信息、分组数据等业务的直接模式(移动台对移动台)通信;支持多种附加业务,其中大部分为TETRA所独有;采用时分多址技术,在25kHz 的频带中可以同时传4路话音;系统具有兼容性好、开放性好、频谱利用率高和保密功能强等优点,是目前国际上较为先进、参与生产厂商较多的数字集群标准。
TETRA数字集群移动通信系统主要具有下列优点:(一)标准为公开标准,具有广泛的支持性;(二)TETRA具有灵活多变的直通方式移动台既可以实现常规的直通方式,又可以工作在既入网又直通的双模式状态下,还可以作为网关起到中继作用;(三)可适应各种业务要求TETRA数字集群同时可传数据和语音。
二、4G移动通信技术4G技术是对当前3G技术的一次全新的革新和发展,它融合了3G通信技术的诸多优点,同时提供了更为高速的信息传输速度,为用户的多媒体业务和可视化通信提供了可能。
4G移动通信采用了如下几种新的通信技术:(一)OFDM正交频分复用技术。
(二)智能天线和多入多出天线技术。
(三)软件无线电技术(四)源于IP的核心网技术三、4G移动通信系统的特点4G通信技术并没有脱离以前的通信技术,4G通信技术的优势体现在:(一)4G移动通信技术的信息传输速率更快,这使得可视通信成为可能。
(二)移动用户下载的速度更快,4G 移动通信技术的速率已经超出了100Mbit/s,这个速率是当前移动电话数据传输速率的1 万倍,是3G 移动电话速率的50倍。
轨道交通中的无线技术原理

轨道交通中的无线技术原理
轨道交通中的无线技术主要有以下几种原理:
1. 无线通信:轨道交通中的无线通信技术主要采用无线电波进行数据传输,其中包括无线电对讲、车载通信、列车间通信等。
无线通信技术使用的原理包括调频调制和解调技术、频分多路复用、碰撞避免技术等,以保证数据在有限的频谱资源下进行高效的传输。
2. GPS定位:轨道交通中的无线技术还使用了全球定位系统(GPS)来实现列车的准确定位。
GPS系统通过卫星信号的接收和解码,能够计算出列车的位置和速度等信息,以便做出相关的控制和调度。
3. 无线信号传输:在轨道交通中,列车会使用电磁波来进行信号的传输。
无线信号传输技术主要采用微波通信、红外线通信等无线电波进行信号传输。
这种技术可以实现信号的快速传输,并且能够适应不同的环境和距离要求。
4. 无线传感器网络:轨道交通中的无线传感器网络技术主要用于监测列车运行状态和环境参数。
无线传感器网络通过分布在轨道上的传感器节点采集列车的数据,并通过无线通信技术将数据传输到监控中心,以实时监测列车的状态。
总的来说,轨道交通中的无线技术主要利用无线通信、GPS定位、无线信号传输和无线传感器网络等原理,实现列车之间、列车与调度中心之间的信息传输和
数据交换,从而实现列车的调度、安全控制和运行监测等功能。
城市轨道交通车地无线专用通信系统5G技术应用探讨

城市轨道交通车地无线专用通信系统 5G技术应用探讨摘要:城市轨道交通作为一个大型综合系统,其信息化、智慧化建设是一项浩大的工程。
轨道交通通信系统主要分为专用通信、民用通信以及公安通信系统。
其中,专用通信系统包括电源系统、传输系统、视频监控系统、无线系统、PIS系统、集中告警系统等十几个系统,而无线系统作为轨道交通专用通信系统三大基础系统之一,主要服务于地铁生产网的运维人员日常工作的沟通与交流,通过组呼、单呼、派接呼、列车广播、转组、功能号呼叫、列车ATS位置显示等定制化的专网业务功能,为中心调度员对全线列车司机、车站值班员等各部门各专业人员的统一调度提供可靠有效的无线通信手段,满足地铁运营管理的需要。
关键词:城市轨道交通;车地无线专用通信系统;5G技术引言现阶段,5G通信技术在城市轨道交通领域中主要应用在车地通信系统内,用于提升列车与地面设备的通信效果,拓展车地通信容量,实现列车与地面通信间的双向数据传输,确保地面控制中心可实时掌握列车位置信息。
稳定可靠的通信技术可提升城市轨道交通运营安全性,且可提高城市轨道交通领域自动化程度,确保列车工作效率。
1 5G传输业务需求分析1)列车视频数据转存:铁总建设[2016]18号《中国铁路总公司关于发布设计时速200km及以上铁路区间线路视频监控设置有关补充标准的通知》要求采用高清化监控,《中华人民共和国反恐怖主义法》规定车载视频录像存储需由30天增加到90天,而目前列车实际存储不能达到以上要求。
目前每列列车的车载摄像机有42个,每路的传输速率为2Mbit/s,需硬盘的存储容量为11×6T。
在列车的震动环境下,机械硬盘容易损坏,且人工拷取耗时耗力。
采用5G无线通信技术可将视频数据转储到地面,读取便捷;存储设备大部分设置在机房内,减少了车载存储设备的数量;机房环境比车载环境稳定,因此机械硬盘使用寿命更长,不易损坏。
2)车辆运行状态数据转存:每天每列列车的监测数据量大约为2.3GB,含受电弓网监测数据和车辆相关记录数据。
城市轨道交通集群无线通信系统技术与应用探究

城市轨道交通集群无线通信系统技术与应用探究随着城市化进程的不断推进,城市轨道交通系统已经成为城市公共交通的重要组成部分,随之而来的是大量的乘客和数据流量。
为了保证轨道交通系统的安全、高效、便捷的运营,无线通信技术的应用显得尤为重要。
城市轨道交通集群无线通信系统是一种针对城市轨道交通场景特点设计的系统,主要解决轨道交通系统中大量数据和乘客信息的传输和处理问题。
它采用无线通信技术,使得整个系统在任何时间、任何地点都能够实时响应和处理数据。
在城市轨道交通系统的实际应用中,无线通信技术可以帮助解决以下几个难点:一、无线通信技术帮助提高轨道交通系统的运营效率通过无线通信技术,轨道交通系统可以实现车站、列车、信号、监控等多个系统之间的信息交互和协调,从而大大提高了轨道交通系统的运营效率。
例如,当列车出现故障时,车站可以通过无线通信与列车通讯,并及时进行人员疏散和转移,从而避免人员伤害和系统延误。
此外,无线通信技术还可以实现列车位置和速度的实时监测,使得轨道交通系统在高峰期和紧急情况下更加精准地掌控车流。
城市轨道交通系统是一个高度安全性的系统,任何故障或失误都可能导致严重的后果。
无线通信技术可以实现信号灯、控制中心、车辆等多个系统之间的通讯,从而提高了系统的安全性。
例如,当车辆发生失控或者突发故障时,系统自动发送信号到控制中心,通过无线通信快速地处理问题,从而避免了安全事故的发生。
随着科技的发展,轨道交通系统也逐渐进入智能化时代。
无线通信技术可以提供更多的智能服务,例如乘客自主选座、智能路线规划、智能票务系统等等。
这些服务将有助于提高轨道交通系统的乘客满意度和服务质量,进一步增强轨道交通系统的竞争力。
总之,城市轨道交通集群无线通信系统技术是保障轨道交通系统安全、高效、便捷运营的核心技术之一。
未来,随着无线通信技术的不断发展和应用,城市轨道交通系统中的无线通信技术必将得到更加广泛的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (5)第1章绪论 (6)1.1选题的背景和意义 (6)1.2本文的主要内容 (6)第2章DCS数据传输系统 (7)2.1数据传输系统的组成 (7)2.1.1有线网络 (7)2.1.2无线网络 (7)2.1.3网管系统 (7)第3章数据传输系统的功能 (9)3.1DCS有线网络功能 (9)3.2DCS无线网络功能 (9)3.3安全性 (10)第4章数据传输系统原理 (12)4.1 DCS有线系统原理 (12)4.2DCS无线网络系统原理 (13)4.3DCS无线系统冗余结构 (15)第5章列车无线系统的应用 (20)5.1列车自动控制系统(ATC) (20)5.1.1列车自动驾驶系统(ATO) (20)5.1.2列车自动防护系统(ATP) (20)5.1.3列车自动监督系统(ATS) (21)结论 (22)致谢 (23)参考文献 (24)摘要随着科学技术的发展和社会文明的进步,城市轨道交通已经逐渐在各个城市中兴起,并逐渐普及。
从刚开始的采用国外的信号系统设备系统CTC(西门子),到如今的采用国产化设备信号系统CBTC(卡斯柯),代表着我国的城市轨道交通技术迎来了飞速发展、CBTC系统是列车基于无线通信下的列车自动控制系统,该系统不同与之前的轨道电路列车控制系统,CBTC系统的无线通信利用车地之间的通信,来确定列车的位置,并提供给列车推荐速度、进路信息、发车时间等。
其安全、高效、便捷的优点已经远远超过轨道电路。
CBTC系统对改善行车安全,提高运营效率、减少故障发生等发面有了重大的提升。
关键词:无线通信自动控制行车安全第1章绪论1.1选题的背景和意义伴随着科学技术的发展,列车运行自动化程度不断提高,列车自动控制已经成为未来轨道交通进步的趋势,其中列车自动控制又离不开列车无线通信系统,列车与轨旁设备的通信、列车与ATS的通信、轨旁与ATS的通信等,通过各个设备间不间断的保持通信来保证列车的安全运行。
本文对城市轨道交通无线通信系统展开学习讨论,对无线通信系统设备的组成和无线系统在城市轨道交通中的应用展开介绍。
1.2本文的主要内容CBTC系统(基于无线的列车自动控制系统)包含ATS系统、MSS系统、连锁系统、ATP/ATO系统、计轴系统、电源系统、DCS系统。
本文主要针对DCS系统对无线系统进行介绍。
图1-1 CBTC系统第2章 DCS数据传输系统DCS数据通信系统包含大量的CBTC数据,CBTC数据在DCS系统内进行数据交互、信息计算,并有如下特点:1.采用专用的接口设备COTS和符合国家规定的标准协议;2.DCS系统对于CBTC内的各个子系统数据透明可用;3.DCS为系统内的数据交互提供以太网接口;4.DCS内有多个无线传输方案;5.DCS系统内有有线以太网传输,便于后期的拓展和维护;6.网络设备采用工业级别,具有抗震、防冲击、防电磁干扰等优点,可用于不同环境;7.CBTC数据传输的稳定高效可靠;8.列车与地面间的通信符合国家标准协议。
2.1数据传输系统的组成按照通信方式,DCS子系统由以下三部分组成:1.有线网络部分,即骨干网,包括:交换机、中继器(信号放大作用,部分列车过长时使用)、光电模块转换器。
2.无线网络部分,包括:轨旁无线网络:定向天线,轨旁AP天线,功率放大器等车载无线网络:由车载无线调制解调器及天线组成。
3.网管系统部分,即:IP网络管理系统。
2.1.1有线网络DCS有线网络由车载交换机和光电模块转换器组成。
2.1.2无线网络DCS无线网络主要的作用是用于车载和轨旁CBTC系统之间的数据交换,他们的设备组成主要是轨旁AP、轨旁天线、车载的无线天线,和车载的无线调制解调器构成。
2.1.3网管系统在控制中心、维修中心设有DCS网络管理综合工作室,用来管理整条线路的以太网设备的网络。
以太网设备包括:车载猫、交换机、AP。
网管设备管理容量很大,足以支撑信号系统的容量,并未网络系统的升级留有余量。
第3章数据传输系统的功能DCS子系统为的信息传输在安全相关和非安全相关都建立了独立、透明、稳定的数据传输通道,DCS系统有线部分和无线部分分别采用不同的符合国家规定的标准协议,用来保证各个信号系统之间数据高效、稳定的信息交互,其传输的容量足够满足信号系统各个设备之间的传输要求,并为后期功能拓展留有余量。
3.1 DCS有线网络功能有线网络子系统:信号系统的信息交互平台,将车厂、车站、OCC(控制中心)、停车场连接起来。
DCS有线网络的功能介绍:1骨干网交换机配置在设备集中站,整条线路的骨干网交换机构成两个独立的环网结构。
优点是高冗余、高宽带、高可靠性;2信号设备、列车监控和MSS网络与骨干网交换机连接的连接,划分VLAN进行网络隔离;3在设备集中站地区配置数量不等的光电交换机(2台或者4台按实际情况来定);4用于接入远端无线接入点;5在设备非设备集中站,通过光电转换模块,将设备与以太网交换机进行连接。
环网结构是采用的工业以太网设备,并在集中站配置两台可靠的骨干网交换机,假如一台骨干网交换机发生故障,另一台骨干网交换机便会冗余,用来避免骨干网交换机故障时设备集中站发生大面积设备瘫痪问题,提高了设备运行的稳定性,保障了行车安全。
同时,在设备集中站配置数量不等的光交换机(2台或者4台),通过接口与轨旁设备相连接;6 非设备集中站的ATS各个设备可以通过独立的光电线缆由光电转换模块接入到设备集中站的ATS网络中;3.2 DCS无线网络功能DCS无线系统主要功能:为列车CC和轨旁系统提供双向信息交互和命令传输平台。
主要特征如下:1.通过轨旁AP点以及车载DCS的冗余结构,为列车无线覆盖提供保证;2.对列车移动的各个信息提供可查看的管理。
3.同类寻址区域。
列车无线系统可以提供可靠的车-地通信数据传输,当两个车在2个相邻的AP之间运行时当轨旁的任意一个AP发生故障时候,列车和轨旁就会通过另一个AP进行冗余通信,同理,当车载的任意一端无线设备发生故障时,列车另一端的设备也会冗余,并与轨旁设备进行通信。
冗余的无线网络间通过服务识别码SSID(Service Set Identifier)来进行区分,SSID就作为每个无线网络的网络名。
每个无线基站的接入点实现以下功能:1.产生周期性的识别消息,其包含无线网络的SSID、自身的MAC地址以及最大传输速率等附加信息;2.接入点识别具有正确注册密钥的车载MODEM并建立联系。
每个车载MODEM完成的功能:3.寻找符合SSID标识的无线网络。
车载MODEM存储两组SSID标识,主用SSID和备用SSID。
含有主用SSID标识的无线网络优先被接入,在没有主用SSID标识网络的情况下接入含有备用SSID标识的无线网络;4.与第一个含有主用或备用SSID的无线网络相关的接入点进行授权和握手;5.从无线接口部分接收含有IP包的IEEE802.11g的数据包,并通过以太网接口将其中每个有效的IEEE802.3的IP包发送给车载计算机。
如果IP包无法送达目的地,则返回一个错误消息给源地址;6.从以太网接口部分(IEEE802.3)接收信息帧,提取有效的IP包通过无线接口发送给轨旁计算机。
如果IP包无法送达目的地则返回一个错误信息给源地址;7.列车从一个AP的覆盖区域进入到下一个AP覆盖区域的时候,通信不会中断,依旧保持列车无线通信;8.当与当前无线网络失去联系时,能及时寻找另一个无线网络。
3.3安全性信号系统分为安全相关层和非安全相关层图3-1 采用开放式传输系统的信号系统结构在DCS子系统中,无线通讯部分属于开放式传输系统。
可应付如下威胁1.重复:由于黑客攻击或硬件故障导致接收到重复的报文;2.删除:因黑客攻击引起的的报文删除,例如紧急停车信息;3.插入:因黑客或被授权的第三方无意地插入其它报文;4.重排序:由于黑客攻击或硬件故障导致报文的次序发生改变;5.损坏:由于黑客攻击报文被改变为其它形式上正确的报文;6.延时:由于正常通信造成的传输系统过载或由黑客生成伪装报文,以致于服务延时;7.伪装:黑客或硬件故障导致非法信息来源伪装成真实的信息来源。
关于安全需求与保密性需求,按以下原则进行区分:8.对硬件故障或大多数普通随机失效进行防护是安全防护需求;9.对授权或未授权人员,无意或恶意的行为进行防护是保密性需求。
保密性防护包含两种类型的DCS设备:1.以太网交换机;2.无线接入点和车载无线调制解调器。
对于以上设备,需输入指定的用户名和密码后才能接入。
第4章 数据传输系统原理4.1 DCS 有线系统原理4.1.1 传输原理DCS 用的以太网交换机组成两个冗余的环网,选用的骨干网通信带宽级别为2*1Gbps ,网络配置时留有一定余量以方便将来拓展功能。
对于各种不同设备所需要的宽带需要,骨干网络为不同的设备划分了不同的宽带数据传输数据,不同的VLAN 之间完全独立隔离,用来保证数据之间互不干扰高效传输。
main Station N main Station 1main Station 2图4-1 骨干网络的VLAN 宽带分配在环网上面配置了如下的应用:1.SIG 网络(含冗余功能):如图4-1红网和篮网的通信宽带各300Mbps ,主要用于传输连锁信息、ATO/ATP 信息等2.ATS 网 络(含冗余功能) :如图4-1深灰和浅灰网通信带宽各400Mbps ,主要用于传输列车监控信息;3.MSS 网络(无冗余功能):采用的是100Mbps 带宽,主要用于传输MSS 的先关信息。
4.1.2自愈原理1) 设备冗余冗余网络完全按双套设备配置,正常情况下两个环形网络互为冗余,提高了系统可靠性。
每个冗余的信号设备连接至两个交换机。
设备传输的信息在设备适用上面来说是重复发送的,设备冗余无热备和冷备的说法,都是两个网络同时候工作。
当环形网络上的车辆段或者某一车站的一个交换机故障时,影响到的也仅仅是车辆段或者一个车站的网络通信,并不会影响其他地方。
当环网上任一个网络单点故障不影响其他网络节点和另一个网络的正常通信;任意一条网络出现故障不会导致另一网络功能不可用,会冗余保证设备运行的安全性。
2)HiPER-Ring为提高设备的可用性,利用自身的冗余结构,网络进行了HiPER-Ring的配置协议设置,通过该设置,可以保证在50ms内完成自身的再次配置,将数据信息传输到另一个可通过的节点位置。
在设备集中站设置两台或者两台以上的光电交换机;光接口的交换与用于连接DCS无线接入点,电接口的交换机用于连接本地的设备和非集中站设备的远程接入;SIG网络、ATS网络和MSS网络公用电接口的交换机,数据信息通过VLAN互相隔离;无骨干网的非设备集中站,骨干网交换机的连接ATS由光电模块转换器完成连接;在控制中心由三层交换机的配置,信号设备系统与其他系统之间的通信,通过设置网络管理来进行有效防护。