高中物理电磁学计算题举例与分析
高考物理电磁学计算题(二)含答案与解析

高考物理电磁学计算题(二)组卷老师:莫老师一.计算题(共50小题)1.如图所示,足够长的粗糙绝缘斜面与水平面成θ=37°角放置,在斜面和水平面上放置两平行金属导轨,导轨垂直于斜面与水平面的交界线,导轨间距为L=5m,导轨的电阻忽略不计,间距均为5m的虚线aa'、bb'和cc'与交界线平行,在aa'、cc'和导轨围成的区域有垂直斜面向上的有界匀强磁场,磁感应强度大小为0.2T.现有两质量都为m=1kg的导体棒MN、PQ,导轨间金属棒电阻都为R=1Ω,MN、PQ间用绝缘细线按如图所示方式连接,让PQ、MN都与交界线平行,MN 棒到cc'间距为s=9m,PQ棒到交界线距离为14m,由静止释放MN棒,MN棒穿过aa'bb'区间时,PQ未进入到磁场区,MN棒恰好能匀速穿过aa'bb'区域.已知MN棒光滑,PQ棒与接触面间的动摩擦因数为μ=0.2,设斜面与平面转角圆滑,导体棒PQ经过转角时,速度大小不变且转后速度方向紧贴斜面.已知重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)MN棒刚进入磁场区域时,受到安培力的大小;(2)MN棒刚进入磁场区域时,导体棒上的总功率;(3)MN棒穿过aa'bb'区域过程,PQ棒下滑的距离(结果保留3位有效数字).2.如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力。
高考物理电磁学计算题(十四)含答案与解析

高考物理电磁学计算题(十四)组卷老师评卷人得分一.计算题(共50小题)1.如图是测定带电粒子比荷的一种装置.图中点划线PQ是装置的轴线,A是粒子源,某一带电粒子(不计重力)自小孔飞出,经电场加速后沿轴线PQ进入装置C;装置C中有一对平行金属板,板间存在正交的电磁场,已知磁场的磁感应强度为B1,两极板间距为d,极板间的电势差为U;装置D是一半径为r、磁感应强度为B2、圆心在PQ上的圆形匀强磁场区域.若某带电粒子(不计重力)经电场加速后,恰好沿轴线PQ直线通过装置C,并沿轴线PQ方向进入装置D,经D中的磁场发生偏转,最后从圆形区域边界上的G点射出,已知G 点到轴线PQ的距离为r.求:(1)粒子离开装置C的速度大小;(2)粒子的比荷.2.如图电路中,电源的电动势E=3V,内阻r=1Ω,电阻R1=2Ω,R2=R4=1Ω,R3=8Ω,R5=5Ω,电容器的电容C=100μF,求闭合电键K后,通过电阻R3的总电量.3.丁肇中领导的反物质与暗物质太空探测计划(AMS )是人类探索世界的又一次飞跃.在该研究项目中将实验主要装置阿尔法磁谱仪安置于国际空间站.通过对粒子径迹的测量,间接研究粒子的性质.现对装置中的核心部件(桶状永磁体)进行讨论,如图(甲)所示,设桶状永磁体内分布有沿y轴正方向的匀强磁场,磁感应强度大小为B,而桶外几乎无磁场.内桶半径为R,桶长足够长.有一质量为m、电量为+e的反电子从xoy平面(z轴沿桶向下)打入桶中,忽略地磁场与各类摩擦影响,不计各粒子间相互作用.(1)若反电子垂直于xoy平面从O点打入桶中,反电子所受洛仑兹力的方向;(2)若从O点打入的反电子方向在xoz平面内且与z轴成α角,如图(乙)所示,要使反电子能打在桶壁,则反电子的速率;(3)当打到桶壁的反电子垂直于桶壁方向的速度大于速度v0(已知)时,才能被明显地观测到,如图(丙)所示,有一反电子垂直于xoy平面,从x轴上的P 点打入,最后打在桶壁上的Q点(图中未画出).P点在x轴上的坐标值为b﹣R,Q点在z轴上的坐标值为s,若Q点为明显的观测点,则入射速度v以及b、s 与v0之间应满足什么关系?4.如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°.在第III象限垂直于桌面放置两块相互平行的平板c1、c2,两板间距为d1=0.6m,板间有竖直向上的匀强磁场,两板右端在y轴上,板c1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为L=0.72m.在第Ⅳ象限垂直于x轴放置一块平行y 轴且沿y轴负向足够长的竖直平板c3,平板c3在x轴上垂足为Q,垂足Q与原点O相距d2=0.18m.现将一带负电的小球从桌面上的P点以初速度v0=42m/s垂直于电场方向射出,刚好垂直于x轴穿过c1板上的M孔,进人磁场区域.已知小球可视为质点,小球的比荷qm=20C/kg,P点与小孔M在垂直于电场方向上的距离为s=210m,不考虑空气阻力.求:(1)求M点速度大小?(2)求匀强电场的场强大小;(3)要使带电小球无碰撞地穿出磁场并打到平板c3上,求磁感应强度的取值范围.5.如图所示,在绝缘水平面上固定有两根导轨,分别为直导轨(y=﹣2L,x≥0)和正弦曲线形导轨(y=Lsin,x≥0).一质量为m的金属棒MN放在两导轨上,导轨的左端接有一电阻为R的定值电阻,不计其他电阻.x≥0的整个空间内存在磁感应强度大小为B、方向垂直xOy平面向外的匀强磁场(未画出).t=0时刻,对棒施加一沿x轴正方向的水平外力F使棒从x=0处由静止开始做加速度大小为a的匀加速直线运动,棒始终与x轴垂直且与两导轨接触良好,不计一切摩擦.求:(1)棒从x=0处运动到x=2L处的过程中通过电阻R的电荷量q;(2)棒在t时刻受到的水平外力F的大小.6.如图甲所示,在y≥0的区域内有垂直纸面向里的匀强磁场,其磁感应强度B 随时间t变化的规律如图乙所示;与x轴平行的虚线MN下方有沿+y方向的匀强电场,电场强度E=×103N/C.在y轴上放置一足够大的挡板.t=0时刻,一个带正电粒子从P点以v=2×104m/s的速度沿+x方向射入磁场.已知电场边界MN 到x轴的距离为m,P点到坐标原点O的距离为1.1m,粒子的比荷=106C/kg,不计粒子的重力.求粒子:(1)在磁场中运动时距x轴的最大距离;(2)连续两次通过电场边界MN所需的时间;(3)最终打在挡板上的位置到坐标原点O的距离.7.一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad长为L,现从ad中点O垂直于磁场射入一速度方向与ad边夹角为30°、大小为v0的带正电粒子,如图所示,已知粒子电荷量为q,质量为m(重力不计).若要求粒子能从ab边射出磁场,v0应满足什么条件?8.如图,光滑水平地面上方x≥0的区域内存在着水平向内的匀强磁场,磁感应强度为B=0.5T.有一长度为l=2.0m内壁粗糙的绝缘试管竖直放置,试管底端有一可以视为质点的带电小球,小球质量为m=1.0×10﹣2kg,带电量为q=0.3C小球和试管内壁的滑动摩擦因数为μ=0.5.开始时试管和小球以v0=1.0m/s的速度向右匀速运动,当试管进入磁场区域时对试管施加一外力作用使试管保持a=2.0m/s2的加速度向右做匀加速直线运动,小球经过一段时间离开试管.运动过程中试管始终保持竖直,小球带电量始终不变,g=10m/s2.求:(1)小球离开试管之前所受摩擦力f和小球竖直分速度v y间的函数关系(用各物理量的字母表示).(2)小球离开试管时的速度.9.如图所示,在半径为b(大小未知)的圆形区域内,固定放置一绝缘材料制成的边长为L的弹性等边三角形框架DEF,其中心O位于磁场区域的圆心.在三角形框架DEF与圆周之间的空间中,充满磁感应强度大小为B的均匀磁场,其方向垂直纸而向里.在三角形DEF内放置平行板电容器MN,两板间距为d,N板紧靠EF边,N板及EF中点S处均开有小孔,在两板间靠近M板处有一质量为m,电量为q (q>0)的带电粒子由静止释放,粒子经过S处的速度大小为v=,方向垂直于EF边并指向磁场.若粒子与三角形框架的碰撞均为弹性碰撞,且粒子在碰撞过程中质量、电量均不变,不计带电粒子的重力,平行板电容器MN产生的电场仅限于两板间,求:(1)MN间匀强电场的场强大小;(2)若从S点发射出的粒子能再次返回S点,则圆形区域的半径b至少为多大?(3)若圆形区域的半径b满足第(2)问的条件,则从M板处出发的带电粒子第一次返回M板处的时间是多少.10.如图所示,两根相距L1的平行粗糙金属导轨固定在水平面上,导轨上分布着n 个宽度为d、间距为2d的匀强磁场区域,磁场方向垂直水平面向上.在导轨的左端连接一个阻值为R的电阻,导轨的左端距离第一个磁场区域L2的位置放有一根质量为m,长为L1,阻值为r的金属棒,导轨电阻及金属棒与导轨间的接触电阻均不计.某时刻起,金属棒在一水平向右的已知恒力F作用下由静止开始向右运动,已知金属棒与导轨间的动摩擦因数为μ,重力加速度为g.(1)若金属棒能够匀速通过每个匀强磁场区域,求金属棒离开第2个匀强磁场区域时的速度v2的大小;(2)在满足第(1)小题条件时,求第n个匀强磁场区域的磁感应强度B n的大小;(3)现保持恒力F不变,使每个磁场区域的磁感应强度均相同,发现金属棒通过每个磁场区域时电路中的电流变化规律完全相同,求金属棒从开始运动到通过第n个磁场区域的整个过程中左端电阻R上产生的焦耳热Q.11.如图所示为利用静电除烟尘的通道示意图,前、后两面为绝缘板,上、下两面为分别与高压电源的负极和正极相连的金属板,在上下两面间产生的电场可视为匀强电场,通道长L=1m,进烟尘口的截面为边长d=0.5m的正方形.分布均匀的带负电烟尘颗粒均以水平速度v0=2m/s连续进入通道,碰到下金属板后其所带电荷会被中和并被收集,但不影响电场分布.已知每立方米体积内颗粒数n=1013个,每个烟尘颗粒带电量为q=﹣1.0×10﹣17C,质量为m=2.0×10﹣15kg,忽略颗粒的重力、颗粒之间的相互作用力和空气阻力.(1)高压电源电压U0=300V时,求被除去的烟尘颗粒数与总进入烟尘颗粒数的比值(2)若烟尘颗粒恰好能全部被除去,求高压电源电压U1(3)装置在(2)中电压U1作用下稳定工作时,1s内进入的烟尘颗粒从刚进入通道到被全部除去的过程中,求电场对这些烟尘颗粒所做的总功.12.在远距离输电时,要尽量考虑减少电线上的功率损失,有一个电站,输送的电功率为P=500kW,当使用U=5kV的电压输电时,测得安装在输电线路起点和终点处的两只电度表一昼夜示数相差4800kW•h.求:(1)输电效率η和输电线的总电阻r;(2)若想使输电效率提高到96%,又不改变输电线,那么电站应使用多高的电压向外输电?13.如图所示,宽L=2m、足够长的金属导轨MN和M′N′放在倾角为θ=30°的斜面上,在N和N′之间连接一个R=2.0Ω的定值电阻,在AA′处放置一根与导轨垂直、质量m=0.8kg、电阻r=2.0Ω的金属杆,杆和导轨间的动摩擦因数μ=,导轨电阻不计,导轨处于磁感应强度B=1.0T、方向垂直于导轨平面的匀强磁场中.用轻绳通过定滑轮将电动小车与杆的中点相连,滑轮与杆之间的连线平行于斜面,开始时小车位于滑轮正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m.启动电动小车,使之沿PS方向以v=5.0m/s的速度匀速前进,当杆滑到OO′位置时的加速度a=3.2m/s2,AA′与OO′之间的距离d=1m,求:(1)该过程中,通过电阻R的电量q;(2)杆通过OO′时的速度大小;(3)杆在OO′时,轻绳的拉力大小;(4)上述过程中,若拉力对杆所做的功为13J,求电阻R上的平均电功率.14.一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴(填“正向”或“负向”).已知该波的波长大于0.30m,则该波的波长为m.15.在竖直平面直角坐标系xOy内,第Ⅰ象限存在沿y轴正方向的匀强电场E1,第Ⅲ、Ⅳ象限存在沿y轴正方向的匀强电场E2(E2=),第Ⅳ象限内还存在垂直于坐标平面向外的匀强磁场B1,第Ⅲ象限内存在垂直于坐标平面向外的匀强磁场B2.一带正电的小球(可视为质点)从坐标原点O以某一初速度v进入光滑的半圆轨道,半圆轨道在O点与x轴相切且直径与y轴重合,如图所示,小球恰好从轨道最高点A垂直于y轴飞出进入第Ⅰ象限的匀强电场中,偏转后经x 轴上x=R处的P点进入第Ⅳ象限磁场中,然后从y轴上Q点(未画出)与y 轴正方向成60°角进入第Ⅲ象限磁场,最后从O点又进入第一象限电场.已知小球的质量为m,电荷量为q,圆轨道的半径为R,重力加速度为g.求:(1)小球的初速度大小;(2)电场强度E1的大小;(3)B1与B2的比值.16.如图甲所示,足够长的粗糙斜面与水平面成θ=37°固定放置,斜面上平行虚线aa′和bb′之间有垂直斜面向上的有界匀强磁场,间距为d=1m,磁感应强度为B随时间t变化规律如图乙所示.现有一质量为m=0.1Kg,总电阻为R=10Ω,边长也为d=1m的正方形金属线圈MNPQ,其初始位置有一半面积位于磁场中,在t=0时刻,线圈恰好能保持静止,此后在t=0.25s时,线圈开始沿斜面下滑,下滑过程中线圈MN边始终与虚线aa′保持平行.已知线圈完全进入磁场前已经开始做匀速直线运动.求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)前0.25s内通过线圈某一截面的电量;(2)线圈与斜面间的动摩擦因数;(3)线圈从开始运动到通过整个磁场的过程中,电阻上产生的焦耳热.17.如图甲所示,有一磁感应强度大小为B、垂直纸面向外的匀强磁场,磁场边界OP与水平方向夹角为θ=45°,紧靠磁场右上边界放置长为L、间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2为电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上以不同初速度同时发射两个相同的质量为m、电量为+q的粒子a和b.结果粒子a恰从O1点水平进入板间电场运动,由电场中的O2点射出;粒子b恰好从M板左端边缘水平进入电场.不计粒子重力和粒子间相互作用,电场周期T未知.求:(1)粒子a、b从磁场边界射出时的速度v a、v b;(2)粒子a从O点进入磁场到O2点射出电场运动的总时间t;(3)如果金属板间交变电场的周期,粒子b从图乙中t=0时刻进入电场,要使粒子b能够穿出板间电场时E0满足的条件.18.如图所示,直角坐标系xOy在竖直平面内且x轴沿水平方向.在区域有电场强度大小为E、方向沿y轴正方向的匀强电场.一带电粒子从O点以某一速度沿y轴正方向做匀速直线运动,到达(0,L)点后进入磁感应强度为B、方向垂直于xOy平面的圆形匀强磁场区域(图中未画出).粒子通过磁场区域后垂直电场线进入匀强电场,粒子穿越电场前后速度方叫偏转了45°,已知带粒子的质量为m,电量为q,不计带电粒子的重力.求:(1)带电粒子勻速运动速度的大小;(2)圆形匀强磁场区域的最小半径及圆心坐标.19.如图甲所示,两块相同的平行金属板M、N正对着放置,相距为,板M、N上的小孔A、C与O三点共线,CO=R,连线AO垂直于板M、N.以O为圆心、R为半径的圆形区域内存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场.收集屏PQ上各点到O点的距离都为2R,两端点P、Q关于连线AO对称,屏PQ所对的圆心角θ=120°.质量为m、电荷量为e的质子连续不断地经A进入M、N间的电场,接着通过C进入磁场.质子重力及质子间的相互作用均不计,质子在A处的速度看作零.(1)若M、N间的电压U MN=+U时,求质子进入磁场时速度的大小v0.(2)若M、N间接入如图乙所示的随时间t变化的电压U MN=|U0sin t|(式中U0=,周期T已知),且在质子通过板间电场区域的极短时间内板间电场视为恒定,则质子在哪些时刻自s1处进入板间,穿出磁场后均能打到收集屏PQ 上?(3)在上述(2)问的情形下,当M、N间的电压不同时,质子从s1处到打在收集屏PQ上经历的时间t会不同,求t的最大值.20.如图(甲)所示为一种研究高能粒子相互作用的装置,两个直线加速器均由k个长度逐个增长的金属圆筒组成(整个装置处于真空中,力中只画出了6个圆筒,作为示意)它们沿中心轴线排列成一串,各个圆筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.设金属圆筒内部没有电场,且每个圆筒间的缝隙宽度很小,带电粒子穿过缝隙的时间可忽略不计.为达到最佳加速效果,应当调节至粒子穿过每个圆筒的时间恰为交流电的半个周期,粒子每次通过圆筒间缝隙时,都恰为交流电压的峰值.质量为m、电荷量为e的正、负电子分别经过直线加速器加速后,从左、右两侧被导入装置送入位于水平面内的圆环形真空管道,且被导入的速度方向与圆环形管道中粗虚线相切.在管道内控制电子转弯的是一系列圆形电磁铁,即图中的A1、A2、A3…A n,共n个,均匀分布在整个圆周上(图中只示意性地用细实线和细虚线了几个),每个电磁铁内的磁场都是磁感应强度和方向均相同的匀强磁场,磁场区域都是直径为d的圆形.改变电磁铁内电流的大小,就可改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确的调整,可使电子在环形管道中沿图中粗虚线所示的轨迹运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的一条直径的两端,如图(乙)所示.这就为实现正、负电子的对撞作好了准备.(1)若正电子进入第一个圆筒的开口时的速度为v0,且此时第一、二两个圆筒的电势差为U,正电子进入第二个圆筒时的速率多大?(2)正、负电子对撞时的速度多大?(3)为使正电子进入圆形磁场时获得最大动能,各个圆筒的长度应满足什么条件?(4)正电子通过一个圆形磁场所用的时间是多少?21.互联网正在极大地促进商业的发展和消费的升级,“020”模式是指将线下的商务机会与互联网结合,让互联网成为线下交易的前台的一种商业新模式,具体到一家外卖公司与消费之间,就是消费者在网络平台上下单订购,而公司进行线下的配送服务.某外卖公司为了更好地为消费者服务,配送员工使用的是“XR一2016”型电动自行车工作,以下是该车的相关参数:名称车身质量满载载重前后车轮直径额定转速电动机额定电压电动机额定电流额定机械输出功率参数40kg80kg40cm r/min48V20A835W 该电动自行车采用后轮驱动直流电动机,其中额定转速是电动自行车在满载情况下在平直公路上以额定功率勻速行进时的车轮转速,求:(1)电动自行车以额定转速行进时的速度v0;在额定工作状态时,损失的功率有80%是由于电动机绕线电阻生热而产生的,则电动机的绕线电阻为多大;(2)满载(车身质量+满载载重质量)情况下,该车以速度v=5m/s沿着坡度为θ=4.59°的长直坡道向上匀速行驶时,受到的摩擦阻力为车重(含载重)重量的0.02倍,求此状态下电动自行车实际运行机械功率(sin4.59°=0.08,重力加速度g=10m/s2).22.有一仪器中电路如图所示,其中M是质量较大的金属块,将仪器固定在一辆汽车上,汽车启动时和急刹车时,发现其中一盏灯亮了,试分析是哪一盏灯亮了.23.如图所示,ABCD为边长为2a的正方形,O为正方形中心,正方形区域左丶右两对称部分分别存在方向垂直ABCD平面向里和向外的匀强磁场.一个质量为|m丶电荷量为q的带正电粒子从B点处以速度v垂直磁场方向射入左侧磁场区域,速度方向与BC边夹角为15°,粒子恰好经过O点.已知cos15°=,粒子重力不计.(1)求左侧磁场的磁感应强度大小;(2)若粒子从CD边射出,求右侧磁场的磁感应强大大小的取值范围.24.如图所示为一列沿x轴正方向传播的简谐横波在t=0时刻的波形图.x=0处的质点做简谐运动的振动方程为y=﹣2sin10πt(cm).求:(1)从t=0开始计时,P点第一次到达波峰位置所需的时间;(2)P点第一次到达波峰位置时,x=0.25m处质点偏离平衡位置的位移.25.如图所示,质量为m、电阻为R的单匝矩形线框置于倾角为θ的光滑斜面上,线框边长ab=L、ad=2L,虚线MN过ad、bc边中点,一根能承受最大拉力F0(F0>mgsinθ)的细线沿斜面中轴线方向栓住ab边中点处于静止.从某时刻起,在MN上方加一方向垂直斜面向上的匀强磁场,磁感应强度大小按B=kt的规律均匀变化.求经多长时间细线断裂?26.一光滑绝缘细直长杆处于静电场中,沿细杆建立坐标轴x,以x=0处的O点为电势零点,如图(a)所示.细杆各处电场方向沿x轴正方向,其电场强度E 随x的分布如图(b)所示.细杆上套有可视为质点的带电环,质量为m=0.2kg,电荷量为q=﹣2.0×10﹣6C.带电环受沿x轴正向的恒力F=1.0N的作用,从O点静止开始运动,求:(1)带电环在x=1m处的加速度;(2)带电环在x=1m处的动能;(3)带电环在x=1m处的电势能.27.如图所示,两足够长的平行光滑金属导轨MN、PQ相距为L,导轨平面与水平面的夹角为α.匀强磁场分布在整个导轨所在区域.磁感应强度为B、方向垂直于导轨平面向上,质量为m、长为L 的金属杆垂直于MN.PQ放置在导轨上.且始终与导轨接触良好.两导轨的上端通过导线连接由定值电阻和电容器组成的电路,电容器的电容为C.现闭合开关S并将金属杆从ab位置由静止释放,已知杆向下运动距离为x到达cd位置的过程中,通过杆的电荷量为q1,通过定值电阻的电荷量为q2,且已知杆在到达cd前已达到最大速度,不计导轨、金属杆及导线的电阻,重力加速度为g.(1)电容器上极板带什么电?电荷量是多少?(2)杆运动的最大速度和定值电阻的阻值各是多少?(3)小羽同学从资料上查阅到电容器的储能公式为E c=CU2(U为电容器两板间的电压),若不计回路向外辐射的电磁能.求杆从ad到cd的过程中回路产生的总焦耳热.(结果用m、g、B、L、C、α、x、q1、q2表示)28.如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T,将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8)求:(1)金属棒与导轨间的动摩擦因数μ和cd离NQ的距离S.(2)金属棒滑行至cd处的过程中,电阻R上产生的热量.(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).29.如图所示,x轴上放有一足够大的荧光屏,y轴上(0,L)处有一个点状的α粒子放射源A,某瞬间同时向xoy平面内各个方向发射速率均为v0的α粒子(不计重力),设α粒子电量为q,质量为m,求:(1)当空间中只存在平行xoy平面沿y轴负方向的匀强电场时,最后到达荧光屏的α粒子在电场中的运动时间为最先到达荧光屏的α粒子在电场中运动时间的3倍,求电场强度.(2)当空间中只存在垂直xoy平面向里的匀强磁场且磁感应强度B=时,最先到达荧光屏的α粒子在磁场中的运动时间与最后到达荧光屏的α粒子在磁场中运动时间的比值为多少.30.如图所示,边长为L=0.20m的正方形金属线框,放在光滑,绝缘的水平面上,线框的总电阻为R=1.0Ω,有界匀强磁场方向垂直纸面向里,磁感应强度大小为B=0.50T,线框的右边与磁场边界平行.现用一水平外力将线框以v=10m/s的速度匀速拉出磁场区域.求:(1)线框离开磁场的过程中受到的安培力的大小.(2)线框完全拉出磁场区域的过程中,线框中产生的焦耳热.31.如图所示,开有小孔的平行板水平放置,两极板接在电压大小可调的电源上,用喷雾器将油滴喷注在小孔上方.已知两极板间距为d,油滴密度为ρ,电子电量为e,重力加速度为g,油滴视为球体,油滴运动时所受空气的粘滞阻力大小F f=6πηrv(r为油滴半径、η为粘滞系数,且均为已知),油滴所带电量是电子电量的整数倍,喷出的油滴均相同,不考虑油滴间的相互作用.(1)当电压调到U时,可以使带电的油滴在板间悬浮;当电压调到时,油滴能在板间以速度v匀速竖直下行.求油滴所带电子的个数n及油滴匀速下行的速度v;(2)当油滴进入小孔时与另一油滴粘连在一起形成一个大油滴,以速度v1(已知)竖直向下进入小孔,为防止碰到下极板,需调整电压,使其减速运行,若将电压调到2U,大油滴运动到下极板处刚好速度为零,求:大油滴运动到下极板处时的加速度及这一过程粘滞阻力对大油滴所做的功.32.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L=0.5m,上端接有阻值R=0.3Ω的电阻,匀强磁场的磁感应强度大小B=0.4T,磁场方向垂直导轨平面向上.一质量m=0.2kg,电阻r=0.1Ω的导体棒MN在平行于导轨的外力F作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好,当棒的位移d=9m时电阻R上消耗的功。
高考物理电磁学计算题(三十四)含答案与解析

高考物理电磁学计算题(三十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,在平面直角坐标系中,第三象限里有一加速电场,一个电荷量为q、质量为m的带正电粒子(不计重力),从静止开始经加速电场加速后,垂直x轴从A(﹣4L,0)点进入第二象限,在第二象限的区域内,存在着指向O点的均匀辐射状电场,距O点4L处的电场强度大小均为E=,粒子恰好能垂直y轴从C(0,4L)点进入第一象限,如图所示,在第一象限中有两个全等的直角三角形区域I和Ⅱ,充满了方向均垂直纸面向外的匀强磁场,区域I的磁感应强度大小为B0,区域Ⅱ的磁感应强度大小可调,D点坐标为(3L,4L),M点为CP的中点。
粒子运动轨迹与磁场区域相切时认为粒子能再次进入磁场。
从磁场区域I进入第二象限的粒子可以被吸收掉。
求(1)加速电场的电压U;(2)若粒子恰好不能从OC边射出,求区域Ⅱ磁感应强度大小;(3)若粒子能到达M点,求区域Ⅱ磁场的磁感应强度大小的所有可能值。
2.一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示。
图中直径MN的两端分别开有小孔。
筒绕其中心轴以角速度ω0顺时针转动。
一带电粒子从小孔M沿MN方向射入筒内(图中未画出),当筒转过90°时,该粒子恰好从小孔N飞出圆筒。
若粒子在筒内未与筒壁发生碰撞,不计粒子重力。
(1)求带电粒子的比荷;(2)若粒子速率不变,在该截面内,粒子从小孔M射入时的运动方向与MN成30°,粒子仍未与筒壁发生碰撞而从某小孔飞出,求圆筒的角速度ω。
3.如图所示,在水平边界MN上方有磁感应强度大小为B0、方向垂直纸面向外的匀强磁场,磁感应强度为B,O、A是MN上的两点,OA距离为L,PQ是一足够长的挡板,粒子打在挡板上均被吸收,开始时P点与O点重合,∠QON=θ=53°.在OA之间有大量质量为m、电荷量为﹢q且速度相同的粒子,速度方向均垂直边界MN竖直向上,且在纸面内。
高中物理电磁学综合题举例与分析

高中物理电磁学综合题举例与分析在高中物理学习中,电磁学是一个重要的章节,涉及电场、磁场、电磁感应等内容。
而在考试中,电磁学综合题往往是学生们头疼的难题。
本文将通过举例与分析,为大家介绍几类常见的高中物理电磁学综合题,并给出解题技巧和指导。
一、电场与电势能题目:在一个电场中,一个带电粒子从A点沿着一条直线运动到B点,电势能的变化是多少?分析:这是一个考察电场与电势能的变化关系的题目。
根据电势能的定义,电势能的变化等于电场力对粒子做功。
因此,我们需要计算电场力对粒子在A点到B点的位移上所做的功。
解答:首先,我们需要确定电场的方向和大小。
根据电场的定义,电场力的方向与电场的方向相同。
然后,我们需要计算电场力的大小。
根据库仑定律,电场力与电荷量和电场强度的乘积成正比。
因此,我们可以通过电场强度和带电粒子的电荷量来计算电场力的大小。
接下来,我们计算位移的大小。
由于题目中给出了粒子从A点到B点的直线运动,所以位移的大小等于两点之间的距离。
最后,我们将电场力的大小和位移的大小相乘,得到电场力对粒子做功的大小。
这个值就是电势能的变化。
二、磁场与电流题目:一根长直导线上有电流I,与之平行的磁场B的方向与电流方向相反。
求导线上的磁场强度与电流的关系。
分析:这是一个考察磁场与电流的关系的题目。
根据安培定律,磁场强度与电流的大小成正比,与两者之间的距离成反比。
解答:首先,我们需要确定磁场的方向和大小。
根据题目中的描述,磁场的方向与电流方向相反。
然后,我们需要计算磁场的大小。
根据安培定律,磁场强度与电流的大小成正比,与两者之间的距离成反比。
因此,我们可以通过电流和导线上某一点到导线的距离来计算磁场的大小。
三、电磁感应与电动势题目:一个导体环以速度v进入磁场B中,导体环的面积为A,与磁场的夹角为θ。
求导体环中感应电动势的大小。
分析:这是一个考察电磁感应与电动势的关系的题目。
根据法拉第电磁感应定律,感应电动势与磁场的大小、导体的速度和导体与磁场的夹角有关。
高考物理电磁学计算题(三十一)含答案与解析

高考物理电磁学计算题(三十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,在第一、四象限区域内存在有匀强电场和匀强磁场,电场强度E=4.0×105N/C,方向沿y轴正方向,磁感应强度B=0.2T,方向与xoy平面垂直向外。
在x轴上的A点处有一足够长、与x轴垂直的荧光屏,交点A与坐标原点O的距离为40.0cm,在OA中点P处有一粒子发射枪(可看作质点),能连续不断的发射速度相同的带正电粒子,粒子质量m=6.4×10﹣27kg,电量q=3.2×10﹣19C.粒子发射枪向x轴方向发射的粒子恰能打到荧光屏的A点处。
若撤去电场,并使粒子发射枪在xoy平面内以角速度ω=2πrad/s逆时针转动(整个装置都处在真空中),求:(1)带电粒子的速度及在磁场中运动的轨迹半径;(2)荧光屏上闪光点范围的长度(结果保留两位有效数字);(3)荧光屏上闪光点从最低点移动到最高点所用的时间(结果保留两位有效数字)。
2.如图,上下放置的两带电金属板,相距为3l,板间有竖直向下的匀强电场E.距上板l 处有一带+q电的小球B,在B上方有带﹣6q电的小球A,他们质量均为m,用长度为l 的绝缘轻杆相连。
已知E=mg/q。
让两小球从静止释放,小球可以通过上板的小孔进入电场中(重力加速度为g)。
求:(1)B球刚进入电场时的速度v1大小;(2)A球刚进入电场时的速度v2大小;(3)B球是否能碰到下金属板?如能,求刚碰到时的速度v3大小。
如不能,请通过计算说明理由。
3.如图所示,质量为m、带电荷量为+q的小物块置于绝缘粗糙水平面上的A点。
首先在如图所示空间施加方向水平向右的匀强电场E,t=0时刻释放物块,一段时间后物块运动到B位置,同时将电场更换为方向水平向左的匀强电场E,物块运动到C点速度恰好减为零,已知A、B间距是B、C间距离的2倍,物块从B点运动到C点所需时间为t,求:(1)物块与水平面间的摩擦力;(2)物块从A点运动到C点的过程中克服摩擦力所做的功。
高考物理电磁学计算题(二十四)含答案与解析

高考物理电磁学计算题(二十四)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,虚线框内为某种电磁缓冲车的结构俯视图,缓冲车厢的底部安装电磁铁(图中未画出),能产生竖直向下的匀强磁场,磁场的磁感应强度为B,车厢上有两个光滑水平绝缘导轨PQ、MN,将高强度绝缘材料制成的缓冲滑块K置于导轨上,并可在导轨上无摩擦滑动。
滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L,假设关闭发动机后,缓冲车厢与滑块K以速度v0与障碍物C碰撞。
滑块K立即停下,此后缓冲车相会受到线圈对它的磁场力而做减速运动,从而实现缓冲,缓冲车厢质量为m,缓冲滑块的质量为m0,车厢与地面间的动摩擦因数为,其他摩擦阻力不计,求:(1)缓冲滑块K的线圈中感应电流的方向和最大安培力的大小;(2)若缓冲车厢向前移动时间t后速度减为零,缓冲车厢与障碍物和线圈的ab边均没有接触,求此过程线圈abcd中通过的电量;(3)接(2)求此过程线圈abcd中产生的焦耳热。
2.如图甲所示为发电机的简化模型,固定于绝缘水平桌面上的金属导轨,处在方向竖直向下的匀强磁场中,导体棒ab在水平向右的拉力F作用下,以水平速度v沿金属导轨向右做匀速直线运动,导体棒ab始终与金属导轨形成闭合回路。
已知导体棒ab的长度恰好等于平行导轨间距l,磁场的磁感应强度大小为B,忽略摩擦阻力。
(1)求导体棒ab运动过程中产生的感应电动势E和感应电流I;(2)从微观角度看,导体棒切割磁感线产生感应电动势是由于导体内部的自由电荷受到沿棒方向的洛伦兹力做功而产生的。
如图乙(甲图中导体棒ab)所示,为了方便,可认为导体棒ab中的自由电荷为正电荷,每个自由电荷的电荷量为q,设导体棒ab中总共有N个自由电荷。
a.求自由电荷沿导体棒定向移动的速率u;b.请分别从宏观和微观两个角度,推导非静电力做功的功率等于拉力做功的功率。
3.环保部门为了监测某化肥厂的污水排放量,技术人员在该厂的排污管末端安装了如图所示的流量计。
高考物理电磁学计算题(三十三)含答案与解析

高考物理电磁学计算题(三十三)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,质量为m,带电量为+q的带电粒子由静止开始经电压为U0的加速电场加速后沿平行于极板的方向从靠近上极板的位置射入偏转电场,极板间电压为U,上极板带正电荷,极板长度和极板间距均为L,粒子从另一侧射出偏转电场,进入紧邻的匀强磁场,磁感应强度为B,磁场方向垂直于纸面向外,磁场只存在于MN右侧的某个正三角形区域内,MN为磁场的一条边界,忽略电场和磁场间的距离,不计带电粒子的重力。
(1)粒子进入偏转电场时的速度;(2)当偏转电压U=0时,若带电粒子最终从MN边界离开磁场,求磁场区域的最小面积S1;(3)当偏转电压U=2U0时,若带电粒子最终从MN边界离开磁场,此时磁场区域的最小面积为S2,求。
2.如图所示为一列简谐波在t1=0时刻的图象,此时波中质点M的运动方向沿y轴负方向,且t2=0.7s时质点M恰好第二次到达y轴正方向最大位移处,试求:①该波的传播方向;②该波的波速③从t1=0至t3=1s时间内质点M经过的路程。
3.如图所示在y轴与虚线间存在着方向沿y轴负方向的匀强电场,一质量为m、带电量为q的带电粒子从坐标原点O以速度v0沿x轴射入电场中,从图中P点离开电场区域,P 点离x轴的距离为L,带电粒子重力不计。
(1)若在区域内再加上垂直xOy平面的匀强磁场,粒子仍从O点以原来的速度射入,粒子沿x轴射出区域,求磁感应强度的大小及方向;(2)若去掉电场,保留(1)的磁场,粒子仍从O点以原来的速度射入,求粒子射出区域时离x轴的距离。
4.如图所示,倾角为θ=37°的绝缘斜面上端与绝缘的水平面相接,一电荷量为+q、质量为m的小物块(可视为质点)置于斜面上,斜面部分处于一水平向右的匀强电场中。
已知重力加速度为g,sin37°=0.6,cos37°=0.8。
(1)若斜面光滑,要使小物块静止在斜面上,求匀强电场的场强大小;(2)若小物块与斜面间的动摩擦因数μ=0.5,小物块能静止在写明上,求匀强电场的场强大小的范围;(3)若斜面与水平面均粗糙,小物块与它们之间的动摩擦因数均为μ=0.5,且匀强电场的场强E=.小物块在斜面上运动位移l后到达斜面顶端,在斜面顶端处有一特殊装置,该装置瞬间可使小物块速度方向变为沿水平面向右、速度大小不变。
高中物理电磁学举例与分析

高中物理电磁学举例与分析电磁学是高中物理中的一大重点内容,也是学生们普遍感到困惑的一部分。
在这篇文章中,我将通过一些具体的题目举例,来说明电磁学中的一些考点,帮助学生更好地理解和应用相关知识。
1. 电场和电势题目:一个带正电的点电荷Q位于真空中,距离它r的地方有一个测试电荷q。
当测试电荷从无穷远处移到该点,电场对它所做的功是多少?解析:这是一个关于电场和电势能的问题。
首先,我们知道电场是由电荷产生的,而电势能则是电场对电荷所做的功。
根据电势能的定义,我们知道电势能等于电荷在电场中的电势差乘以电荷本身。
因此,电场对测试电荷所做的功等于电荷在电场中的电势差。
在这个问题中,测试电荷从无穷远处移到距离为r的地方,所以电势差为V = kQ/r,其中k为电场常量。
因此,电场对测试电荷所做的功为W = qV = qkQ/r。
通过这个例子,我们可以看到电场和电势之间的关系,并且了解到电势能是如何与电场和电荷之间的相互作用相关联的。
2. 磁场和洛伦兹力题目:一根长直导线通电,产生的磁场对另一根平行导线的作用力是多少?解析:这是一个关于磁场和洛伦兹力的问题。
根据洛伦兹力的定义,我们知道洛伦兹力等于电荷的速度与磁场的叉乘。
在这个问题中,我们需要计算另一根平行导线所受到的洛伦兹力。
首先,我们需要确定磁场的方向。
根据右手定则,我们可以确定磁场的方向是垂直于长直导线和另一根平行导线的平面。
然后,我们需要确定电荷的速度方向。
由于两根导线平行,所以电荷的速度方向与磁场的方向垂直。
因此,洛伦兹力的方向是指向两根导线之间的空间。
接下来,我们需要计算洛伦兹力的大小。
根据洛伦兹力的公式,我们可以得到F = qvBsinθ,其中q为电荷的大小,v为电荷的速度,B为磁场的大小,θ为电荷速度与磁场方向之间的夹角。
在这个问题中,θ为90度,所以sinθ = 1。
因此,洛伦兹力的大小为F = qvB。
通过这个例子,我们可以看到磁场和洛伦兹力之间的关系,并且了解到洛伦兹力是如何受到电荷速度和磁场大小的影响的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁学计算题举例与分析
在高中物理学习中,电磁学是一个重要的内容领域。
电磁学计算题是学习电磁
学的重要环节,通过解题可以帮助学生巩固知识,提高解题能力。
本文将通过具体题目的举例与分析,介绍一些常见的电磁学计算题,以及解题的技巧和方法。
一、电场强度计算题
电场强度是电磁学中的基本概念,计算题中常涉及到通过一个电荷产生的电场
强度。
例如,某点距离一个电荷为1m,电荷大小为2C,求该点的电场强度。
解题思路:根据库仑定律,电场强度与电荷的大小和距离的平方成反比。
所以,可以使用公式E=kQ/r^2来计算电场强度。
其中,k为库仑常数,Q为电荷大小,r
为距离。
解题步骤:
1. 将已知数据代入公式:E=9×10^9 × 2 / 1^2
2. 计算结果:E=1.8×10^10 N/C
通过这个例子,我们可以看到电场强度计算的基本步骤,即代入已知数据,应
用公式进行计算。
在解题过程中,需要注意单位的转换和计算的准确性。
二、电势差计算题
电势差是电磁学中另一个重要的概念,计算题中常涉及到两点之间的电势差。
例如,某点A的电势为10V,某点B的电势为5V,求A点到B点的电势差。
解题思路:电势差可以通过两点之间的电势差公式计算。
即电势差ΔV=V2-V1。
解题步骤:
1. 将已知数据代入公式:ΔV=5-10
2. 计算结果:ΔV=-5V
通过这个例子,我们可以看到电势差计算的基本思路,即通过已知电势值的差
来计算电势差。
在解题过程中,需要注意电势值的正负和计算结果的单位。
三、电流计算题
电流是电磁学中的重要概念,计算题中常涉及到电流的计算。
例如,某电路中
通过的电荷量为2C,通过时间为5s,求电流的大小。
解题思路:电流可以通过通过的电荷量与通过的时间的比值来计算。
即I=Q/t。
解题步骤:
1. 将已知数据代入公式:I=2/5
2. 计算结果:I=0.4A
通过这个例子,我们可以看到电流计算的基本思路,即通过已知的电荷量和时
间来计算电流的大小。
在解题过程中,需要注意单位的转换和计算结果的准确性。
综上所述,电磁学计算题在高中物理学习中是一个重要的内容。
通过具体题目
的举例与分析,我们可以了解到解题的一般思路和方法。
在解题过程中,需要注意公式的应用和计算的准确性,同时也需要理解电磁学的基本概念和原理。
希望通过这些例子和分析,能够帮助高中学生更好地理解和掌握电磁学的知识,提高解题能力。